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Abstract: With the ever-improving advances in computer vision and Earth observation capabilities,
Unmanned Aerial Vehicles (UAVs) allow extensive forest inventory and the description of stand
structure indirectly. We performed several flights with different UAVs and popular sensors over
two sites with coniferous forests of various ages and flight levels using the custom settings preset
by solution suppliers. The data were processed using image-matching techniques, yielding digital
surface models, which were further analyzed using the lidR package in R. Consumer-grade RGB
cameras were consistently more successful in the identification of individual trees at all of the flight
levels (84–77% for Phantom 4), compared to the success of multispectral cameras, which decreased
with higher flight levels and smaller crowns (77–54% for RedEdge-M). Regarding the accuracy of the
measured crown diameters, RGB cameras yielded satisfactory results (Mean Absolute Error—MAE
of 0.79–0.99 m and 0.88–1.16 m for Phantom 4 and Zenmuse X5S, respectively); multispectral cameras
overestimated the height, especially in the full-grown forests (MAE = 1.26–1.77 m). We conclude that
widely used low-cost RGB cameras yield very satisfactory results for the description of the structural
forest information at a 150 m flight altitude. When (multi)spectral information is needed, we recom-
mend reducing the flight level to 100 m in order to acquire sufficient structural forest information.
The study contributes to the current knowledge by directly comparing widely used consumer-grade
UAV cameras and providing a clear elementary workflow for inexperienced users, thus helping
entry-level users with the initial steps and supporting the usability of such data in practice.

Keywords: low-altitude aerial survey; unmanned aerial vehicle (UAV); lidR package; tree counting;
tree crown size; camera suppliers’ settings

1. Introduction

Forests are complex terrestrial ecosystems covering almost 4 billion hectares globally
and providing an immense number of ecosystem services [1], i.e., ecological, climatic,
economic, cultural, and social services. Forest ecosystems accumulate most of the standing
biomass [2], protect the watershed, prevent soil erosion, sequestrate large quantities of
carbon via photosynthesis, mitigate climate change [3], and harbour a massive number
of species [4]. However, the pressure on the production of these ecosystem services is
increasing [5,6], forest disturbances are intensifying [7], and the global forested area is
continuously decreasing. This is why it is necessary to continue improving our abilities of
forest ecosystems monitoring.

With the availability of Earth observation techniques, the knowledge of the world’s
forests distribution, health status, biomass storage, and stand structure and composition
continuously increases [8]. Satellites and airborne systems supplement the terrestrial
data inventories and facilitate the monitoring, mapping, and modelling of forests with
unprecedented spatial resolution across large extents. The choice of the platform always
relates to the analysis or application we would like to perform. While satellites may capture
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scenes across large areas, conventional airborne systems may provide better spatial and
temporal resolutions. In addition to those systems, unmanned aerial vehicles (UAVs) may
be used. Despite their still-limited payload capacity, flight endurance, and data storage
and processing capabilities [9], unmanned systems bring great potential benefits to forestry
applications [10–12] due to their relatively low acquisition costs, ever increasing user-
friendliness, and high flexibility regarding temporal and sensor variability. Over the last
few years, their popularity has increased [13], and these systems are now used for plant
species classification [14–16], tree stress detection [17–19], individual tree detection [20–22],
the complex assessment of forest structures [23,24], biomass estimations [25], microclimate
modelling [26], or terrain reconstruction [27]. Many approaches and applications are
described in the current reviews; see, e.g., [11,12].

LiDAR (Light Detection and Ranging) offers, thanks to its penetrating pulses, the benefit
of capturing both the canopy and under-canopy forest structure [28–31]. Passive sys-
tems (e.g., spectral cameras), which are far less expensive, capture only the upper canopy;
they may, however, still be suitable for the description of the forest structure in detail suffi-
cient for most purposes including, for example, aboveground biomass estimation [32,33]
whilst preserving low data acquisition costs. While more or less standardised protocols
of data acquisition and processing have been verified for the traditional remote sensing
approaches over the years, unmanned systems are still relatively novel; thus, the researcher
may face challenges during data acquisition and processing [34]. This should be over-
come by the creation and implementation of standardised protocols including accuracy
assessment [35], which would be especially helpful for users without in-depth education in
remote sensing data acquisition and processing, such as forest managers. Besides not being
familiar with the processing and calibration of aerial data, such users often do not handle a
large budget and are, therefore, likely to opt for rather low-cost solutions, such as suitable
sensors mounted on casual commercial UAVs, as even such consumer-grade RGB sensors
may work with sufficient efficacy and reliability to derive basic tree parameters.

Several studies focused on the evaluation of different tree parameters using individual
tree detection in different environments have been published so far. Ghanbari et al. [36]
compared UAV-based photogrammetric and LiDAR point clouds-based tree canopy
parameters, Mohan et al. [37] compared UAV-based imagery and UAV-based LiDAR,
and Gallardo-Salazar et al. [38] evaluated UAV-based tree height, area, and crown diameter.
Kuzmin et al. [39] combined UAV-borne imageries (RGB and multispectral) for the detec-
tion of European Aspen, Nguyen et al. [40] used them for the detection of infested fir trees,
and Qin et al. [41] used them for the identification of pine nematode disease. Diez et al. [42]
recently published a review describing the use of deep learning for the processing of RGB
data in forestry. Mohan et al. [37] have even published a guide for beginners on how
to detect trees. Individual tree detection has also been evaluated from an SfM software
perspective [43]. However, to the best of our knowledge, no studies comparing the usability
and effectiveness of the estimation of the number of trees and crown size of different UAV
platforms and sensors sensing from different altitudes have been published thus far.

The question remains of how an inexperienced user utilising such a solution with
supplier-preset parameters will fare in imagery acquisition. The quality of such imagery
is also related to other flight parameters, such as the flight altitude. The objectives of the
presented study were (i) to provide entry-level users with the information on the basic
processing workflow for the identification of tree crowns and their size; (ii) to provide
information about the performance and reliability of such low-cost systems, which can be
useful when assessing information derived from studies using such preset solutions; and
(iii) to find out the optimal flight altitude of the individual widely used ready-made UAV
solutions in the default modes preset by the suppliers that would result in the acquisition
of the imagery which is best-suited for the detection of tree crowns and their size (which
can be further used, e.g., for aboveground biomass estimates).
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2. Materials and Methods
2.1. Study Area

The study site (50◦04′ N, 13◦59′ E) is located 30 km west from the city of Prague,
Czech Republic. The elevation in the study area of 15 ha ranges from 420 to 430 m
above the mean sea level, with mostly an south or southwest aspect. It constitutes a
part of a protected landscape of Křivoklátsko (681 sq. km), which was included among
the UNESCO Biosphere reserves in 1977. The study site represents a typical Central
European spruce-pine forest which is managed for timber production (standard silvicul-
tural treatments are carried out). Two different forest compositions can be found on the
site: (i) full-grown 80–100 year-old coniferous forests consisting of pine (Pinus sylvestris,
40%), spruce (Picea abies, 40%), and larch (Larix decidua, 20%), with a mean crown size of
7.1 ± 1.4 m; and (ii) 20–40 year-old coniferous forests consisting of spruce (60%), pine (20%)
and larch (20%), with a mean crown size of 4.5 ± 0.9 m; see Figure 1.
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Figure 1. Study site overview—two tested sites: (Site I) full-grown 80–100 year-old mixed coniferous
forest; (Site II) forest with the dominance of spruce, 20–40 years old. Basemap source: orthomosaics
acquired from a Phantom 4 Pro at 200 m above ground.

2.2. Imagery Acquisition

Flights with four sensors mounted on three different UAVs were performed in the
study area (see Table 1 for details). The imagery was collected during late winter,
on 26 February 2019; the flight conditions were convenient—mostly cloudy sky with
a temperature of around 12 ◦C and a northwest wind of 2–5 m·s−1. A total number of eight
Ground Control Points (GCP) surveyed with a Leica 1200 GNSS in RTK mode were placed
throughout the study site.

The three UAVs included: (a) a lightweight fixed-wing UAV Disco Pro Ag (Parrot SA,
Paris, France), which is a ready-to-deploy solution for agricultural and forestry applications
with a maximum take-off weight (MTOW) of 0.94 kg mounted with a Sequoia camera;
the remaining two were rotary-wing systems, namely (b) the Phantom 4 Pro (DJI, Shenzhen,
China) which is probably the most popular lightweight (MTOW of 1.39 kg) universal
commercial UAV, mounted with an integrated camera, and (c) a Matrice 210 (DJI, China),
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representing a professional adjustable enterprise solution with a MTOW of 6.6 kg, with a
Zenmuse X5S FC6520 camera. In addition, (d) a fourth UAS (Unmanned Aerial System,
i.e., a ready-to-fly solution including all of the necessary components) was created by
mounting a RedEdge-M camera on the Phantom 4 Pro platform. Except for the fixed-wing
UAV, for which where the producer regulates the elevation level, the flights were performed
at 100, 150, and 200 m above ground level (AGL). For the fixed-wing UAV, we used the
minimum and maximum allowed flight altitudes (125 m and 150 m) and supplemented
them with one between these two (135 m). The flight missions were performed using
(i) the DJI Ground Station Pro application for both Phantom 4 and Matrice 210, and (ii) the
Pix4Dcapture application for the Parrot Disco Pro Ag. The flights were conducted using
perpendicular flight lines with 80% forward (longitudinal) overlap and 70% side (lateral)
overlaps. The UAVs followed predefined flight plans across the study sites. The sensors’
triggering option was set to Overlaps (one image acquisition per waypoint) or, where not
possible, Time-lapse (a fixed time between any two acquisitions). In order to simulate
the behaviour of a user without in-depth knowledge of RS techniques, we evaluated the
performance of the systems in the default mode, i.e., with no adjustments to the vendor-
preset parameters of image acquisition (shutter speed/aperture preference, ISO, etc.).

Table 1. Specifications of the used UAV-mounted cameras.

Zenmuse X5S
FC6520

Phantom 4
FC6310 RedEdge-M Sequoia

Manufacturer SZ DJI Technology Co., Ltd. MicaSense Inc. Parrot SA
Mounted on Matrice 210 Phantom 4 Phantom 4 Disco Pro Ag

Sensor 4/3-inch CMOS 1-inch CMOS
Resolution (MPx) 20.8 19.8 1.2 1.2

FOV (◦) 72 84 46 49
F-stop * 3.5/5/3.5 3.5/4.5/4 2.8 (fixed) 2.2 (fixed)
Shutter * 120/240/160 80/200/100 270/1000/500 310/730/320

ISO * 100 (fixed) 100 (fixed) 100/800/800 100 (fixed)
35 mm equivalent focal length 30 24 39 29

Spectral bands RGB
broadband

RGB
broadband

B, G, R, RE, NIR
narrowband

G, R, RE, NIR
narrowband

Spectral range (nm) n/a n/a 455–727 530–810
Image size 5280 × 3956 5472 × 3628 1280 × 960 1280 × 960

Image format JPG JPG TIF TIF
Dynamic range per band (bit) 8 8 16 16

Triggering Overlaps Overlaps Time-lapse Overlaps
Radiometric calibration ** n/a n/a Panel + DLS Panel + DLS

Weight (g) 461 1388 *** 170 72
Price (EUR) 2199 1699 *** 4200 3850

* Capture settings’ min/max/median values. ** DLS stands for Down-welling Light Sensor. *** The sensor cannot
be removed from the body. n/a means not applicable; thus, the price and weight include the UAV itself.

2.3. Image Alignment and Surface Reconstruction

Agisoft Metashape Professional (version 1.5.5, Agisoft LLC, St. Petersburg, Russia)
image-matching software was used to generate point clouds and reconstruct the 3D sur-
face [44]. Metashape uses metadata related to the band information from EXIF to load the
image description, including the coordinates taken from the on-board GNSS units. As the
first step, we loaded the images and estimated the image quality. Images taken during
the take-off, landing and taxiing, as well as those with a quality below 0.5 (automatically
evaluated by Agisoft), were excluded from further processing [45]. The numbers of the
acquired images are tabulated below (Table 2).

After determining the image orientations, i.e., after geometrical processing [46],
the sparse point clouds were checked for outliers and, subsequently, densified using
the surveyed GCPs. Following the Metashape manual, a digital surface model (DSM) was
constructed using dense point clouds and an orthomosaic was built; see the processing
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parameters in Table 2. The ground point classification of the dense point clouds was per-
formed in order to enable the construction of a digital terrain model (DTM). In accordance
with [47], point cloud filtering was performed using filtering parameter tuning in order to
receive the best possible terrain for all of the inputs.

Table 2. Number of acquired images of each camera, and the flight level and Agisoft
processing parameters.

Phantom 4 Pro Zenmuse X5S RedEdge-M Sequoia

Flight level AGL (m) 100 150 200 100 150 200 100 150 200 125 135 150

No. of images per both sites 233 136 99 159 75 58 456 243 185 212 185 155

Agisoft processing parameters

Align photos
Accuracy

Preselection
Key point/Tie point limit

High a

No b

40,000/4000 a

Optimize camera alignment
Number of GCP

Marker accuracy (pix)
Marker accuracy (m)

8
1 b

0.05 b

Build dense cloud Quality
Depth filtering

Medium a

Mild a

a Agisoft suggested parameters. b Trial and error approach.

2.4. Deriving Tree Variables and Statistical Analysis

The evaluated tree parameters (the number of detected trees and the crown diameter)
were derived in R (version 3.4.3, R Core Team, Vienna, Austria). First, we subtracted the
terrain models from the surface models in order to gain normalised heights, i.e., Canopy
Height Models (CHM). Subsequently, CHMs from all 24 datasets (3 altitude levels, 2 sites
and 4 cameras) were processed using the same workflow in the lidR package [48,49].
The workflow included (i) identification of individual trees; and (ii) delimitation of the
tree crowns. Detection of the individual trees was based on local maxima filtering using
focal statistics [50,51] while crown delineation was performed by watershed-based object
detection [52,53]. Subsequently, the crown diameter was calculated using an automatic
methodological workflow consisting of (i) the approximation of individual detected crowns
using circles with areas corresponding to those of the tree crown polygons, and (ii) cir-
cle diameter calculation. Thus, the final output contained information about the total
number of trees along with the location (coordinates) and crown diameter (m) of each
individual tree/shrub.

Reference values for the number and diameters of the tree crowns were obtained by
the operator through manual detection from the orthomosaic. The number of trees was
also surveyed in the field. The tree crown diameters were manually measured in the north-
south and west-east directions in ArcGIS software, version 10.7.1 (ESRI, Redlands, CA,
USA). Due to the slight differences in the treetop position in the CHMs from the individual
UASs and the reference, the treetops on the individual orthomosaics were automatically
overlaid (Near function in ArcGIS) before further processing. Multiple treetops within a
radius of 2 m were considered to represent a single tree [15]. In addition, the results were
visually inspected.

The accuracy of individual tree detection, and thus the proportion of correctly detected
trees in both study sites, was evaluated and expressed as the total accuracy with 95%
confidence intervals (Table 3). In total, 100 trees were randomly selected within each study
site. The normality of the distribution of the individual treetop areas was tested by the
Shapiro–Wilk test with outliers both included and excluded. Depending on the results,
we applied Student’s t-test or the Wilcoxon signed-rank test, respectively (Table 4), for the
detection of significant differences between the automatically detected treetop areas and the
reference values (i.e., for the comparison of the performance of the models). The accuracy
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of the detected crowns was evaluated and expressed as the Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE); the model performance was expressed as
1-MAPE (Table 4). The study pipeline is in Figure 2.
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Figure 2. Study processing pipeline. Using four UAVs, data were collected at three different flight
levels at two sites. The data were subsequently processed by SfM-MVS methods into the form of
orthomosaics and digital surface/terrain models. Then, the treetops were automatically detected and
the tree crowns were delineated using the lidR package in R. The accuracy of the automatic methods
against the reference data was further evaluated statistically.

Table 3. Descriptive statistics of the models’ performance: the accuracy as a percentage of the
identified trees (Detected Trees) and the 95% confidence interval (CI 95) for the achieved accuracy;
the values of the accuracies of 70% or more (within the range), together with the 95% confidence
intervals, are in bold. In total, 612 detected trees were used for reference at each site.

Flight Level
AGL (m)

Site I Site II Site I + II

Detected
Trees (%) CI 95 (%) Detected

Trees (%) CI 95 (%) Detected
Trees (%) CI 95 (%)

Phantom 4 Pro
100 68 65–72 84 81–87 76 74–78
150 84 81–87 84 81–87 84 82–86
200 81 78–84 73 70–77 77 75–79

Zenmuse X5S
100 63 59–67 64 60–68 64 61–66
150 81 77–84 83 80–86 82 80–84
200 76 72–79 74 70–78 75 72–77

RedEdge-M
100 78 75–81 75 71–78 77 74–79
150 70 66–74 58 54–62 64 61–67
200 62 58–66 46 42–50 54 52–57

Sequoia
125 71 68–75 50 46–54 61 58–64
135 65 61–69 47 43–51 56 53–59
150 63 59–67 38 34–42 50 48–53
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Table 4. Tree crown delineation: p values of Student’s t-test or Wilcoxon test, descriptive Mean
Absolute Error (MAE) and model performance (1-MAPE). Non-significant values are in bold—such
models are supposed not to differ from the reference value.

Flight
Level (m)

Site I Site II Site I + II

p
Value

MAE
(m)

RMSE
(m)

1-MAPE
(%)

p
Value

MAE
(m)

RMSE
(m)

1-MAPE
(%)

p
Value

RMSE
(m)

MAE
(m)

1-MAPE
(%)

Phantom 4 Pro
100 0.099 1.29 2.57 77 0.981 0.71 0.95 85 0.231 1.76 0.99 81
150 <0.001 0.93 1.28 86 0.620 0.65 0.83 86 0.004 1.06 0.79 86
200 <0.001 1.05 1.36 84 0.003 0.79 0.99 82 �0.001 1.18 0.92 83

Zenmuse XS5
100 0.214 1.44 2.20 75 0.219 0.89 1.26 76 0.121 1.73 1.16 75
150 0.495 1.11 1.47 84 0.820 0.70 0.92 85 0.376 1.20 0.90 84
200 0.002 1.13 1.69 85 0.007 0.78 1.00 83 �0.001 1.35 0.95 84

RedEdge-M
100 <0.001 1.26 1.69 81 <0.001 0.80 1.01 81 �0.001 1.35 1.03 81
150 �0.001 1.30 1.80 79 �0.001 1.25 1.55 69 �0.001 1.68 1.27 74
200 �0.001 1.77 2.31 72 �0.001 1.45 1.76 65 �0.001 2.04 1.60 68

Sequoia MSC
125 �0.001 1.24 1.85 80 �0.001 1.30 1.63 69 �0.001 1.69 1.27 74
135 �0.001 1.38 2.23 78 �0.001 1.44 1.78 65 �0.001 1.82 1.41 71
150 �0.001 1.65 2.57 74 �0.001 1.97 2.35 51 �0.001 2.30 1.81 62

3. Results

In total, 24 canopy height models, together with orthorectified mosaics, were derived
from the low-altitude aerial surveys using three different types of unmanned aerial systems
across two forested study sites. The detail of the orthomosaics with the resulting spatial
resolutions are in Figure 3.
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3.1. Number of Trees

As far as the number of trees is concerned, all of the models observed a similar trend,
i.e., that cameras with a higher resolution and larger sensor size were able to capture the
forest canopy in more detail than those with a lower resolution and smaller sensors (the
latter tended to smooth out slight vertical differences). Generally, sensors with higher
spatial resolution, i.e., the Phantom 4 Pro and Zenmuse XS5, performed better at higher
flight levels (150 or 200 m AGL), while the sensors with lower resolution (RedEdge-M and
Sequoia) performed better at the lowest flight level (100 and 125 m AGL, respectively);
see the descriptive statistics in Table 3.

Two sites were tested: a full-grown 80–100 years old forest with a mean crown size
of 7.1 ± 1.4 m (Site I), and a younger, 20–40 year-old forest with a 4.5 ± 0.9 m mean
crown size (Site II). The Phantom 4 Pro and Zenmuse X5S offered similar results for both
sites, while the RedEdge-M and Sequoia performed much better at Site I, probably due
to the larger tree crown size and the lower resolution of the sensors. Considering the
success rate of the detected individual trees, the best results were achieved using the widely
used consumer-grade DJI Phantom 4 Pro flying at 150 m AGL, yielding 84% correctly
identified trees at both typical central European forest sites. Zenmuse X5S achieved very
similar results with a detection rate of 81–83% at a 150 m flight height. On the other hand,
RedEdge-M detected 75–78% and Sequoia 50–71% of the trees across both sites at 100 m
AGL. In general, the Sequoia camera performed worse than the RedEdge-M, which could be
caused by is poorer optical system quality, resulting in lower detail. However, the inferior
results could also be associated with the different fixed capture settings compared to the
RedEdge-M camera.

3.2. Tree Crown Diameters

As far as the tree crown diameters are concerned, the best results (i.e., the lowest
errors) were achieved using the Phantom 4 Pro and Zenmuse X5S. The MAE of the tree
crown diameters was 0.79–0.99 m for the Phantom 4 Pro, 0.88–1.16 m for the Zenmuse
X5S, 1.03–1.60 m for the RedEdge-M, and 1.27–1.81 m for the Sequoia, respectively. Sensors
with higher resolutions generally achieved close to 80% accuracy in the crown diameter
estimation (calculated as 1-MAPE) at all flight levels; in the group of sensors with lower
resolution, only the 100 m flight level was worth a closer look; the full results are tabulated
(Table 4) and visualized in scatterplots (Figures A1 and A2).

Sensors with better resolution performed better at higher flight altitudes (150–200 m
AGL); their accuracy was higher than 80%. They performed very well, especially at the
150 m altitude (note the 86% accuracy of the Phantom 4 Pro at 150 m and the 84–85% accu-
racy of the Zenmuse X5S at 150 m, respectively). Following the trend of tree identification,
multispectral cameras with much lower resolution performed better at low flight alti-
tudes (100 m AGL), where RedEdge-M and Sequoia achieved promising 81% and 80–69%
accuracies, respectively.

The tree crown diameters performance of higher-resolution sensors remained balanced
across the sites. In contrast, the low-resolution sensor’s performance declined with the
decreasing diameters of the tree crowns (especially for the Sequoia). At Site I, with a mean
crown diameter of 7.1 ± 1.4 m, RedEdge-M and Sequoia’s accuracy ranged between 81%
and 72%. When the mean crown diameter decreased to 4.5 ± 0.9 m (Site II), the accuracy
decreased significantly to 81–51%. However, the low value of 50% was only valid for the
fixed-wing UAV at the highest altitude, which can be unsuitable for this type of analysis;
all of the remaining flights, even with low-resolution sensors, yielded accuracies of 65%
or more.

4. Discussion

Many studies have pointed out the potential of remote sensing for forestry purposes.
Over the last few years, the popularity of UAVs has increased, and many applications
have been explored and described [54]. Specifically, UAVs equipped with various cameras
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were successfully used to count trees and to measure their crowns and heights [21,55,56].
The potential of consumer-grade (low-cost) solutions is also being explored in practice [57].
This is why this paper compares the performance of four widely used cameras for the
counting of the trees and the measurement of their crown diameter. The presented results
indicated that even consumer-grade non-professional cameras have potential for measuring
tree parameters, especially for users without in-depth education in remote sensing data
acquisition and processing, such as forest managers. Moreover, it is possible to process the
data solely in open-source software [58], thereby reducing the necessary costs.

The best success rate of the tree detection and the best accuracy of delineated crowns
using the consumer-grade RGB cameras was observed when the imagery was taken from
the flight altitude of 150 m AGL (which corresponds approximately to 140–120 m above
the canopy, depending on the site) at both sites, i.e., in the full-grown as well as young
dense forest. The RGB cameras yielded generally better results at 200 m AGL than at 100 m
AGL. On the other hand, the multispectral cameras yielded better results at the lowest
flight altitude, i.e., 100 m AGL (approximately 90–70 m above the canopy). The increasing
flight altitude led to a significant decline of the results of multispectral cameras, especially
in tree detection.

Lidar is often considered to be the superior method for scanning forests, as it can better
penetrate the canopy. This is true where tree heights are being measured [59]; however,
where tree detection and tree crown delineation are concerned, SfM methods can provide
results of similar accuracy. While the best result achieved using our simple workflow was
84% of detected individual trees, St-Onge et al. [60] achieved such accuracy (83%) using
lidar in boreal forests. On the other hand, Kuželka et al. [29] reported as much as 98–99%
successfully identified trees using UAV-lidar; however, they analysed a 100–130 years old
coniferous forest with a low tree density. Similarly to our study, an accuracy of more
than 80% was reported for a mixed coniferous forest by Mohan et al. [21] using a DJI
Phantom 3. As far as a forest with standard silviculture treatment is concerned, the success
rate exceeding 80% detected trees is excellent. On the other hand, the success rate may
exceed 90% in plantations and orchards; Guerra-Hernández et al. [61] reported 80–96%
accuracy in eucalyptus plantations.

Where the tree crown diameters are concerned, Panagiotidis et al. [52] reported lower
accuracy than our study using Sony NEX-5R, in a very similar environment. Specifically,
they reported MAEs of 2.6 and 2.8 m, respectively. Qiu et al. [62] achieved accuracies of 76%
and 63% in a rainforest and coniferous forest, respectively. Our results correspond to those
of Zhou et al. [63], who achieved an accuracy of 86% in a mixed growth forest. On the other
hand, the authors report the success rate being as high as 92% in monoculture environments.

UAV image acquisition results may be generally affected by the weather conditions,
especially the wind speed, precipitation, shadows and light conditions, resulting in dif-
ferences in exposure or blurriness [45]. This study aimed to eliminate these factors by
performing the flights at low wind speeds, with no precipitation, and with stable light
conditions. However, we set capture settings set to default/auto mode without user adjust-
ment. The differences in the cameras’ behaviour (F-stop, shutter speed, ISO) might have
also affected the image quality and, in effect, the detection results.

In addition, the quality of forest canopy geometry may also be affected by the angle
of the acquired imagery. Imagery acquisition combining different camera angles may
significantly reduce the models’ systematic error and the error in the determined internal
orientation parameters [64]; using oblique image acquisition might, therefore, make the
forest canopy imagery even more suitable for tree crown delineation. Moreover, the flight
level of lesser tens of meters is usually believed to improve the overall accuracy. However,
the lower flight levels increase the number of images and, in effect, the computational time
and costs; such (perhaps unnecessarily high) spatial resolution may also result in increasing
bias and uncertainty in canopy geometry.

The results may also be affected by the processing workflow used for the tree detection
and crown delineation. The lidR package, which was used in this study, was developed for
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forestry applications of airborne LiDAR data [49]; however, it could fit UAV-borne data as
well [65]. The used method consists of local maxima filtering and watershed-based object
detection using a (normalised) digital elevation model. Such a workflow is typical for the
detection of and delineation of tree crowns in various environments [56,66,67]. On the other
hand, other methods, such as Geographic Object-Based Image Analysis—GEOBIA [68,69],
neural network approaches and machine learning methods, or semi-supervised feature
extraction [70,71], have also been successfully employed [72,73]. Methods based on spectral
information analysis can increase the accuracy compared to CHM-based methods [74];
however, CHM-based tree crown detection and delineation methods offer approximately
70–90% accuracies (depending on the environment). Thanks to ready-made processing
workflows, CHM-based methods can be used even by users without in-depth education in
remote sensing data processing. In contrast, GEOBIA or machine learning methods require
advanced knowledge and experience in remote sensing data processing.

5. Conclusions

Close range remote sensing techniques support current forestry practices and may be
beneficial even to forest managers without in-depth education in remote sensing. The successful
implementation of UAVs depends not only on the UAV’s availability, flexibility and user-
friendliness but also on financial affordability and reliability. UAV-borne canopy height
models allow the derivation of numerous parameters, including tree crown detection and
delineation, and the determination of tree heights, which could be used, among other
things, to estimate the aboveground forest biomass. This study assessed the effect of widely
used consumer-grade cameras and flight altitudes on the detection and delineation of
typical central European conifer trees. The study brings a comparison of the performance
of four solutions (three of which are ready-made commercial solutions suitable for “out of
the box” use), providing information on the reliability of data acquired by inexperienced
users of these systems. In addition, a clear elementary workflow for inexperienced users is
presented, opening the door to the easier usability of such data in forestry practice.

Our results prove the relationship between the flight altitude and the quality of the
resulting product. While RGB cameras with higher spatial resolutions performed better
in higher altitudes, multispectral cameras with much smaller spatial resolution required
lower flight altitudes to yield sufficient accuracy. The success of tree detection and crown
diameter determination decreased in the case of multispectral cameras proportionately
with increasing flight altitude, i.e. with the declining detail of the forest canopy.

We found that the imagery acquisition altitude of 150 m AGL was associated with the
best performance, especially for sensors with a higher spatial resolution (i.e. consumer-
grade RGB cameras); it is also necessary to mention the additional benefit of this flight
altitude compared to lower ones, i.e., the lower number of images leading to the lower
computational time and lower costs). On the other hand, more expensive multispectral
cameras with a much lower spatial resolution can also achieve promising results but lower
flight levels of approximately100 m AGL are necessary for these sensors.
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