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Abstract: Conservation of rare species is essential for maintaining ecosystem function. Quercus
hondae is a rare evergreen oak species (Cyclobalanopsis) endemic to Japan. This species is found in
several locations in Southwestern Japan; small populations remain in the tutelary forests of the
Japanese shrine. To evaluate the genetic diversity and phylogeographic structure of this rare species,
11 microsatellite loci and chloroplast DNA sequences are analyzed for 12 populations of Q. hondae and
8 populations of the more widespread congeneric species, Q. glauca. It is found that heterozygosity at
both the population and species level is substantially lower in Q. hondae than in Q. glauca. Genetic
differentiation among populations of Q. hondae was high, in contrast to Q. glauca, in which populations
exhibit largely insignificant differentiation. STRUCTURE analysis shows that at K = 7, the clusters
largely corresponded to major predefined populations. This study suggests that there is little gene
flow among extant Q. hondae populations and that Q. hondae is genetically differentiated due to
the greater effect of genetic drift in small populations. This pattern is in sharp contrast to that of a
more common congeneric species, which will be an important consideration in the conservation of
Q. hondae.

Keywords: Cyclobalanopsis; microsatellite; chloroplast; genetic diversity; genetic structure; rare
endemic species

1. Introduction

Forests provide critical habitats for a large proportion of species on Earth; thus, conser-
vation of rare species is essential for maintaining the species diversity of forests. However,
due to small population sizes, the genetic diversity of rare species may differ from that of
common species; this should be considered in conservation efforts. Genetic diversity is
influenced by historical demography and the level of gene flow. Several reviews examined
correlations of genetic diversity with a geographic range (rare vs. widespread) for plant
species [1]. These studies have indicated that rare species generally have lower genetic
diversity, at both the population and species level, compared to widespread species. This
tendency is consistent with a theory predicting that small population sizes experience
strong genetic drift and that a geographically sparse distribution restricts gene flow be-
tween populations. Inbreeding and biparental inbreeding may also be increased in small
populations, thus reducing genetic diversity. Consequently, maintaining genetic diversity
is particularly important for rare species with a high risk of extinction.

Although the correlation between genetic diversity and geographic distribution is
generally accepted, comparison of rare species and more widespread congeners can be
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used to examine relationships between geographical range and genetic diversity [2,3].
Comparison of rare and widespread congeners has indicated that genetic diversity within
populations is significantly lower in rare species, although the levels of diversity are highly
heterogeneous among genera [3]. A comparative study of three Rhododendron species with
contrasting geographic distributions indicated that the level of genetic diversity was not
lower in the rare species, R. amagianum, compared with the common species, R. weyrichii,
suggesting that the level of genetic diversity and structure were not related to the degree of
rarity, but rather to the distribution pattern [4]. These data demonstrate the advantage of
studying genetic variation in rare and widespread congeners to determine whether rarity
is associated with lower genetic diversity.

Oak (Quercus) is successful in temperate and tropical forests; there are over 400 species
throughout the Northern Hemisphere, including many rare ones. However, 41% of
oak species are currently threatened by rapid climate change and anthropogenic distur-
bances [5]. Oak is a famous example of a syngameon; some closely related species can
exchange genes while maintaining morphologically distinct groups in sympatry [6]. The
syngameon hypothesis suggests that the influx of genes from other species contributes to
the survival of the species by providing drought tolerance in response to climate change, for
example [7,8]. Therefore, the conservation of diverse tree species, including rare species, is
essential to maintain a robust gene pool and evolutionary potential for the oak syngameon.

In this study, genetic diversity and genetic structure in populations of Q. hondae,
a rare evergreen oak species endemic to Japan, were investigated based on chloroplast
DNA sequences and multilocus microsatellite data. To characterize the patterns seen
in rare species, sympatric populations of Q. glauca were also analyzed using the same
DNA markers. These species are members of the subgenus Cyclobalanopsis, consisting of
evergreen species of the genus Quercus that dominate in evergreen broadleaved forests in
East Asia. Eight Cyclobalanopsis species, which are evolutionarily closely related, are found
in Japan [9]. These species share the same breeding system (wind-pollinated) and seed
dispersal mechanism (gravity), while vertical distribution and ecology differ slightly [10].
Quercus hondae is among the rarest of these species and is endemic to Southwestern Japan.
A limited number of populations of Q. hondae remain in Southern Kyushu and Southern
Shikoku, and the populations often exist in the tutelary forests of Japanese shrine, most
of which are small and isolated. By contrast, Q. glauca, as the most common species, is
broadly distributed in Eastern and South Asia, including Eastern and Western Japan. In
Japan, this species dominates in both semi-natural and secondary forests [10]. Previous
studies have shown that populations of evergreen Quercus species in Southwestern Japan
retain a considerable level of genetic variation with weak genetic structure, suggesting that
the populations have persisted during the last glacial maximum (LGM) [11,12]. Although
studies of rare species are important to avoid further loss of biodiversity, the genetic
diversity and structure of Q. hondae have not yet been examined.

The objectives of this study were to compare the levels of genetic diversity within and
between populations of Q. hondae and Q. glauca, identify Q. hondae populations of high
genetic diversity, and determine the number of genetically distinct clusters of Q. hondae.
The results of this study can be used to guide the conservation of rare species.

2. Materials and Methods
2.1. Collecting Population Samples and DNA Extraction

A total of 202 individual samples were collected from 12 localities of Q. hondae. These
populations cover almost the entire distribution range of this species (Figure 1). Note that
samples were only collected from two trees in each of the Asakura and Hachiman shrines
because no more than two trees were present in each population. Therefore, they are not
considered as a population. Quercus glauca grew in 8 of the 12 locations, and a total of
82 individual samples of this species were also collected. Information on the location and
number of samples is summarized in Table 1. Genomic DNA was extracted from ~100 mg
of silica gel-dried leaves using the modified cetyltrimethylammonium ammonium bromide



Forests 2022, 13, 579 3 of 13

(CTAB) method [13]. DNA was dissolved into Tris-EDTA buffer (10 mM Tris-HCl [pH 8.0],
1 mM EDTA [pH 8.0]) and stored at −20 ◦C until being used as a template for PCR.

Forests 2022, 13, x FOR PEER REVIEW 3 of 13 
 

 

considered as a population. Quercus glauca grew in 8 of the 12 locations, and a total of 82 
individual samples of this species were also collected. Information on the location and 
number of samples is summarized in Table 1. Genomic DNA was extracted from ~100 mg 
of silica gel-dried leaves using the modified cetyltrimethylammonium ammonium bro-
mide (CTAB) method [13]. DNA was dissolved into Tris-EDTA buffer (10 mM Tris-HCl 
[pH 8.0], 1 mM EDTA [pH 8.0]) and stored at −20 °C until being used as a template for 
PCR. 

 
Figure 1. Populations of Q. hondae sampled in this study (solid circles). Open circles indicate areas 
where Q. hondae exists but was not sampled in this study. Q. glauca individuals were also collected 
from populations with asterisks. 

2.2. Chloroplast DNA Sequencing and Data Analysis 
Two chloroplast intergenic spacers (trnH-psbA and trnQ-trnS) were amplified by PCR 

for DNA sequencing. Primers developed by [14,15] for trnH-psbA and by [16] for trnQ-
trnS were used. The PCR reaction (25 µL total volume) contained 0.5 U of KOD Plus 
(TOYOBO, Osaka, Japan), 10× KOD Plus buffer, 25 mM MgSO4, 2 mM of each dNTP, 0.5 
µM of each forward and reverse primer, and approximately 10 ng of genomic DNA. The 
PCR was performed with initial denaturation for 5 min at 95 °C, followed by 28 cycles of 
denaturation for 1 min at 95 °C, annealing for 1 min at 52 °C, extension for 1 min at 72 °C, 
and a final extension for 10 min at 72 °C. The PCR products were directly sequenced after 
purification using ExoSAP-IT (Thermo Fisher Scientific, Waltham, MA, USA) by Macro-
gen Japan Corp. (Tokyo, Japan). 

Sequence chromatograms for sense and antisense strands were verified using the se-
quence assembly software ATGC (Genetyx, Tokyo, Japan). Multiple alignment of the 
DNA sequences and manual modifications were performed using SeaView v5.0.4 [17]. 
The haplotype network was constructed based on the combined sequences of two regions 
using TCS v1.21 software [18]. DNA sequences of each haplotype were deposited in the 
DNA Data Bank of Japan (DDBJ; accession numbers LC682510–LC682529). 

2.3. Microsatellite Genotyping and Data Analysis 
Multiplex PCR was conducted on 12 microsatellite markers (CG75, CG105, CG139, 

CG258, and CG371 [19], and MSQa1, MSQa2, MSQa4, MSQa10, MSQa11, and MSQa13 

Figure 1. Populations of Q. hondae sampled in this study (solid circles). Open circles indicate areas
where Q. hondae exists but was not sampled in this study. Q. glauca individuals were also collected
from populations with asterisks.

2.2. Chloroplast DNA Sequencing and Data Analysis

Two chloroplast intergenic spacers (trnH-psbA and trnQ-trnS) were amplified by PCR
for DNA sequencing. Primers developed by [14,15] for trnH-psbA and by [16] for trnQ-trnS
were used. The PCR reaction (25 µL total volume) contained 0.5 U of KOD Plus (TOYOBO,
Osaka, Japan), 10× KOD Plus buffer, 25 mM MgSO4, 2 mM of each dNTP, 0.5 µM of each
forward and reverse primer, and approximately 10 ng of genomic DNA. The PCR was
performed with initial denaturation for 5 min at 95 ◦C, followed by 28 cycles of denaturation
for 1 min at 95 ◦C, annealing for 1 min at 52 ◦C, extension for 1 min at 72 ◦C, and a final
extension for 10 min at 72 ◦C. The PCR products were directly sequenced after purification
using ExoSAP-IT (Thermo Fisher Scientific, Waltham, MA, USA) by Macrogen Japan Corp.
(Tokyo, Japan).

Sequence chromatograms for sense and antisense strands were verified using the
sequence assembly software ATGC (Genetyx, Tokyo, Japan). Multiple alignment of the
DNA sequences and manual modifications were performed using SeaView v5.0.4 [17]. The
haplotype network was constructed based on the combined sequences of two regions using
TCS v1.21 software [18]. DNA sequences of each haplotype were deposited in the DNA
Data Bank of Japan (DDBJ; accession numbers LC682510–LC682529).
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Table 1. Populations sampled and the statistics of genetic diversity.

Population Code Location N Na Ne Ho uHe Fis (FSTAT) Fis (INEST) BOTTLENECK
Wilcoxon Test Probability 1

BOTTLENECK
Mode-Shift 2

cpDNA
Haplotypes (n) 3

IAM TPM SMM

Q. hondae
K1 Miyazaki, Fukuse shrine 22 3.22 2.11 0.465 0.421 −0.107 0.019 0.006 0.020 0.422 Normal L-shaped 2 (8)
K2 Miyazaki, Tsuma shrine 27 3.11 2.40 0.481 0.481 −0.030 0.017 0.010 0.027 0.098 Shifted mode 1-1 (8)
K3 Miyazaki, Aya-Takeno 8 2.44 1.81 0.431 0.431 −0.042 0.034 – – – – 1-2 (8)
K4 Miyazaki, Miyazaki University Forest 20 5.11 2.85 0.594 0.575 −0.036 0.024 0.064 0.455 0.997 Normal L-shaped 1-1 (8)
K5 Kagoshima, Shiratori shrine 23 3.44 2.02 0.527 0.482 −0.095 0.014 0.150 0.410 0.674 Normal L-shaped 1-3 (8)
K6 Kagoshima, Tsuruda 19 4.67 2.71 0.503 0.530 0.052 0.040 0.180 0.674 1.000 Normal L-shaped 1-1 (4), 1-3 (4)
S1 Kochi, Asakura shrine 2 – – – – – – – – – – 1-2 (2)
S2 Kochi, Matsuo shrine 18 2.78 1.95 0.370 0.369 −0.003 0.047 0.219 0.219 0.219 Normal L-shaped 1-2 (8)
S3 Kochi, Kuratani shrine 6 2.11 1.66 0.333 0.318 −0.053 0.052 – – – – 1-2 (6)
S4 Kochi, Kamibun 35 2.67 2.31 0.505 0.451 −0.121 0.008 0.008 0.012 0.012 Shifted mode 1-1 (8)
S5 Kochi, Yasaka shrine 20 2.56 2.00 0.411 0.412 0.001 0.031 0.004 0.020 0.027 Shifted mode 1-2 (8)
S6 Ehime, Hachiman shrine 2 – – – – – – – – – – 1-1 (2)

Q. glauca
K2 Miyazaki, Tsuma shrine 5 4.40 3.41 0.485 0.755 0.387 * 0.104 – – – – 4 (4), 7 (1)
K3 Miyazaki, Aya-Takeno 15 6.10 4.19 0.595 0.700 0.155 * 0.025 0.002 0.005 0.248 Normal L-shaped 6 (2), 7 (10)
K4 Miyazaki, Miyazaki University Forest 20 8.30 4.34 0.548 0.697 0.218 * 0.049 0.500 0.958 0.999 Normal L-shaped 3-1 (1), 4 (7)
K5 Kagoshima, Shiratori shrine 4 3.80 3.16 0.650 0.739 0.138 0.036 – – – – 6 (4)
K6 Kagoshima, Tsuruda 9 5.70 4.04 0.557 0.708 0.224 * 0.033 – – – – 3-1 (1), 5 (2), 6 (5)
S1 Kochi, Asakura shrine 1 – – – – – – – – – – 4 (1)
S2 Kochi, Matsuo shrine 1 – – – – – – – – – – 6 (1)
S4 Kochi, Kamibun 27 9.50 4.83 0.606 0.715 0.155 * 0.038 0.116 0.313 1.000 Normal L-shaped 3-2 (1), 4 (6)

N, number of samples; Na, number of alleles; Ne, effective number of alleles; Ho, observed heterozygosity; uHe, unbiased expected heterozygosity; Fis (FSTAT), inbreeding coefficient; Fis
(INEST), inbreeding coefficient correcting for null alleles; *, p < 0.05. 1 The Wilcoxon one-tail probabilities of heterozygosity excess under the infinite allele model (IAM), two-phase
model (TPM) and the stepwise mutation model (SMM). 2 The allelic distribution modes expected from mutation-drift equilibrium (Normal L-shaped), or from recent bottleneck event
(Shifted mode). 3 Chloroplast DNA haplotypes observed and the frequency (n); see Figure 3 for haplotype names.
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2.3. Microsatellite Genotyping and Data Analysis

Multiplex PCR was conducted on 12 microsatellite markers (CG75, CG105, CG139,
CG258, and CG371 [19], and MSQa1, MSQa2, MSQa4, MSQa10, MSQa11, and MSQa13 [20])
using the Type-it Microsatellite PCR Kit (Qiagen, Venlo, The Netherlands) according to
the manufacturer’s instructions. Forward primers were labeled with 6-FAM, VIC, NED,
or PET (Life Technologies, Carlsbad, CA, USA). Genotyping was performed using an
ABI 310 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). The sizes of the
PCR fragments were determined by the GeneScan 500 LIZ Size Standard (Thermo Fisher
Scientific, Waltham, MA, USA) and analyzed using GeneMapper software v3.0 (Applied
Biosystems, Foster City, CA, USA).

Basic statistics for genetic diversity, including the number of alleles (Na), effective num-
ber of alleles (Ne), observed heterozygosity (Ho), heterozygosity within populations (Hs),
total heterozygosity (Ht), and inbreeding coefficient (Gis), were estimated using GenoDive
v3.0 [21] and GenAlEx 6.5 [22]. The inbreeding coefficient (Fis) was calculated for each
population using FSTAT v2.9.4. [23]. INEST 2.2 [24] was also used to estimate Fis corrected
for null alleles based on a Bayesian approach [individual inbreeding model (IIM)] with
50,000 burn-in and 500,000 Markov chain Monte Carlo (MCMC) iterations. When popula-
tions have experienced a recent population reduction, the expected heterozygosity under
Hardy–Weinberg equilibrium (HE) becomes larger than that expected at mutation-drift
equilibrium (HEQ) [25,26]. The Wilcoxon signed-rank test was used to test for heterozygos-
ity excess (HE > HEQ) under the infinite allele model (IAM), strict stepwise mutation model
(SMM), and two-phase model (TPM) using BOTTLENECK v1.2.02 [27].

Neighbor-joining trees [28], of individuals based on shared allele distance (DAS) and
populations based on net divergence between populations (DA) [29], were generated us-
ing Population 1.2.30 beta [30]. Genetic differentiation among populations (FST) [31] was
estimated, and statistical significance was tested after standard Bonferroni corrections
using FSTAT v2.9.4. [23]. The positive relationship between pairwise genetic distances,
FST/(1–FST), and geographic distances was assessed by a Mantel test with 999 permuta-
tions, as implemented in GenAIEx. The individual-based clustering analysis for Bayesian
inference of population structure was performed using STRUCTURE v2.3.4 [32]. For each K
(number of clusters), 10 independent runs with 100,000 burn-in periods and 100,000 MCMC
iterations were conducted with the LOCPRIOR model under the admixture model and
assuming correlated allele frequencies (F-model) [33,34]. The range of K was 1–12 for Q. hon-
dae and 1–8 for Q. glauca. The best K was inferred from the value of ∆K and mean value of
the log probability of data [LnP(D)] for each K calculated by STRUCTURE Harvester [35]
for each species. The outputs of the 10 runs for each K were averaged by CLUMPAK [36].

3. Results
3.1. Chloroplast DNA Haplotype Variations

Nucleotide sequences from trnH-psbA (446 bp) and trnQ-trnS (905 bp) were determined
for 82 individuals of Q. hondae and 46 individuals of Q. glauca. Ten nucleotide substitutions
with three mononucleotide repeats could identify seven haplotypes and three subtypes
(Figure 2). No haplotypes were shared between the two species.

In Q. hondae, two haplotypes were found; haplotype 2 was distinct from haplotype
1 by four nucleotide substitutions and was unique to Fukuse. Haplotype 1-1 was further
divided into two subtypes (1-2 and 1-3) based on two mononucleotide repeats in trnH-psbA.
Subtype 1-1 was found in Kamibun, Hachiman shrine, Tsuma shrine, Miyazaki University
Forest, and Tsuruda; 1-2 was found in Asakura shrine, Matsuo shrine, Kuratani shrine,
Yasaka shrine, and Aya-Takeno; 1-3 was found in Shiratori shrine and Tsuruda (Table 2).
There were no variations within any population except Tsuruda, wherein two subtypes
(1-2 and 1-3) were observed.
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Figure 2. Chloroplast DNA haplotype network based on the TCS method. The five haplotypes
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Table 2. A comparison of genetic diversity per locus between Q. hondae and Q. glauca.

Locus Na Ne Ho Hs Ht Gis Na Ne Ho Hs Ht Gis

Q. hondae Q. glauca

CG75 4 1.47 0.385 0.339 0.433 −0.135 9 3.02 0.744 0.821 0.816 0.093
CG105 3 2.01 0.989 0.503 0.502 −0.967 5 2.20 0.817 0.615 0.655 −0.329
CG139 3 1.36 0.299 0.281 0.337 −0.064 5 1.19 0.150 0.201 0.182 0.252
CG258 1 1.00 0.000 0.000 0.000 – 2 1.02 0.011 0.026 0.020 0.582
CG371 10 2.29 0.573 0.608 0.722 0.059 21 3.91 0.562 0.895 0.911 0.373
MSQa1 5 2.18 0.674 0.573 0.707 −0.175 5 2.10 0.430 0.681 0.706 0.369
MSQa2 8 2.11 0.582 0.564 0.769 −0.033 16 3.74 0.875 0.885 0.869 0.011
MSQa4 16 2.69 0.581 0.684 0.877 0.150 20 2.21 0.146 0.804 0.843 0.819
MSQa10 5 1.35 0.287 0.278 0.329 −0.032 10 2.30 0.542 0.718 0.742 0.245
MSQa11 5 1.87 0.563 0.495 0.665 −0.137 15 3.71 0.822 0.894 0.890 0.081
MSQa13 3 1.11 0.148 0.102 0.156 −0.442 17 3.94 0.908 0.896 0.880 −0.013
Mean 5.73 1.77 0.462 0.402 0.500 −0.178 11.36 2.67 0.546 0.676 0.683 0.226

Na, number of alleles; Ne, effective number of alleles; Ho, observed heterozygosity; Hs, heterozygosity within
populations; Ht, total heterozygosity; Gis, inbreeding coefficient.

In Q. glauca, five haplotypes and one subtype were found. Kamibun, Tsuma shrine,
Aya-Takeno, Miyazaki University Forest, and Tsuruda had multiple haplotypes, but only
one haplotype was found in the Shiratori shrine.

3.2. Genetic Diversity and Genetic Structure Based on Microsatellite Markers

Genotypes of 11 SSR loci were determined for 202 individuals of Q. hondae and
82 individuals of Q. glauca. In total, 63 and 125 different alleles were identified in Q. hondae
and Q. glauca, respectively (Table 2). For CG105 in Q. hondae, all samples were heterozygotes,
suggesting possible deviation from selective neutrality. For CG258, there was almost no
variation within Q. hondae and Q. glauca, suggesting genetic hitchhiking near the locus or
the presence of null alleles. Ultimately, the data from these loci was discarded for estimates
of genetic diversity. The degree of genetic diversity was lower in Q. hondae than in Q. glauca.
Mean values of gene diversity within the population (Hs) and overall gene diversity (Ht) in
Q. hondae were 0.402 and 0.500, respectively; these values were lower than those in Q. glauca
(0.676 and 0.683, respectively).
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The degree of genetic diversity for populations of Q. hondae was always lower than for
the corresponding population of Q. glauca (Table 1). Fis estimates tended to be negative
for populations of Q. hondae but positive for populations of Q. glauca. Fis estimated using
FSTAT was positive for five populations of Q. glauca, although Fis estimated using INEST
was not significantly different from zero for any population.

The probability of a recent population bottleneck was estimated by the Wilcoxon
signed-rank test and mode-shift test (Table 1). The Wilcoxon signed-rank test detected
that four Q. hondae populations and one Q. glauca population were not at mutation-drift
equilibrium under IAM, SSM, or TPM. The mode-shift test detected a recent bottleneck for
each of the three Q. hondae populations.

Neighbor-joining trees based on shared allele distances (DAS) between individuals of
Q. hondae and Q. glauca were generated (Figure S1). In Q. hondae, samples from Kyushu and
Shikoku appeared to have separated from each other, although some clusters contained
samples from both Shikoku and Kyushu. Most of the samples from each population fell
into a single cluster, although a few samples from the same population were found in
different clusters. Individuals from Miyazaki University Forest and Tsuruda were scattered
in the tree and appeared in clusters that consisted of individuals in Shikoku. In contrast
to Q. hondae, no distinct clusters were seen in Q. glauca, and samples from Shikoku and
Kyushu were largely intermingled in the tree.

The overall FST estimated from microsatellites was approximately ten-fold higher
in Q. hondae (0.184) than in Q. glauca (0.018). All pairwise FST values in Q. hondae were
significant and ranged from 0.0310 between Miyazaki University Forest and Tsuruda to
0.3716 between Aya-Takeno and Yasaka shrine (Table 3). The Mantel test did not show
a positive relationship between pairwise genetic and geographic distances (R2 = 0.0137,
P = 0.204). In Q. glauca, FST values between the Shikoku population (Kamibun) and
three Kyushu populations (Aya-Takeno, Miyazaki University Forest, and Tsuruda) were
significant, which was not the case between populations in Kyushu (Table 4).

Table 3. Pairwise FST estimated from microsatellite loci for Q. hondae.

Population K2 K3 K4 K5 K6 S2 S3 S4 S5

K1 Miyazaki,
Fukuse shrine 0.1435 *** 0.2280 *** 0.0987 *** 0.1909 *** 0.0877 *** 0.2250 *** 0.2502 *** 0.1917 *** 0.3451 ***

K2 Miyazaki,
Tsuma shrine – 0.0766 *** 0.0969 *** 0.1487 *** 0.0757 *** 0.1789 *** 0.1663 ** 0.1736 *** 0.2752 ***

K3 Miyazaki,
Aya-Takeno – 0.1598 *** 0.2733 *** 0.1184 *** 0.3028 *** 0.2884 * 0.2475 *** 0.3716 ***

K4

Miyazaki,
Miyazaki

University
Forest

– 0.1278 *** 0.0310 * 0.1400 *** 0.1413 *** 0.1347 *** 0.1471 ***

K5 Kagoshima,
Shiratori shrine – 0.1268 *** 0.1321 *** 0.1798 *** 0.2603 *** 0.2805 ***

K6 Kagoshima,
Tsuruda – 0.1477 *** 0.0929 * 0.1422 *** 0.2244 ***

S2 Kochi, Matsuo
shrine – 0.1808 *** 0.2217 *** 0.2714 ***

S3 Kochi, Kuratani
shrine – 0.2278 *** 0.3340 ***

S4 Kochi,
Kamibun – 0.2250 ***

S5 Kochi, Yasaka
shrine –

*, p < 0.05; **, p < 0.01; ***, p < 0.001.

A STRUCTURE analysis of all samples indicated two clusters corresponding to the
two species, suggesting no hybridization or introgression between the species (data not
shown). For Q. hondae, ∆K was the highest at K = 2, while the [LnP(D)] in each K nearly
plateaued at K = 7 (Figure S2). Based on these results, the optimal values of K could
be 2 and 7. The STRUCTURE bar plots for K = 7 showed that most of the individuals
in respective populations were assigned to a single cluster (Figure 3A). In Shikoku, the
Matuso and Kuratani shrines formed a single cluster at K = 3–7 and were distinct from
the Kamibun and Yasaka shrines. The Kamibun and Yasaka shrines consisted of the same
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cluster at K = 2–4 but were distinct from each other at K = 5–7. In Kyushu, four clusters
were identified at K = 7, and two were shared by two populations. One cluster was shared
by the Tsuma shrine and Aya-Takeno, and another by Miyazaki University Forest and
Tsuruda. Overall, most of the individuals consisted of a single cluster, but individuals
from Asakura, Hachiman, Miyazaki University Forest, and Tsuruda contained multiple
clusters in varying proportions. For Q. glauca, both ∆K and the [LnP(D)] in each K was
highest at K = 2 (Figure S2). The STRUCTURE bar plot for K = 2 indicated that the Kamibun
population was distinct from the others, but this was only supported by a weak clustering
solution (Figure 3B).

Table 4. Pairwise FST estimated from microsatellite loci for Q. glauca.

Population K3 K4 K6 S4

K2 Miyazaki, Tsuma shrine 0.0236 NS 0.0184 NS 0.0205 NS 0.0413 NS

K3 Miyazaki, Aya-Takeno – 0.0015 NS 0.0003 NS 0.0220 *

K4 Miyazaki, Miyazaki
University Forest – −0.0087 NS 0.0236 **

K6 Kagoshima, Tsuruda – 0.0324 **
S4 Kochi, Kamibun –

NS, not significant; *, p < 0.05; **, p < 0.01.
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The neighbor-joining tree of populations of Q. hondae based on Nei’s DA distance was
generally consistent with the STRUCTURE analysis (Figure 4). The populations assigned
to the same cluster in the STRUCTURE analysis appeared to be closely related in the
tree, whereas the populations from Kyushu were grouped together and only the Shiratori
shrine population was grouped with Shikoku populations (although this grouping was not
statistically supported).



Forests 2022, 13, 579 9 of 13

Forests 2022, 13, x FOR PEER REVIEW 8 of 13 
 

 

proportions. For Q. glauca, both ∆K and the [LnP(D)] in each K was highest at K = 2 (Figure 
S2). The STRUCTURE bar plot for K = 2 indicated that the Kamibun population was dis-
tinct from the others, but this was only supported by a weak clustering solution (Figure 
3B). 

 
Figure 3. STRUCTURE bar plots of individuals with K = 2–7 for Q. hondae (A) and K = 2 for Q. glauca 
(B). Populations were separated by black bars. 

The neighbor-joining tree of populations of Q. hondae based on Nei’s DA distance was 
generally consistent with the STRUCTURE analysis (Figure 4). The populations assigned 
to the same cluster in the STRUCTURE analysis appeared to be closely related in the tree, 
whereas the populations from Kyushu were grouped together and only the Shiratori 
shrine population was grouped with Shikoku populations (although this grouping was 
not statistically supported). 

 
0.03

S4 Kamibun

K3 Aya-Takeno

S1 Asakura 
shrine

S2 Matsuo 
shrine

S3 Kuratani 
shrine

K1 Fukuse 
shrine

K4 Miyazaki 
University 
forest

K2 Tsuma 
shrine

S5 Yasaka 
shrine

K6 Tsuruda

K5 Shiratori 
shrine

S6 Hachiman
shrine

69

65 71

Figure 4. Neighbor-joining tree based on DA distances between populations of Q. hondae. Numbers
indicate bootstrap values exceeding 50% based on 1000 replicates.

4. Discussion
4.1. Low Genetic Diversity of Q. hondae

Both cpDNA and microsatellite data indicated that the genetic diversity of rare species
of Q. hondae was lower than that of Q. glauca, a species more commonly found in evergreen
broadleaved forests throughout Japan. Based on microsatellite data, the species-level
heterozygosity was 27% lower in Q. hondae (Ht = 0.500) than in Q. glauca (Ht = 0.683). The
limited number of samples and populations of Q. glauca likely led to an underestimation of
the species-wide genetic diversity such that this value can be expected to be larger with
a greater number of samples. The lower genetic diversity of Q. hondae is consistent with
previous studies indicating that geographically restricted species exhibit lower levels of
genetic diversity compared to more common congeneric species [2,3,37]. The average
within-population heterozygosity was 0.402 in Q. hondae, which was 41% lower than in
Q. glauca (Hs = 0.676). Low within-population heterozygosity in Q. hondae could result in a
scattered geographical distribution and small sizes of each population. Quercus hondae is
limited to lower slopes with humid soils, but such areas have been largely converted to
Cryptomeria plantations, suggesting a reduction in the habitat that Q. hondae favors [38].
This is consistent with the detection of a bottleneck in four of eight tested populations of
Q. hondae, compared to only one population of Q. glauca.

In Q. hondae, individuals from all populations except Fukuse had one of the three
subtypes of haplotype 1, and all populations except Tsuruda were fixed to a single subtype.
More Q. glauca haplotypes were identified; most of the populations had multiple haplotypes.
This also suggests a smaller population size for Q. hondae. Individuals of Q. hondae from
Fukuse exhibited haplotype 2, which was distantly related to haplotype 1, but close to
haplotype 3-1 of Q. glauca. Introgressive hybridization of cpDNA is a common phenomenon
in Quercus [39,40]. Several haplotypes were shared among four deciduous species of
Quercus in Japan, suggesting introgressive hybridization [16,41]. The unexpectedly distinct
haplotype of Q. hondae in Fukuse is thought to be the result of introgression from other
Quercus species. More samples from other Quercus species are needed to test whether this
is the result of introgressive hybridization.

Among Kyushu populations of Q. hondae, Miyazaki University Forest and Tsuruda
exhibited higher genetic diversity. Genetic diversity in Kamibun was the highest among all
populations in Shikoku. Since these populations are found in seminatural and secondary



Forests 2022, 13, 579 10 of 13

forest vegetation, they are expected to have higher genetic diversity than other populations
in the tutelary forests of the Japanese shrine, in which forests are generally smaller and
fragmented. In addition, higher genetic diversity in two Kyushu populations supports
the presence of Pleistocene refugia in this region. Southern Kyushu is believed to be one
refugium for plants that currently dominate evergreen broadleaved forests, as suggested by
pollen and macrofossil data [42]. High genetic diversity and the high number of chloroplast
haplotypes also support the presence of Pleistocene refugia in this region [43–45]. For
Q. hondae, STRUCTURE analysis and the neighbor-joining tree indicated that the Kami-
bun and Yasaka populations in Shikoku were genetically distinct from the others. For
Castanopsis sieboldii, three Shikoku populations and the most eastern population of Kyushu
were genetically differentiated from other Kyushu populations, suggesting the existence
of Pleistocene refugia other than Southern Kyushu [45]. These results also support the
possibility of multiple refugia for evergreen broadleaved forest species.

4.2. High Genetic Differentiation between Populations of Q. hondae

Quercus species are wind-pollinated, and such species exhibit lower genetic differenti-
ation compared with insect-pollinated species [1]. However, this study indicated that the
genetic differentiation among populations of Q. hondae was substantially higher compared
to Q. glauca. In a review of allozyme diversity in plants, the degree of population differenti-
ation did not differ significantly among widespread, regional, narrowly distributed, and
endemic species [1]. There was also no significant difference between rare and common
congeners [37]. However, greater genetic differentiation between populations of endemic
tree species was observed in the genus Pinus [46], consistent with this study. A low level
of genetic differentiation was observed in common evergreen forest tree species in Japan,
such as Castanopsis cuspidata, C. sieboldii [45], Q. acuta [12], and Q. gilva [11], while high ge-
netic differentiation was observed in the pioneer tree species, Zanthoxylum ailanthoides [44].
For Q. hondae, fragmentation and isolation of the populations due to narrow ecological
preferences and recent population bottlenecks may lead to high genetic differentiation
among populations.

Despite the generally high genetic differentiation of populations of Q. hondae, the
Mantel test did not support isolation-by-distance (IBD). Although Miyazaki University
Forest and Tsuruda are separated by as much as 70 km, there is a low level of differentiation
between these populations (FST = 0.0310). A STRUCTURE analysis showed that they
were in the same group (Cluster VI in Figure 3A), and the population tree emphasized
their closeness (Figure 4). However, there was a significant degree of differentiation
between the Miyazaki University Forest and adjacent populations, such as Tsuma Shrine
and Aya-Takeno (FST > 0.10), despite their being less than 30 km apart. The high genetic
differentiation without IBD in this species could have two explanations. First, human-
mediated seed or sapling transfer could obscure the IBD. This is plausible, as most extant
populations are found in the tutelary forests of the Japanese shrine; however, there are no
records indicating that this species was planted for commercial or religious purposes. A
positive Fis value is expected because populations created by anthropogenic introductions
are likely to be founded from a limited number of individuals. As a result, inbreeding
and biparental inbreeding are inevitable. Nevertheless, a positive Fis was not detected in
populations of Q. hondae. Second, the effect of genetic drift is greater in smaller populations.
Individuals in such populations become genetically homogenized and the populations
become distinct from each other. IBD may not be observed if the effect of genetic drift
exceeds the gene flow between populations. As a result, STRUCTURE analysis can detect
such populations even if they have recently diverged from the ancestral population [47,48].
The F-value, which indicates the degree of genetic drift [33], was smaller (0.0184) in Cluster
VI, to which the Miyazaki University Forest and Tsuruda populations belong, compared to
the other clusters (0.2452–0.3932). This suggests that the Miyazaki University Forest and
Tsuruda have not experienced a severe population bottleneck in the past, and thus maintain
a relatively high degree of heterozygosity and a low level of genetic differentiation. By
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contrast, the high F-values of other populations suggest that they have been greatly affected
by genetic drift.

4.3. Implications for Conservation of Q. hondae

It was found that Q. hondae exhibits lower genetic diversity within and higher genetic
differentiation among populations, in contrast to the more common congeneric species,
Q. glauca (although populations of both species suffer similar anthropogenic disturbance).
This study provides some insight concerning conservation guidelines for the recovery.
This study showed that two Q. hondae populations on semi-natural or secondary forest
vegetation in Kyushu (i.e., Miyazaki University Forest and Tsuruda) maintained the largest
degree of genetic diversity among the populations studied. Such populations should
be a priority for in situ conservation. Note that Tsuruda is located at the roadside and
adjacent to a park and has therefore suffered from habitat disturbance. Kamibun, a large
secondary forest population in Shikoku, also showed high genetic diversity and was
genetically differentiated from the Kyushu populations, implying that this population is
also important for conservation. All populations investigated were within the tutelary
forests of the Japanese shrine and were genetically distinct from each other. These shrine
forests are generally small, and isolated, and some are extremely small with only a few
mature trees. For example, only two individuals, and no seedlings or juveniles, were
found in the Asakura and Hachiman shrines, indicating discontinuous regeneration. Thus,
some populations are at high risk of extinction. Because of the high genetic differentiation
between populations, in order to increase genetic diversity and reduce the risk of extinction,
the translocation of individuals between populations for this species is not recommended.
The conservation of small populations without translocation may require the development
of vegetative propagation techniques, such as cuttings for Q. hondae [49–51].

5. Conclusions

This is the first study to reveal the genetic diversity and population structure of
Q. hondae. These results revealed that Q. hondae is characterized by lower genetic diversity
at both population and species levels and high genetic differentiation among populations,
compared to other evergreen Quercus and Castanopsis species that are common in evergreen
broadleaf forests in Japan. These patterns are attributed to fragmentation and isolation of
the populations due to narrow ecological preferences and recent population bottlenecks
caused by human intervention, such as large-scale plantation. Despite the high genetic
differentiation of populations of Q. hondae, IBD was not detected. This suggests the effect
of genetic drift outweighs the effect of gene flow between populations. Information on the
genetic diversity and population structure of Q. hondae is expected to be an important step
toward the long-term conservation of this rare endemic species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13040579/s1, Figure S1: Neighbor-joining trees based on allele
sharing distance (DAS) between individuals for Q. hondae (A) and Q. glauca (B). The population
numbers correspond to those found in Figure 1. Individuals collected in Shikoku Island are shown
by grey; Figure S2: A ∆K for different number of clusters for Q. hondae (A) and Q. glauca (B), LnP(D)
for each K for Q. hondae (C) and Q. glauca (D).
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