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Abstract: This study analyzes the spatio-temporal dynamics of the drivers of forest expansion in the
Iberian Peninsula for the periods 1987–2002–2017 through a 185 km-wide north–south Landsat scene
transect. The analysis has considered a variety of biogeographical regions [0–3500 m.a.s.l, annual rain-
falls 150–2200 mm] and 30 explanatory variables. A rigorous map production at
30 m resolution, including detailed filtering methods and uncertainty management at pixel scale,
provided high-quality land cover maps. The main forest expansion trajectories were related to ex-
planatory variables using boosted regression trees. Proximity to previous forests was a key common
factor for forest encroachment in all forest types, with other factors being distance to the hydro-
graphic network, temperature and precipitation for broadleaf deciduous forests (BDF), precipitation,
temperature and solar radiation for broadleaf evergreen forests (BEF) and precipitation, distance to
province capitals, and solar radiation for needleleaf evergreen forests (NEFs). Results also showed
contrasting forest expansion trajectories and drivers per biogeographic region, with a high dynamism
of grasslands towards new forest in the Eurosiberian and the mountainous Mediterranean regions,
a high importance of croplands as land cover origin of new forest in the Mesomediterranean, and
increasing importance over time of socioeconomic drivers (such as those employed in the industry
sector and the utilized agricultural area) in the Supramediterranean region but the opposite pattern
in the Southern Mesomediterranean. Lower precipitation rates favored new NEFs from shrublands
in the Thermomediterraean region which, together with the Northern Mesomediterranean, exhibited
the highest relative rates of new forests. These findings provide reliable insights to develop policies
considering the ecological and social impacts of land abandonment and subsequent forest expansion.

Keywords: new forests; driving forces; land abandonment; boosted regression trees

1. Introduction

In the last decades, evidence of decreasing the net forest loss has been manifested
globally, even though deforestation continues to increase unequally distributed around the
globe [1]. In the five-year period 2010–2015, the tropical forest area declined, temperate
forest expanded, and little net change was observed in the boreal and sub-tropical forest.
The forest area expanded in the European countries, East and Western-Central Asia, North
America, and the Caribbean, and declined in Central and South America, South Asia,
and Africa. In fact, Africa surpassed South America in the rate of forest loss during the
last decade [1–3]. In Europe, the forest area even increased during the past century due
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to policies favoring tree planting or the spontaneous forest establishment on croplands
suffering the land abandonment syndrome [2,4–7]. Indeed, in recent decades, the col-
lapse of many rural economies of Europe has triggered profound changes in the territory,
causing significant land use and cover changes, especially in mountainous regions [8,9].
Furthermore, from rural to more urbanized areas, general population movements have
occurred, concentrating inhabitants in some inner cities and coastal regions, provoking
agriculture abandonment processes followed by forest succession, mainly in areas with
more biophysical constraints [10–12].

The Iberian Peninsula (IP) is a representative area of diversity, ecological value, and
vulnerability of the Eurosiberian and Mediterranean terrestrial ecosystems. Its complex
relief (mean elevation around 614 m a.s.l. extracted from the ASTER Digital Elevation
Model and large areas, i.e., 18,810 km2, above 1 500 m a.s.l.) creates a heterogenous
climatic mosaic, with the usual conditions found on the northern rim of the Mediterranean
Basin, combined with elevation-driven climatic gradients in mountain ranges [13]. In this
context, forest increase has been observed in recent decades [14,15], with the cropland
abandonment as the primary land source [10,16–18]. Vidal-Macua et al. [19] found that
20% of shrublands became forest in the 1987–2012 period in three Landsat representative
scenes. Recently, Gelabert et al. [20] estimated an overall area proportion of 66% affected by
woody encroachment on former pastures and croplands in the Pyrenees. Despite indicating
a progressive increase in forest cover over the past century, official data do not provide
enough robust information to ascertain the spatial pattern of this increase and its links to
other processes and to the potential drivers, although this situation is changing [19,21].
More detail about the spatial patterns of the driving forces associated with the main sources
of new forests is fundamental for landscape management and planning. Nevertheless, this
information is often limited by the availability of accurate land cover (LC) map series for
large areas [22]. In this sense, a study considering remote-sensing of medium–high spatial
resolution imagery, providing spatio-temporal completeness (30 recent years of land use
and LC changes along a wide transect) and covering a vast part of the climatic variability
of the IP, can help shed light on these issues.

In any case, forest increase simultaneously occurs in areas with strong and hetero-
geneous changes in climate. Minimum and maximum temperatures increased in Spain
during the 1951–2010 period, and the warming rate was highly dependent on the area
and the length of the period analyzed [23]. For example, the summer warming trend is
specifically significant in the western peninsula from the mid-1920s to 1959 and from the
mid-1970s onwards. In contrast, the CLIVAR [24] report suggests no significant decrease in
rainfall, although other research found some different trends for some specific regions and
periods [25,26]. Furthermore, research demonstrates an increase in solar radiation since
the 1980s [27,28]. The extent of climate change compromising forest expansion in the IP,
together with its spatio-temporal variability, is still unknown.

Research works have analyzed the LC changes following the abandonment of tradi-
tional activities, using various LC change information sources and explanatory variables.
Some examples, including aerial photographs and topographic maps [29], cartographic
resources (e.g., CORINE) [30–32], and remote-sensing classification techniques [4,20,33,34],
have been widely used for the analysis of vegetation transitions. Furthermore, other
strategies use satellite imagery time series to detect LC changes, extracting the spectral
trajectories and evaluating their temporal segmentation [20,35] or the Continuous Change
Detection and Classification (CCDC) algorithm, which uses all available Landsat dataset to
dynamically detect LC changes over time [36,37].

Researchers have collected different explanatory variables or driving forces (e.g., topo-
graphic, climatic, distances and accessibility, or socioeconomic) for LC change modeling
using statistical approaches or techniques to relate them. Some examples are generalized
linear models (GLM) and their derivatives as (simple/multiple) logistic regression or the
linear discriminant analysis [38–43]. Moving beyond linearity assumption, regression
splines, or generalized additive models are examples of replacing standard linear mod-
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els [38,44,45]. Other lines of techniques are the tree-based methods, which include decision
trees and methods, such as bagging, random forests, and boosting, which can enhance
the predictive performance of the models [30,33,36,46–49]. Furthermore, unsupervised
learning methods provide information on the sample structure and subgroups among the
predictors or the observations [50].

In this study, the terms “forest expansion” and “new forest” have been used inter-
changeably, considered as the expansion of forest on land, implying a transformation
of land cover from non-forest to forest [1]. Boosted regression trees (BRTs), a non-linear
machine learning method, were used to explore the complex relationship and interactions
between new forest (NF) dynamics and explanatory variables. The origin of NF regard-
ing their primary sources in LC dynamics will be analyzed, attending to determine the
drivers involved and their spatio-temporal patterns along a north–south transect in the IP’s
Eurosiberian and Mediterranean context.

Three main hypotheses will be contrasted in this spatio-temporal research: (i) a lat-
itudinal transect along the Iberian Peninsula may reveal the significant patterns in the
origin and drivers of NF dynamics in this representative area between the Eurosiberian
and the Mediterranean regions, and can serve as a scenario to illustrate the role of to-
pography and climate in a context of climate change; (ii) forest expansion processes have
been concentrated in rural areas with low accessibility and weak industrialization, where
the abandonment of traditional agricultural and livestock activities has been historically
more intense; and (iii) forest expansion dynamics may reveal different temporal patterns,
principally associated with the socioeconomic historical conditionings and/or the different
climatic conditionings (the impact of climate change).

In order to contrast the key hypotheses, our main objectives in this study will be
focused on (1) the identification of the principal forest expansion trajectories from the main
LC sources (crops and natural/seminatural categories) for the main forests types across the
represented bioclimatic regions; (2) the main drivers involved in these transitions; and (3)
the spatial and temporal patterns of these drivers along with the bioclimatic regions within
the transect.

2. Materials and Methods
2.1. Study Area

The study area corresponds to a transect of around 185 km wide and 755 km long
crossing north–south of the IP and covering 120,190 km2 (Figure 1). The transect allows us
to study an important bioclimatic gradient where both the Eurosiberian and the Mediter-
ranean biogeographical regions are represented [51]. The south Mediterranean context is
characterized by dry conditions where the higher mean annual temperature (19 ◦C) and
the lowest annual rainfall (150 mm) occur, evolving into continental regimes towards the
center of the IP. In contrast, more humid and mountainous climatic regimes characterize
the North Eurosiberian region, where the lowest mean annual temperatures (2 ◦C) and
the highest annual rainfall (over 2200 mm) are reached. Figure S5 in the Supplementary
Materials provide details about the topoclimatic variation along the transect.

The landscape can be divided into two geomorphological scenarios: large depressions
drained by the main Iberian rivers (i.e., Ebro, Douro, Tagus, Guadiana, Guadalquivir, and a
set of smaller basins) and bounded by mountain ranges of the alpine geological domain
(i.e., the Baetic System, the Iberian System, and the Pyrenees). The extensive valleys are
covered by recent quaternary materials favorable for agriculture activity.

A high latitudinal gradient characterizes the study ambit regarding climate, topog-
raphy, and socioeconomic characteristics. Therefore, we subdivided the study area into
bioclimatic regions (BRs) (Figure S1) to analyze the NF in local climatic detail. The averaged
mean temperature surfaces comprising the 1987–2017 period and the BRs formulation [51]
were used to subdivide the transect according to its climatic characteristics. A general
overview of BRs is detailed in Figure S4. As will be shown later in the ‘results’ section,
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regions 1, 4, and 7 (in P1) will not be analyzed as the remaining forest surface was not
representative for robust modeling (Figure S6a).

The Spanish National Forest Inventory (NFI 2, 1986–1995 and NFI 3, 1997–2007) was
used to identify the predominant forest species in each BR to better understand the forest
composition in each region, which is detailed in Table 1. Thus, the broadleaf evergreen
forests (BEsF) and needleleaf evergreen forests (NEFs) were predominant and widely
distributed along the transect, while broadleaf deciduous forests (BDFs) dominate in the
humid Northern Eurosiberian context.

Forests 2022, 13, x FOR PEER REVIEW 4 of 35 
 

 

  

Figure 1. The transect along the Iberian Peninsula used in this study is shown in (a) and the land 
cover map (LCM) of 1987 in (b). 

The landscape can be divided into two geomorphological scenarios: large 
depressions drained by the main Iberian rivers (i.e., Ebro, Douro, Tagus, Guadiana, 
Guadalquivir, and a set of smaller basins) and bounded by mountain ranges of the alpine 
geological domain (i.e., the Baetic System, the Iberian System, and the Pyrenees). The 
extensive valleys are covered by recent quaternary materials favorable for agriculture 
activity. 

A high latitudinal gradient characterizes the study ambit regarding climate, 
topography, and socioeconomic characteristics. Therefore, we subdivided the study area 
into bioclimatic regions (BRs) (Figure S1) to analyze the NF in local climatic detail. The 
averaged mean temperature surfaces comprising the 1987–2017 period and the BRs 
formulation [51] were used to subdivide the transect according to its climatic 
characteristics. A general overview of BRs is detailed in Figure S4. As will be shown later 
in the ‘results’ section, regions 1, 4, and 7 (in P1) will not be analyzed as the remaining 
forest surface was not representative for robust modeling (Figure S6a). 

The Spanish National Forest Inventory (NFI 2, 1986–1995 and NFI 3, 1997–2007) was 
used to identify the predominant forest species in each BR to better understand the forest 
composition in each region, which is detailed in Table 1. Thus, the broadleaf evergreen 
forests (BEsF) and needleleaf evergreen forests (NEFs) were predominant and widely 
distributed along the transect, while broadleaf deciduous forests (BDFs) dominate in the 
humid Northern Eurosiberian context. 

  

10° E0° -10° W

40° N

0 100 200
km

Landsat scenes

Country limits

NUTS 2 limits

Altitude
3500 m

0 m

0 100 km

NUTS 3 limits
NEF - Needleleaf Evergreen Forest

BDF - Broadleaf Deciduous Forest
BEF - Broadleaf Evergreen Forest
Shl - Shrublands

Grl - Grasslands
BrS - Base soils
Urb - Urban areas and Infrastructures

WaB - Water Bodies
IHC - Irrigated Herbaceos Crops

RHC - Rainfed Herbaceos Crops
IWC - Irrigated Woody Crops
RWC - Rainfed Woody Crops

RiC - Rice crops
GrH - Greenhouses

200-030

200-031

200-032

200-033

200-034

(a) (b) 

Figure 1. The transect along the Iberian Peninsula used in this study is shown in (a) and the land
cover map (LCM) of 1987 in (b).

Table 1. Main forest species in BRs surveyed in the transect. BR numbers are related to other figures
in the text.

Biogeographical
Region Bioclimatic Region (BR) Main Forest Species 1

Eurosiberian

(1)
Alpine -

Subalpine Pinus uncinata, P. sylvestris (NEF)

(2) Montane Fagus sylvatica (BDF), P. sylvestris (NEF), Quercus pubescens (BDF), P.
nigra (NEF), Q. pyrenaica (BDF), Q. petraea (BDF).

(3) Coline P. radiata (NEF), Q. robur (BDF), F. sylvatica (BDF), Q. rubra (BDF),
Castanea sativa (BDF).

Mediterranean

(4)
Cryoromediterranean -

Oromediterranean P. uncinata, P. sylvestris (NEF)

(5) Supramediterranean Q. ilex (BEF), P. nigra, P. sylvestris, P. pinaster (NEF) Q. pyrenaica
(BDF), Q. faginea (BDF), Juniperus thurifera (NEF), P. halepensis (NEF).

(6,8) Mesomediterranean Q. ilex (BEF); P. halepensis, P. pinaster, P. pinea, P. nigra (NEF).

(7) Thermomediterranean P. halepensis (NEF); Q. ilex and Olea europea (BEF).
1 The list of species is shorted by dominance in each BR and considering the NFI 3 dataset.
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2.2. Methodological Framework

The methodological framework followed in this study is shown in Figure 2, and it is
divided into three main stages developed in the following subsections.
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Figure 2. Methodological workflow. LCM processing (A) provided three temporal thematic maps
and their associated uncertainty layers. In (B), locations of forest expansion from crops, shrublands,
and grasslands (PRE-FORESTS) were extracted considering sampling strategies. Boosted regression
trees (BRTs) were used to analyze the drivers involved (C) in NF occurrence.

2.2.1. Land Cover Map Production

Three LCMs were produced by remote sensing digital classification from 1987 and
every 15 years (LCM-1987, LCM-2002, and LCM-2017). LCM have a spatial resolution
of 30 m, according to the Landsat imagery series, courtesy of the U.S. Geological Survey
(USGS); images were acquired through the website portal (https://earthexplorer.usgs.
gov/ (accessed on 16 August 2021)) [52]. The k-nearest neighbor (kNN) classifier was
implemented and parallelized in MiraMon GIS and remote sensing software [53]. The
classification process followed the methodology detailed in [54–56]. In Padial-Iglesias
et al. [54], the authors generated accurate ground truth areas using the SIOSE database and
filtering rules based on the inner imagery NDVI data to correct inconsistencies in the initial
samples by considering inter-annual and intra-annual differences, scale issues, multiple
behaviors over time, and labelling misassignments. Furthermore, the authors considered
phenologically representative imagery, image preprocessing lines, and auxiliary variables
estimation for the classification process. These strategies were crucial for high-quality LCM
series achievement, improving the temporal consistency required for LC change analysis.

The MiraMon kNN classifier provides complementary outputs associated with each
classified map (e.g., the uncertainty of classified pixels). The uncertainty metric measures
the degree to which no class clearly stands out above the others in the assessment of class
membership of a pixel. In other words, it expresses complement to one of the degree of
commitment to the targeted class relative to the largest possible commitment that can be
made. Values range between 0 and 1, where 0 denotes the lowest level of uncertainty and,
hence, the most likely accurate thematic pixel assignation. It was used as a filtering strategy
to exclude pixels overcoming a level of uncertainty. Its formulation is defined as:

Uncertainty = 1 − (MAXmembership − SUMmembership/N)/(1 − 1/N), (1)

where the ‘MAXmembership’ argument denotes the maximum set membership value for the
pixel, the ‘SUMmembership’ is the total sum of the set membership values for the pixel, and
‘N’ is the total number of the classes considered.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.2.2. New Forests’ Occurrence Extraction, Sampling on Each BR, and Filtering

In order to model NF locations, explicitly consolidated temporal trajectories were
considered. Once a category becomes a forest, it has to remain in later periods to be
considered an NF. Similarly, absence locations were those of stable locations in all maps.
Furthermore, any presence within fire perimeters polygons was excluded (as explained in
Section 2.2.3 and the explanatory variables in the Supplementary Materials) to minimize
areas affected by heavy disturbance events along periods.

For text simplicity, this section continues to be explained in a section with the same
name in the Supplementary Materials part that gathers the complementary information
to the main text. Further references cited in the Section 2.2.2. section that follows in the
Supplementary Materials are [4,33,47,48,51,54,57–63].

2.2.3. Land Cover Change Modeling

The spatio-temporal distribution of forest expansion along the transect and the main
drivers involved were analyzed by comparing every two consecutive LCM, i.e., 1987–2002
as the first period (P1) and 2002–2017 as the second period (P2). Dates were defined
considering the initials (the mid-1980s) and the most recent Landsat images available at
the moment of LC production (2017). The central date (2002) divides the period into two
equal 15-year subperiods, coinciding with the auxiliary database date (SIOSE) used to
extract training areas [54]. In both periods, each NF dynamic was modeled at the maximum
desegregated categorical level (i.e., Grl/Shl to BDF/BEF/NEF and from crop categories to
BDF/BEF/NEF), considering a binary presence–absence modeling scheme. The modeling
process involved: (1) determining variables that may have potentially impacted the NF
occurrence; (2) a dimensionality reduction in predictors, and (3) the model processing itself,
developed in the following subsections.

Explanatory Variables

Spatial determinants potentially driving the past NF transitions are listed in Table 2.
The selection of biophysical, climatic, distance and accessibility, geology, thematic and
socioeconomic determinants was based on a literature review focusing on LC change analy-
sis [4,19,30,57,64–70]. Selected determinants included variables collected from administrati
ve-level historical statistics and spatially explicit pixel-level data. Details about sources and
methods to extract these explanatory variables are given in the Supplementary Materials
‘Explanatory variables’ section. Further references cited in the Section 2.2.3 that follows in
the Supplementary Materials are [71–83].

Collinearity Analysis

The collinearity between predictors was evaluated to exclude variables influenced by
other predictors from analysis before modeling, thus reducing model overfitting and time
computing. Thus, the level of correlation between predictors was assessed through the
variance inflation factor (VIF), considering a VIF threshold of 5 [49]. The process iteratively
excludes multicollinearity variables since all the remaining variables had a VIF score below
the threshold considered. When two highly correlated variables were detected, the one that
depicted a better interpretation behavior in the model and showed a smaller correlation
(Pearson’s coefficient) with the other explanatory variables was selected. The process
was helpful in reducing dimensionality, especially in socioeconomic, distance-related,
and drought-related variables. Subsequently, non-informative zero variance predictors
were excluded, and the Pearson correlation coefficients were estimated for the remaining
predictors. Lastly, the available presence–absence sample generated was intersected with
the predictor variables, resulting in point features with data included in the attribute table.
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Table 2. Explanatory variables used for modeling forest expansion in the study area. Variables
collected at different temporal moments have a value in each period (P1, P2).

Group Variable Abbreviation Units

Topoclimatic Slope Slope Degrees
General curvature General_Curv Dimensionless

Potential radiation in winter solstice Pot_Rad_Wint 10 kJ/(m2 × day × µm)
Averaged annual accumulated rainfall Ac_Rain dmm
Averaged mean annual temperature Av_Me_Temp d ◦C
Number of drought episodes (DE*) DE*_S3/6/12 Counts
Number of humid episodes (HE*) HE*_S3/6/12 Counts

Distances Euclidean dist. to forests Eu_Dist_Forests Meters
and Euclidean dist. to hydrography Eu_Dist_Hyd Meters

accessibility Euclidean dist. to protected areas Eu_Dist_Protect Meters
Cost dist. to provincial capitals Co_Dist_Cap Meters

Cost dist. to urban areas Co_Dist_Urb Meters
Cost dist. to main roads Co_Dist_M_Roads Meters

Cost dist. to secondary roads Co_Dist_S_Roads Meters

Geology Lithological substrate Lithology Acidic, mixed, alkaline
Sheet and rill erosion Soil_Erosion Mg/(ha × year)

Socioeconomic Protected areas Protect_Areas Protected-Non protected
Total population Inhabitants Inh

Population density Pop_Density inh/km2

% of population 0–16 years Pop_0_16y 0–16/inh * 100
% of population 16–64 years Pop_16_64y 16–64/inh * 100
% of population >64 years Pop_65y >65/inh * 100

Ageing index Ageing_index >65/(0–16) * 100
% of agriculture workers W_Agriculture W_A/inh * 100

% of industry workers W_Industry W_I/inh * 100
% of building workers W_Building W_B/inh * 100
% of services workers W_Services W_S/inh * 100

Annual work units AWU Work Units
Number of holdings Num_Hold No. of holdings

Livestock units LSU Animals
Utilized agricultural area UAA Hectares

Data Analysis: Boosted Regression Trees

The LC changes associated with NF transitions were assessed using boosted regression
trees (BRTs). BRTs, which coincide with stochastic gradient boosting, are used within a
non-parametric regression technique that combine the strengths of decision trees and the
boosting ensemble technique [84]. BRTs do not assume any data distribution a priori, which
facilitates multiple interactive variables. They also help to identify relevant determinants
and their interactions, characterizing their partial dependence. BRTs are currently used in
many fields, including remote sensing [33,47], LULC change analysis [46], ecology [4,49,85],
hydrogeology [86,87], or marine spatial management [88]. Boosting is sequential, which
means that new trees are additively included in a stagewise process and fitted to the
residuals of the previous tree [89].

Model Fitting and Parametrization

We applied BRT [84] using the ‘gbm()’ function [48,90] available in the ‘caret’ pack-
age [91] in R software [92]. The BRT outputs essentially depend on the settings of four
main hyperparameters: the ‘tree complexity’, which is the number of branches or splits
for fitting each regression tree; the ‘number of trees’, which defines the number of models
composing the final ensemble; the ‘shrinkage’, which is a regularization parameter that
controls the model’s influence within the ensemble [89]; and the ‘minimum observations
in node’, which define the minimum number of training samples in a node to commence
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splitting, providing, together with interaction depth, more control on the complexity of
the weak learners. Furthermore, the ‘gbm()’ function has two additional parameters: the
‘distribution’ parameter, which defines the loss function, and was set as Bernoulli for binary
response variables; and the ‘bag fraction’, which determines the fraction of the observations
in a randomly selected training set to fit each weak learner (0.5 for stochastic gradient
boosting) [84,89].

We assessed model sensitivity by testing all the combinations of tree complexity levels
with the number of trees, the shrinkage, and the minimum number of node observations. A
10-fold cross-validation procedure for each parameter combination determined the optimal
configuration to derive the final model. A test subset was used to evaluate the final model
performance. The area under the receiver operating curve (AUC) and the accuracy rate
measured the model performance [93–96].

A modeling strategy was performed to extract the five most important drivers (based
on the ‘relative importance’) involved in NF dynamics. It was based on three steps. In the
first step, an initial model is generated considering the whole set of variables, providing
an overall perspective of the most important drivers. The second step gave a new model,
considering all predictors but excluding the most important one in the first model. Thus, the
repercussion of the first model’s main determinant is excluded, allowing other predictors
and their relationships to be evaluated, an exclusion of rising necessity the more significant
the variable’s relative importance. Lastly, a final model combines the most important
variable of the first model and the four most important of the second one.

The reliability of the final models’ results was evaluated for each NF dynamic. The aim
was to corroborate the consistency in the results. We randomly partitioned the available
sample into three independent subsets to achieve this sensitivity analysis. Each subset
served to derive a training and test subsample used for modeling. The AUC score was
used to evaluate model performance, the drivers’ relative importance score, and their
partial dependence plots pattern. The results reported similar model performance and
main drivers’ relative importance values, as well as PDPs (detailed in the next section)
with similar patterns within the five most significant predictors. However, the order of
drivers and PDP patterns varied when the subsample size was limited (i.e., <200 points).
The results reported consistency and confident interpretations derived from them when
the sample size exceeded the minimum estimated sample size.

Model Inference

The BRT technique provides tools for exploring the relationships between explanatory
and response variables, estimating the ‘relative importance’ (RI) of the predictors in the
model [84,97]. The RI measures the number of times a variable is selected for splitting,
weighted by the squared improvement of each split in the model, and averaged over all
trees [97]. It is subsequently scaled from 1 to 100 to express the individual contributions as
percentages. The RI was calculated for all of the variables in the evaluated models.

To display the results, we estimated the partial dependencies that describe the rela-
tionships between the response variable and one explanatory variable while accounting for
the average effect of the other predictors [84,97]. This calculus derived partial dependence
plots (PDPs) that depict the relationship between the response variable in the space of the
predictor and specify the suitable conditions for the LC transition. For each NF dynamic
and analysis period model, the five final selected variables were considered to evaluate their
importance across time and space (BRs), in addition to their PDPs for pattern interpretation.

As a complement to this, to provide a global perspective of the main drivers involved
in each NF dynamics, their predictors’ RI values were aggregated (the sum of the existing
individual RI values of a predictor along the BRs), weighted by a factor, and finally scaled
from 0 to 100. The factor was estimated as the number of times that a predictor was
selected in different BRs divided by the maximum number of BRs where the LC dynamic
was modeled; then, it was scaled between [0.5,1] (not between 0 and 1) to avoid a harsh
penalization of those predictors selected just in a few BRs.
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3. Results
3.1. New Forests Occurrence over the Last Thirty Years

Evaluating all forest land cover trajectories showed that forest expansion exceeds
deforestation in extension, implying a positive net forest gain. In the whole transect, forests
have increased in the last thirty years mainly at the expense of decreasing shrublands
(e.g., 4160.1 km2 between 1987 and 2017) and grasslands (e.g., 1934.6 km2 between 1987
and 2017) and secondarily croplands (e.g., 349.0 km2 of IWC between 1987 and 2017), as
detailed in Figure 3. Furthermore, disaggregated details by BRs are shown in Figure S6 in
the Supplementary Materials.
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Figure 3. (a) Chord diagram showing NF trajectories between 1987 and 2017 in the whole transect.
(b) Table detailing the occupation of each category implied in NF consolidated trajectories. All figures
are shown in km2.

Numerically, NF occurrence affected 701,156 ha in the transect (334,031 ha during
the first period and 367,125 ha in the second). As seen in Figure 4, the two primary
source categories converted into NF areas were related to natural/semi-natural categories
(shrublands and grasslands) and cropland abandonment (irrigated/rainfed herbaceous
and woody crops) processes.
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Colors denote source categories (e.g., yellow = grasslands), while the three consecutive bars represent
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numbers in Table 1.

According to Table 3, the NF spatial distribution varied according to BRs, but in gen-
eral terms, grasslands dominated over shrublands as land donors in the Eurosiberian and
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the mountainous Mediterranean regions, while the opposite occurred in the Mediterranean
area. Crop categories dominated in the Mediterranean, especially in the Mesomediter-
ranean BR. Broadleaf evergreen forests were the principal target forest category (66.3%
of NF appearances), and they were mostly concentrated in the Supramediterranean and
Southern Mesomediterranean regions. They are followed by needleleaf evergreen forests
(20.2%) occupying a wide variability of conditions (from the upper mountain to the driest
BRs) and by broadleaf deciduous forests (13.5%) principally located in the Montane and
Coline. In absolute terms, the Supramediterranean and Southern Mesomediterranean
BRs concentrated afforested areas (47.8% and 35.8%, respectively) due to their extension
and geomorphological variability. However, the highest relative afforestation rates were
observed in the Thermomediterranean and Northern Mesomediterranean regions.

Table 3. New forest dynamics in absolute and relative values. The source categories’ transitioning
area (all figures in ha) towards the target NF group categories (in the upper part of the table) is
detailed and disaggregated by the finally modeled BRs and analysis period (P1, P2). In the lower part
of the table, figures related to all forests are given to provide final relative figures.

Bio.Region BR.2 BR.3 BR.5 BR.6 BR.7 BR.8

Target
Cat. P1 P2 P1 P2 P1 P2 P1 P2 P2 P1 P2

NEF 4856.6 4488.8 7933.3 6425.6 31,413.3 24,529.0 18,379.1 20,186.6 1247.8 5743.6 13,973.4
BDF 11,924.0 12,806.6 8128.4 4250.1 15,163.6 25,039.0 3089.3 6451.8 1229.9 1742.3 4817.6
BEF 9434.1 6220.0 1333.9 314.4 121,223.1 117,453.6 88,802.9 114,093.5 323.9 2049.7 2157.9

Abs. ∆
NF 1 26,214.7 23,515.4 17,395.6 10,990.1 167,800.0 167,021.6 110,271.3 140,731.9 2801.6 9535.6 20,948.9

Source
cat. ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Shl 11,969.0 11,773.8 1035.2 1715.7 139,591.7 122,779.5 62,408.0 57,933.2 1042.4 7069.1 13,814.9
Grl 13,860.7 10,759.6 14,732.6 7196.9 23,158.9 35,400.5 26,647.5 48,429.4 143.6 400.7 1086.5
BrS 1.4 3.7 9.8 6.8 594.7 418.6 691.5 897.7 44.2 10.0 24.8
IHC 96.3 47.3 974.7 810.2 770.2 739.8 1347.5 1881.2 54.9 402.5 1294.9
RHC 129.0 690.0 5.5 235.5 871.1 4468.6 693.6 4054.6 18.9 190.4 906.6
IWC 87.9 118.4 474.4 775.4 2020.4 1578.8 13,322.3 12,447.4 1288.2 1202.1 2946.9
RWC - 0.1 - 0.7 748.7 1551.2 5084.0 14,748.0 147.8 18.2 151.9

Others 70.5 122.5 163.4 248.9 44.4 84.6 76.9 340.3 61.6 242.6 722.4

All
forests 388,843.3 375,619.7 89,993.1 92,705.1 1,154,511.0 1,269,076.1 591,780.2 646,504.6 5261.0 58,641.8 57,578.7

NEF 97,215.0 108,544.5 41,852.3 48,364.0 439,790.3 465,941.1 173,548.1 169,650.5 3424.0 43,307.5 39,989.2
BDF 219,789.8 202,775.8 31,018.7 33,119.4 188,810.0 181,902.2 31,272.1 24,467.9 412.9 6108.2 6777.3
BEF 71,838.5 64,299.4 17,122.1 11,221.7 525,910.7 621,232.8 386,960.0 452,386.2 1424.1 9226.1 10,812.2
Shl 78,474.5 68,619.4 5341.4 11,045.0 1,011,593.4 908,174.3 458,904.8 446,259.5 33,579.5 242,900.8 271,144.4
Grl 77,531.0 100,007.2 43,718.1 37,472.8 657,331.5 629,819.3 907,027.6 813,254.9 86,335.2 103,983.7 131,507.4
Brs 988.1 847.5 122.1 169.8 53,807.0 54,331.7 135,633.7 130,237.9 38,382.1 53,041.3 49,668.7
IHC 5871.7 1092.4 14,494.5 8412.7 11,197.8 8053.4 165,911.8 104,488.2 7209.4 127,504.4 108,455.7
RHC 49,705.1 53,484.9 202.4 3787.7 793,903.2 816,432.4 1,878,760.7 1,995,948.0 19,286.3 598,332.8 552,903.8
IWC 1054.2 1646.1 7911.3 7514.0 8755.8 7762.4 271,217.7 246,390.4 32,907.6 88,430.6 100,804.7
RWC 25.3 50.2 0.5 4.7 40,612.4 37,109.3 1,202,153.8 1,217,517.8 142,547.0 110,433.6 100,577.1

Others 1808.7 2934.3 2915.1 3586.9 7206.5 8159.9 35,334.7 46,123.4 37,645.0 28,340.7 38,969.1

Rel. ∆
NF 2 6.7% 6.3% 19.3% 11.9% 14.5% 13.2% 18.6% 21.8% 53.3% 16.3% 36.4%

“Others“ includes categories (Urb, WaB, RiC, and Grh) with lower representativeness in NF transitions. 1 represents
the NF absolute increase; 2 the relative increase regarding the total forested area (All forests) disaggregated by
forest group, and the rest of categories for each BR and period. The main NF dynamics in absolute and relative
terms are highlighted in grey.

On the other hand, afforestation was similar in both studied time periods but slightly
higher during the second. The afforestation area was higher in the first period in the
Montane, Coline, and Supramediterranean regions, and in the second period in the Me-
somediterranean (Northern and Southern) and Thermomediterranean regions.

The results were derived from the LCMs, obtained with an overall accuracy—weighted
by the ground truth area considering only classified pixels—of 97.2%, 92.2%, and 96.9% at
each reference date (1987, 2002, and 2017). The average user and producer accuracy of the



Forests 2022, 13, 475 11 of 33

natural categories (forest categories, shrublands, and grasslands) were 91.2% and 91.4%,
respectively, while the same indicators were 94.8% and 94.3% for crop categories. The
confusion matrices of the LCMs and the imagery series considered are detailed in Tables
S1–S4 in the Supplementary Materials.

3.2. Model Validation

Table 4 shows the main drivers’ aggregated, weighted, and scaled RI values detailed
for each source category and target forest category. This table includes a total of 77 models
(28 for BDF, 25 for BEF, and 24 for NEF new forests groups), considering those dynamics in
the BRs providing enough samples for modeling. On average, the accuracy obtained in all
models was 0.81 ± 0.06 for all the dynamics evaluated. Models in the first period provided
an average accuracy of 0.83 ± 0.05 and slightly lower 0.79 ± 0.05 in the second period,
mainly related to the higher variability in the NF locations during this period. Regarding
source categories, the average values for natural categories were 0.83 ± 0.06 in the first
period and 0.78 ± 0.06 in the second. Crop categories showed slightly higher average
accuracy, being 0.84 ± 0.04 in the first period and 0.79 ± 0.07 in the second (Table S7).

3.3. New Forests’ Main Drivers

The NF driving forces were analyzed by LC source categories (rainfed crop categories,
irrigated crops categories, grasslands, and shrublands). From the initial set of variables,
twenty-five different variables were among the five main predictors in the models. The
maps datailed in Figure 5a–c describe the drivers’ temporal and spatial variation character-
istics, detailed by period and BR. Moreover, Table 4 summarizes the driver’s importance for
each source category and target forest group. In this section, drivers are listed by their rela-
tive importance, accompanied by a symbol (in brackets) denoting the partial dependence
main pattern. For instance, the (+grad) means that the transition probability increases
with the variable, the (−grad) represents the opposite, and the ( 6=grad) means that there is
not a clear positive or negative tendency. The (A-shape) indicates that the higher suitable
conditions occur between two low values, while the (V-shape) denotes two high suitable
conditions between a minimum. The (и-shape) depicts relatively suitable conditions in
low values that sharply decrease, then increase to a second peak, and finally decrease at
larger values. Lastly, the (±grad) is used in the case of different patterns of a driver when
aggregating BRs.

A detailed description of the results section is provided in the Supplementary Materials
for readers seeking more information, continuing the main text with the discussion of the
principal results.
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Table 4. Aggregated, weighted, and scaled relative importance values are detailed for each predictor, source category, and new forests’ target category. The
“Irrigated” label groups are IHC and IWC, while “Rainfed” groups are RHC and RWC categories.

Target Forest
Categories→ BDF BEF NEF

Source
Categories→ Rainfed Irrigated Grasslands Shrublands Rainfed Irrigated Grasslands Shrublands Rainfed Irrigated Grasslands Shrublands

Variable
↓/Periods→ P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Slope - - 5.9 6.9 7.9 7.2 - - 9.7 5.3 - 18.1 8.3 3.3 9.0 2.4 - - - - 5.5 14.2 4.5 11.9
General

Curvature - 1.0 4.3 5.2 - - - - - - - - - - - - - - - - - - - -

Pot_Rad_Wint - - - 1.5 10.7 7.9 2.8 14.6 - 2.5 13.4 - 13.6 2.4 18.9 15.7 - 4.9 - 8.6 7.3 1.0 15.0 3.4
Ac_Rain 21.9 12.0 1.3 2.3 11.2 6.5 28.1 23.7 19.5 14.4 - - 17.8 19.7 13.5 22.3 - 4.3 16.1 23.0 7.8 12.2 22.0 26.7

Av_Me_Temp - 4.7 2.5 9.3 14.5 10.1 18.7 31.0 3.9 6.8 20.4 27.3 12.8 11.1 14.5 17.0 - - - - 3.8 15.5 3.9 2.3
DE6_S6 - - - - - - 3.3 - - - - - - - - - - - - - - - - 1.7
DE9_S6 - - - - - - - - - - - - - - - - - 2.2 - - - - - -

DE3_S12 - - - - - - - - - 1.5 - - - - - - - - - - - - - -
DE3_S24 - - - - - - - - - - - - - - - - - - - - - - - 1.1
HE3_S12 - - - - - - - - - - - - - - - - - - - - - - - 1.2

Co_Dist_M_Roads - - 5.3 1.1 1.2 - - - - - - - - - - - 16.1 3.4 24.2 - - - 1.5 -
Co_Dist_S_Roads - 1.6 2.2 - - - - - - - 16.1 - - - - 1.2 - 4.3 - 2.1 - - - -

Co_Dist_Urb 12.7 5.8 2.2 1.8 2.2 5.2 3.9 3.9 1.8 - - - - - 5.8 - - - - - 8.6 - 1.9 -
Co_Dist_Cap 18.7 6.4 6.9 8.7 2.8 12.8 4.8 3.6 - - - - 2.0 27.7 - 12.6 31.5 30.6 - 20.7 8.0 11.4 2.0 9.2

Eu_Dist_Forest 26.0 20.9 18.9 11.8 22.5 10.5 24.1 4.2 35.1 35.7 21.2 20.7 24.3 8.9 30.9 14.0 20.9 20.1 - 3.6 28.6 17.2 30.3 18.5
Eu_Dist_Hyd 20.6 24.7 25.9 21.3 - 5.6 - 3.8 2.0 4.9 - - - 3.1 - - 5.8 - 10.5 - - 1.9 4.0 -
Soil_Erosion - - 1.6 2.9 3.0 1.8 - - 5.4 4.8 28.9 16.7 4.4 - - - 12.3 - 24.4 3.6 - - 1.5 1.0

Protected_Areas - - - - - - - - - - - - - - - - - - - - 0.8 - - -
Pop_density - - - 1.0 - - - - - 2.5 - 17.1 - - - - - - - - - - - -
W_Building - - - - - - - - 2.3 1.7 - - - - - - - - - - - - - -
W_Services - - - - - - - - 2.2 - - - - - - - - - - - - - - -
W_Industry - - - - - - - - - - - - - 1.9 - - - - - - - 4.4 - -
Num_Hold - 4.9 - - 1.9 2.5 - - - - - - - 2.4 - - 19.3 - 21.9 3.5 - - - -

LSU - - - - - - - - - - - - 1.9 - - - - - 13.4 2.7 - - - -
UAA - - - - - - - - 1.7 - - - - - - - - - - - 3.2 3.1 - -

Num. BRs
Grouped 1 4 5 6 4 4 2 2 4 4 1 1 4 3 4 4 1 2 1 3 3 3 4 5

BRs Grouped
(distinct) 5 5,6

*,8
3,6

*,8 *
3,6

*,7,8 * 2,3,5,6 2,3,5,6 2,5 2,5 5 *,6 * 5 *,6 * 6 6 2,3,5,6 2,5,6 2,5,6,8 2,5,6,8 6 6,8 6 6,8* 2,5,6 2,5,6 2,5,6,8 2,5,6,7,8

* Values with an asterisk denote BRs appearing twice (for herbaceous and woody crops) in grouped categories.
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4. Discussion

This study used a sound methodological treatment, which is why we open this sec-
tion with two subsections discussing its role and contribution. Afterwards, the second
subsection continues by examining drivers for the different NF types.

4.1. Land Cover Change Locations Extraction and Sampling Strategies in the
Methodological Framework

From a methodological point of view, the training data used during LCM were coher-
ently derived for the whole transect and temporal references, using filtering strategies to
enhance their reliability and the quality of their thematic assignment, which also derived
in the reliability of the uncertainty threshold applied for the extraction of changing posi-
tions [54]. Thus, the filtering rules used to derive ground truth samples provided highly
accurate LCM for LC change analysis, together with the uncertainty for each classified
pixel. As a result, the maps attained an outstanding performance with an overall accuracy
of 95.4% (overall accuracy weighted by the ground truth area considering only classified
pixels), providing high-quality information to support the NF analysis.

The accuracy of LCM is frequently influenced by factors such as imagery positional
misregistration or wrongly parameterized radiometric correction, deriving in misclassified
information. Considering the uncertainty in the dependent variable (NF), it was decisive to
use top-performing models. As expected, models’ accuracy increased when pixels with
uncertainty over a threshold were eliminated, which is in line with previous research
works [57,58].

There are concerns over sampling absence locations and how it could affect the perfor-
mance of the models, their interpretability, generalization, and transferability. In this sense,
different authors show the existence of a bias when obtaining a representative sample of
presences–absences in species distribution modeling, proposing various solutions [61,98,99].
Even though this could be an entirely new research line, we considered it necessary to
define a sampling strategy to select absences according to the presences available within
a spatial buffer, reducing the spatial bias of the absences. Thus, this solution generated a
balanced presence–absence sample, assuring their local prevalence.

Finally, the spatial segmentation into BRs was crucial to extract presence–absence
locations within similar climatic conditions, enhancing the study’s coherence and avoiding
any consideration of absence locations far apart and without spatial relation with the
presences in the model.

4.2. Driving Forces Modeling

According to Borda-Niño et al. [66], recent remote-sensing research evaluating forest
changes focuses more on deforestation dynamics, and less attention is given to forest
increase dynamics. However, understanding the driving forces of NF attending to their
source categories is challenging, but decesive to elucidate their contribution to each target
forest category, and spatio-temporal patterns. In this research, both local topoclimatic and
socioeconomic factors are combined to analyze forestation processes from contrasting LC
categories along a representative Eurosiberian and Mediterranean North–South transect.

Studies quite often evaluate the drivers involved in LC dynamics focusing on a specific
issue or complex phenomenon to be analyzed, unifying several categories from LC maps
into a unique “label”, i.e., forest regrowth, deforestation, and cropland abandonment,
which constitutes the phenomenon as a target for analysis in research works [19,21,30,33].
The study also benefited from investigating NF appearance, disaggregated into three forest
types, focusing on six main source categories for the sake of understanding the specific
drivers involved.

The BRT modeling strategy was based on three steps, and was advantageous in cases
where the primary driver in importance in itself explains a large proportion of the variance
of the model, i.e., over ~50% of the relative importance. Thus, super dominant drivers, such
as the topography, mask the contribution, pattern, and interaction of other predictors with
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lower explanatory power, which are underrepresented in the resulting models [4,33]. In
this research, a solution based on three iterative steps minimized this issue. In the last step,
the main driver in the first model and the four most important ones obtained in the second
are taken, configuring the final set of drivers that explain the new forest appearance.

In our study, in general terms, topoclimatic and distance drivers were more frequently
selected to explain NF dynamics along the BRs than socioeconomics ones, which is a
recurrent situation in previous research works [4,7,57]. The lower explanatory power
of socioeconomic drivers may be related to their homogeneous spatial distribution into
administrative units (municipality, census section). However, we minimized this issue
by considering the spatial autocorrelation from the Moran index and a presence–absence
balanced sample. Furthermore, statistical analyses are not independent of the spatial
configuration or aggregated information scale, leading to severe methodological difficulties
such as the modifiable areal unit problem (MAUP) [100–102].

4.2.1. Drivers of Forestation from Croplands

Studies of forest expansion associated with cropland abandonment dynamics in moun-
tainous regions have been reported at the European ambit [8,10,103–108]. In our results,
the appearance of new BDF from crop categories was closely associated with the prox-
imity to rivers, streams, or torrents, where water availability and humidity allows BDF
species to grow. Similarly, their expansion is associated with irrigated crops, and is also
favored by the proximity to forested areas, producing a fulfilling process between or within
the forested patches (small or isolated cultivated areas) or along their edges, where seed
dispersal triggers early stages of natural succession [109]. Regarding the spatio-temporal
behavior, new BDF from crops mainly appeared in large hydrographic basins close to hydro-
graphic network (Northern and Southern Mesomediterranean BRs) and in the transitions to
mountainous areas (Supramediterranean) where croplands are less competitive [110–112],
affecting specially rainfed crops in our results.

The proximity to pre-existing forests as a driver has been reported in several
works [7,30,66,113–115], and it has played a crucial role according to our research. Con-
cerning the proximity to the hydrographic network, studies considered and stated it in
their results [66,114,115]. This driver affecting riparian vegetation was likely involved in
poplar intensification (e.g., Populus nigra L., Populus canadensis L., Populus alba L.) close to
rivers and preexisting deciduous species forest plantations. In fact, European initiatives
promote the cultivation of poplar tree species because of their sustainability and efficiency
(fast-growing and high-carbon sequestration rates) in a context of the need for renewable
raw materials and global climate change [116].

For many studies, remoteness has been considered a main driver of NF associated
with farmland abandonment [19,30,33,114,115,117]. In our research, the main drivers were
the distance to urban settlements, in general, and to provincial capitals, in particular. Thus,
the further the distance, the more the likelihood of farmland abandonment. We have also
unveiled that croplands further away and less accessible from capital cities were more likely
abandoned, which is in line with other works and in other areas [30]. Contrary to initial
expectations, the distance to main and secondary roads, as an indicator of remoteness, were
not explicative drivers of cropland abandonment, i.e., an outcome similar to other works
such as Abadie et al. [115]. In our work, the only exception was in the conversion from
crops to NEFs, mainly in the first period when the explanatory power of the distance to
main roads was high [33]. One possible explanation could be the high correlation with the
distance to provincial capitals, which displays more substantial explanatory power.

Our results showed that the main topoclimatic determinant of crop abandonment to
new BDF was precipitation, mainly in the case of rainfed crops with an increasing positive
tendency. In some studies, this variable was initially removed due to the correlation with
other drivers [30,64], whereas in others, it appeared as the main one [21,66]. Other topocli-
matic drivers obtained from our analysis were temperature and slope, with a negative
(except for the Thermomediterranean region) and a positive gradient, respectively. These
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drivers were included in other works [64]. In Spain, Peña-Angulo et al. [118] found rainfall
and altitude in the Cameros Viejo region (Iberian System, Spain) as the main factors in
deciduous forest appearance from cropland abandoned in mountainous areas. Moreover,
Alonso-Sarría et al. [119] found that climatic drivers (precipitation and temperature) pre-
dominated over geomorphological drivers in land abandonment in the Murcia region
(Spain). These findings align with our results since climatic drivers were more represented
and of higher importance in the warmest and driest BRs.

Within the socioeconomic variables, rural depopulation has been associated with the
abandonment of agricultural land and subsequent natural succession dynamics, especially
in the European mountain areas [8,103,107,112,120]. However, in our results, the role of
depopulation dynamics was of low importance and was associated with a lower population
density driver. Nevertheless, variables related to the agricultural structure of the holding
played an important role in the Southern Mesomediterranean BR. In this context, NFs
were favored in areas with a lower number of holdings devoted to rainfed woody crops
in the limit with the Supramediterranean region, where the number of holdings is lower
compared to lowlands in the middle of the large basins and presumably smaller agriculture
holdings due to terrain (slope, area) limitations. In this line, Zglobicki et al. [121] found
that holding size can drive land abandonment in eastern Poland. Nevertheless, in general
terms, population and the agricultural structure driving forces were scarcely represented
in our model results.

In the case of new BEF from crop abandonment processes, the proximity to previously
forested areas remained as the main driver in all the BRs involved (mainly located in the
south of the transect), and the distance to the hydrographic network disappeared as a
consequence of much lower water requirements of evergreen forest species. Regarding the
spatio-temporal behavior, new BEFs from crops mainly appeared in Supramediterranean
and Southern Mesomediterranean BRs, and especially in the transition between them.
Contrary to BDFs and NEFs, distances and accessibility drivers, such as the distance
to provincial capitals, urban settlements, and roads, showed scarce importance. Why
remoteness is less informative is unclear and will be of interest in future research.

The main topoclimatic driver of new BEFs from crop abandonment was temperature,
mainly in the case of abandoned irrigated crops, showing a decreasing negative tendency.
Thus, the higher relative importance was associated with the warmest southern BRs. An-
other driver was precipitation, associated with a positive trend to rainfed crops, especially
in the Southern Mesomediterranean region. This was interpreted as a NF in the upper limit
of the BR at higher altitudes, where total accumulated precipitation is high. Therefore, water
availability and temperature were major drivers in the warmest areas of the transect, which
is in line with studies performed in semi-arid regions [119,122]. Lastly, NF appearance was
favored by steeper slopes, a pattern also observed in several studies [115,123–125].

Soil erosion showed a significant role in irrigated woody crops, with a general neg-
ative tendency, meaning that NF occurred in areas showing scarcely erosive processes.
According to previous research, the intensity of soil erosion is controlled by the vegetation
cover and land uses, which is considered to be more critical than slope and precipitation
intensity, even though the low-frequency and high-intensity precipitation extreme events
are generally responsible for soil erosion [126,127]. The revegetation process after the land
abandonment in mountain areas during the 20th century resulted in a reduction in soil ero-
sion, whereas sheet erosion, piping, or gullying affected abandoned crop fields in semi-arid
contexts [128,129]. This driver has been fairly well studied in LC change analysis, such
as by Bakker et al. [130,131], where the authors found soil erosion as an important driver
of land use changes, for instance, in agricultural de-intensification processes favoring the
reduction in erosion and sediment movement.

Compared to BDF, from our results, socioeconomic drivers played a specific role
in the Supramediterranean and the Southern Mesomediterranean BRs. NF appearance
preferentially occurred in areas with a higher percentage of the population employed
in building and service activities, as well as low/high (rainfed/irrigated woody crops)
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densely populated locations, more prone to be abandoned. Similarly, Vidal-Macua et al. [19]
identified crop abandonment in the central Pyrenees in areas with a higher proportion of
population employed in the service and building activities, which are job opportunities
generally outside the agriculture sector [7]. In the Sierra de Albarracín (Spain), Melendez-
Pastor et al. [132] found a clear reduction in the population employed in the primary sector,
stability in the secondary, and a significant increase in the tertiary sector related to the
promotion of rural tourism.

In the case of new NEFs from crop abandonment processes, the distance to provincial
capitals, forests, and secondary roads predominated in all the BRs involved. Moreover,
the number of holdings and the livestock units dominated in the southern region, and the
distance to the hydrographic network dominated in the northern region. Regarding the
spatio-temporal behavior, new NEFs from crops appeared in the Northern and Southern
Mesomediterranean BRs, areas characterized by dry conditions, where NEF species (e.g.,
Pinus halepensis Mill., Pinus pinaster Aiton, Pinus pinea L., and Pinus nigra J.F.Arnold) are
better adapted to lower water requirements.

Remoteness played a significant role through the distance to provincial capitals
(mainly) and the distance to roads, both with a positive tendency, i.e., a larger distance
away from capital cities and roads signalled a higher likelihood of croplands being aban-
doned, as discussed in other works [30]. The proximity to pre-existing forests showed
lower importance than in the case of new BDF and BEF.

The main topoclimatic driver of new NEFs from crop abandonment was precipitation,
with irregular (positive and negative) trends along BRs. Thus, in the Southern Mesomediter-
ranean, the V-shape indicates a non-linear pattern related to occurrences in the plain areas
(lower precipitation) and the BRs’ upper limit (higher precipitation). Finally, soil erosion
played a significant role in the IWC category (similar to new BEF), with a clear negative
tendency, meaning that NF was again favored in areas showing scarcely erosive processes.
Thus, spontaneous vegetation (meadow, pastures) can promote low erosive situations and
act as protection cover in humid conditions.

Compared to BDF and BEF, socioeconomic drivers were significant in the Southern
Mesomediterranean BR, where new NEF appearance was more prone in areas with a
low number of holdings. This fact is interpreted as the lower availability of agriculture
holdings in the upper limit of the BR, far from provincial capitals and main roads. In
addition, remoteness and climatic constraints reduce the productivity of the land, increased
by uncertainty in the regularity of rainfall, making farmers more likely to make decisions
aimed at abandoning land [11,119,122]. Finally, a positive trend related to livestock units
has been observed, a totally new contribution up to our knowledge.

4.2.2. Drivers of Forestation from Grasslands

Studies of forest expansion in mountainous regions are numerous, and there are plenty
of examples which consider the whole European ambit [10,31,133,134], as well as regional
studies in Albania and Romania [33], Colombia [69], Portugal [135], Spain [19,57,132,136],
Russia [40], or Slovakia [112].

According to our results, the appearance of new BDF from grasslands was closely
related to the proximity to forested areas, in addition to topoclimatic drivers such as tem-
perature, solar radiation and precipitation, and distance drivers (such as the distance to
provincial capitals). Regarding the spatio-temporal behavior, new BDFs from grasslands
appeared mainly in the more humid mountainous BRs, i.e., Montane, Coline, Supramediter-
ranean, and Southern Mesomediterranean. The proximity to forested areas was the main
driver in the Montane and Supramediterranean BRs and secondary in the others, indicating
a homogenization and fulfilling process within the forested patches or along their edges,
enhanced by seed dispersal triggering the early stages of natural succession [109]. This
driver also was considered in other research works [7,30,114,115].

The main topoclimatic driver was temperature, showing high importance and a de-
creasing negative tendency in the Southern Mesomediterranean region, as well as moderate
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importance and non-linear (A-shape) tendency in the Supramediterranean and Montane.
Furthermore, precipitation appeared with temperature and showed a negative trend in
the Montane BR and a positive trend in others. Moreover, a negative tendency in the
solar radiation was generally observed, in addition to steeper slopes in the Montane and
Coline BRs, which was also observed in previous research [115,123–125]. Lower solar
radiation rates and humid conditions were also reported by Vidal-Macua et al. [4] for this
LC dynamic, and Borda-Niño et al. [66] found the proximity to forests and slope as the
main factors which can positively influence forest regrowth. In the Supramediterranean,
higher precipitation and lower solar radiation favored the new BDF appearance, which is
in line with Diaz-Delgado et al. [137], finding a significant negative correlation between the
vegetation recovery (from fire disturbance) and solar radiation and a positive correlation
with precipitation. Furthermore, Pérez-Luque et al. [138] analyzed Quercus pyrenaica colo-
nization over abandoned cropland in the Sierra Nevada mountain range (Spain) in the rear
edge of their distribution and near mature forest on mainly southern-oriented hillsides.

Remoteness has been considered a primary driver of NF associated with farmland
abandonment and subsequent natural succession. In our results, remoteness indicators
were mainly represented by the distance to provincial capitals, urban settlements, and
secondarily main roads. Thus, new BDFs from grasslands were generally more likely at a
shorter distance to them in all BRs, except for the Montane region at a higher distance to
provincial capitals. Similarly, farmlands located close to provincial capitals were more likely
to be abandoned in the Polish Carpathians [7], a process explained by new job opportunities
outside of the agricultural sector or even by the pressure to change agrarian land use in the
suburban areas for residential promotion [139]. Similarly, other studies found forest and
shrubland regeneration near roads and urban sectors, where more off-farm opportunities
in the vicinity of roads can occur [114,140].

The structure of agricultural holdings played a secondary role in the Southern Me-
somediterranean BR. In this context, NFs were favored in areas with a lower number
of holdings on the limit with the Supramediterranean region, which coincided with the
patterns observed in new BDF from rainfed woody crops. The similarity in patterns and
spatial context suggest that crop fields abandoned at different ages coexist in this area, as
grasslands signal the decay of tillage works and the initial natural succession process.

The appearance of new BEFs from grasslands was associated with topoclimatic drivers,
such as precipitation, temperature, and solar radiation, as well as distance drivers, such
as the proximity to forested areas and the distance to provincial capitals. Regarding the
spatio-temporal behavior, new BEFs from grasslands appeared with lower density in the
Montane and Coline and with more intensity in the Supramediterranean and Southern Me-
somediterranean BRs, as was initially expected compared to BDF, due to the adaptability of
broadleaf evergreen species (Quercus ilex sensu lato), through their high water-use efficiency,
to drier conditions.

The main topoclimatic driving forces were precipitation, temperature, and solar radia-
tion, showing different importance and patterns. For example, new BEFs from grasslands
in the Montane region were favored by higher temperature, lower precipitation, and so-
lar radiation on steep slopes, which denote NFs establishing at lower altitudes on steep
hillsides with lower humidity conditions. Similarly, these patterns were observed in the
Coline BR but with a positive solar radiation tendency, where water availability is less
restricted. However, temperature (together with precipitation) showed opposite patterns in
the Supramediterranean and Southern Mesomediterranean BRs, with positive and negative
tendencies, respectively.

In our results, remoteness was represented by the distance to provincial capitals. Thus,
new BEFs from grasslands were more likely to be closer to and further from the main
provincial capitals, in the mountainous regions, i.e., the Montane and Supramediterranean.
This double pattern can be associated with the pressure of change agrarian land use close
to main urban areas [139] and related to the declining agricultural activities and the land
abandonment of less productive and remote land fields [110,141]. Furthermore, in the
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Southern Mesomediterranean, two temporal patterns were observed (Figure S7b3). In the
first period, the new BEFs from grasslands predominantly were further from provincial
capitals, while in the second period, they were closer to them. This can be interpreted as a
first wave of land abandonment process mainly in the high lands, and a second wave in
lowlands closer to main capitals, which coincided with the temporal pattern of temperature,
showing an increase in the mean temperature (lower altitude) in the second period.

Indeed, regarding the structure of agricultural holdings, a negative tendency in the
livestock units (and the number of holdings) was observed in the Supramediterranean BR.
This pattern is in line with the de-intensification of agricultural activities (livestock grazing
reduction and cropland abandonment) and the forest expansion process in mountainous
areas identified in previous research works [12,141,142].

Grasslands’ successional dynamics towards NEFs showed an intensive temporal
dynamism. New NEFs from grasslands were related to proximity to forested areas, as
well as topoclimatic drivers (such as precipitation, slope, and temperature) and distance
drivers (such as the distance to provincial capitals). Most of the occurrences were in the
Montane, Supramediterranean, and the Southern Mesomediterranean BRs, with the last
two being the most dynamic between periods. Similarly to BDFs and BEFs, the proximity to
pre-existing forests was significant for new NEF from grasslands, especially in the Montane
and Supramediterranean, and secondary in the Southern Mesomediterranean BRs.

Regarding proximity to forests, previous studies in the central Pyrenees (Spain) found
that the tree line remained almost static, while the forest patch density increased in a
context of climate warming and LC change [143,144]. Thus, areas near forests and declining
grazing pressure have promoted natural succession dynamics in the central Pyrenees. In
the Urbión Mountains (Iberian System, Spain), Sanjuán et al. [142] analyzed a subalpine
belt affected by intense deforestation, leading pastures for grazing since the middle of the
past century. Subsequently, declining livestock pressure and the depopulation process
resulted in the encroachment of shrublands and the expansion of conifer forests at the
expense of grasslands and shrublands.

Concerning topoclimatic drivers, slope steepness and lower solar radiation enhanced
the likelihood of conversion from grasslands to forests, in line with previous research
in mountainous areas [113]. Furthermore, precipitation showed a negative tendency in
the Montane and a positive tendency in the Supramediterranean BR, suggesting lower
humidity requirements for new NEF to be established in the Montane but higher humidity
requirements in the Supramediterranean and Southern Mesomediterranean regions accord-
ing to the BR’s range of values. Remoteness in the form of the distance to urban settlements
and the distance to provincial capitals showed a generally positive trend, in line with the
main drivers of the extensification dynamics found by Pazúr et al. [30].

Furthermore, our results showed that drivers in the Supramediterranean BR evolved
towards socioeconomic drivers during the second period, with laboring in industry, utilized
agricultural area, and distance to provincial capitals being the main drivers. This pattern
suggested a lower contribution of the distance to forests, distance to urban settlements,
and solar radiation during the second period, allowing socioeconomic drivers to appear.
In contrast, the Southern Mesomediterranean region was related to the distances and
socioeconomic drivers, evolving during the second period to topoclimatic driving forces.
This was interpreted as the larger contribution of remoteness and socioeconomic drivers in
the highlands during the first period and topoclimatic in the lowlands in the second.

4.2.3. Drivers of Forestation from Shrublands

Studies of forest expansion associated with land abandonment and natural succes-
sion analyzing forest encroachment are numerous, but are also specifically limited for
shrublands [4,41,114,124,142,145,146].

According to our results, the appearance of new BDFs from shrublands was related to
topoclimatic drivers (such as precipitation, temperature, and solar radiation) and distance
drivers (such as the distance to forests and distance to provincial capitals). Regarding the
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spatio-temporal behavior, new BDFs from shrublands mainly appeared in the mountainous
BRs, i.e., the Montane and Supramediterranean.

The main topoclimatic drivers were precipitation and temperature, and secondarily
solar radiation. In the Montane BR, topoclimatic drivers were the main drivers; precipitation
showed a positive tendency, while a negative tendency was observed for temperature and
solar radiation. This pattern suggests that new BDFs from shrublands was favored by
high precipitation, low radiation, and temperature (higher altitude). This binomial of
low temperature and low radiation was in line with higher altitude (lower temperature)
and lower radiation, as found by Vidal-Macua et al. [4] in a similar geographic context.
Furthermore, these patterns were maintained in the second period, suggesting similarities
in climatic drivers over time. Meanwhile, in the Supramediterranean BR, temperature
and precipitation followed a non-linear tendency (A-shape) in both periods, suggesting
that the most likely conditions are maximized on shady hillsides with temperature and
precipitation constraints. Complementarily, the occurrence of medium-term droughts
(6-month SPEI timescale) of at least six consecutive months was negatively related in the
first period, suggesting a lower tolerance of BDF species to drought.

The proximity to forested areas was the main driver in the Supramediterranean BR and
the secondary driver in the Montane during the first period, indicating the homogenization
and fulfilling process in forest patches and along their edges, even further during the
second period. This driver was considered in previous research works [7,30,114,115].

Remoteness was represented by the distance to provincial capitals and to urban
settlements, generally denoting a positive tendency in the Montane BR. However, the
tendency was negative in the Supramediterranean, indicating more likely conditions in
areas near urbanized areas, which coincide with research works focusing on the land
abandonment process [7,41,43]. Furthermore, these patterns were similar to those observed
in the case of BDF from grasslands.

The appearance of new BEF from shrublands was associated with distance drivers,
such as the distance to forests and to provincial capitals, in addition to topoclimatic factors,
such as precipitation, solar radiation, and temperature. Regarding the spatio-temporal
behavior, new BEFs from shrublands appeared more densely in the Montane, Supramediter-
ranean, and Southern Mesomediterranean BRs, and with lower density in the Northern
Mesomediterranean.

The distance to forests was the main driver in all BRs except in the Southern Me-
somediterranean, with topoclimatic drivers predominating. It showed a negative trend
in all cases. A general decrease in the relative importance in the second period suggests
that the forest completion and fulfilling process observed in the first period continued at a
greater distance in the second. Woody encroachment due to the expansion of forests and
shrublands (at the expense of grasslands) has been reported in mountain areas, confirming
densification and expansion through the tree line [147–149].

Remoteness was represented by the distance to urban settlements in the first period
and by the distance to provincial capitals in the second. In the Montane and Northern
Mesomediterranean BRs, the most suitable conditions occurred far from urban areas and
near forested areas in both periods. However, the opposite pattern was found in Palmero
et al. [105] for forest expansion in temperate and Mediterranean regions on a European
scale. Moreover, a negative trend was observed in the Supramediterranean region for the
distance to provincial capitals, which agrees with previous research [114]. Furthermore,
NFs in the proximity to provincial capitals can be explained by the increase in new job
opportunities outside the agricultural sector or by the pressure to change agrarian land
use in the suburban areas for residential promotion in agricultural abandoned areas [139].
Farmland abandonment probability increases when employment redirection to other sectors
occurs [8].

The main topoclimatic drivers were precipitation, solar radiation, and temperature
with different tendencies in BRs. In the Montane, precipitation followed a positive trend,
while temperature and solar radiation were negative. This pattern suggests that new BEF
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from shrublands was favored by higher precipitation and lower radiation and temperature
(higher altitude). Binomial low temperature and low radiation were both in line with
higher altitude (lower temperature) and lower radiation, as reported by Vidal-Macua
et al. [4] in a similar geographic context. Furthermore, these patterns were maintained in
the second period, suggesting similarities in climatic drivers over time. Meanwhile, in the
Supramediterranean BR, precipitation and solar radiation followed a negative tendency and
a positive one for temperature, suggesting that the most likely conditions are maximized
at a lower altitude and on shady hillsides with less water availability, as sclerophyllous
forests are adapted to lower water requirements in this region. These patterns are consistent
with previous studies analyzing land abandonment processes and natural succession at
lower altitudes on north-oriented hillsides [150]. In the Southern Mesomediterranean
BRs, temperature and solar radiation followed a negative tendency and positive one
for precipitation, which coincides with the drivers’ pattern in the southern Landsat scene
spatial context analyzed by Vidal-Macua et al. [4]. It suggests that the most likely conditions
occurred at higher altitudes, on shady hillsides with less water availability in the BR,
corresponding to areas with lower slope values in the proximity to forested mountainous
areas close to the upper BR limit (Supramediterranean).

Shrublands’ successional dynamics towards NEFs were related to the proximity to
forested areas, topoclimatic drivers (such as precipitation, solar radiation, and slope), and
accessibility drivers (such as the distance to provincial capitals). New NEF occurrences
dominated in all BRs except for the Coline. Similarly to BEFs, in the case of new NEFs from
shrublands, the proximity to forested areas played a major role, especially in the Montane,
Supramediterranean, and Northern Mesomediterranean BRs. This pattern coincides with a
homogenization, fulfilment, and expansion of the forested areas. Woody encroachment due
to the expansion of forests and shrublands has been reported in mountain areas, confirming
densification and expansion through the tree line [147–149].

Remoteness was represented by the distance to provincial capitals and urban settle-
ments. The most suitable conditions occurred far from urban areas in both periods in
the Montane, Supramediterranean, and Southern Mesomediterranean BRs. However, the
opposite pattern of forest expansion was observed on the European scale [105]. On the
other hand, the main topoclimatic drivers were precipitation, solar radiation with different
tendencies in BRs, and the slope with an overall negative trend.

In Montane areas, precipitation followed a non-linear tendency (a general positive
tendency falling at high precipitation values) and a negative trend for solar radiation and
temperature. Thus, it suggests that NEFs from shrublands were favored at lower and
higher humidity regimes (up to a limit) on shady hillsides at higher altitudes, while NEF
species (Pinus sylvestris, P. nigra) are better adapted. These findings agree with Vidal-Macua
et al. [4] in the Pyrenean context, where transitions to coniferous forests were favored at
higher altitudes (lower temperature) and a lower radiation.

In the Supramediterranean context, precipitation followed a positive tendency, a
negative for slope. The results suggest that the higher precipitation rates, the lower slopes,
and the absence of solar radiation as a driver promoted new NEF (Pinus nigra, P. sylvestris)
in more plain areas at higher altitudes, where the higher precipitation occurs. Melendez-
Pastor et al. [132] identified a clear forest regeneration (mainly pine forest) in the Sierra
de Albarracín (North Iberian System, Spain), at the expense of mainly shrublands and
farming areas for the first period of analysis. Furthermore, Sanjuán et al. [142] found clear
patterns of shrublands and clear forests evolving towards dense forests of Pinus sylvestris,
in south-facing and stepped slopes in the Urbión Mountains (Iberic System, Spain).

Similarly, in the Southern Mesomediterranean, precipitation followed a non-linear
tendency denoting higher likelihood at low/high precipitation values according to domi-
nant species. Indeed, a negative trend in slope and solar radiation, suggesting that new
NEF appearances took place in the more xeric (Pinus halepensis) and humid (P. pinaster,
P. nigra) context of the BR, was favored by shady conditions. These findings agree with
the lower solar radiation and soil moisture dependence in the transition of shrublands to
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conifers in a similar context of analysis analyzed by Vidal-Macua et al. [4]. Furthermore,
medium-term drought occurrences (6-month SPEI timescale) of at least six consecutive
months was negatively related to shrubland encroachment to new NEF in the second
period, denoting better conifer species plasticity to growth in lower drought conditions.

Lastly, in the Thermomediterranean BR, precipitation and slope followed a negative
tendency, together with a negative trend in long-term drought occurrences (24-month SPEI
timescale) over at least three consecutive months. Unexpectedly, these results suggest that
lower precipitation rates favored new NEF forests on low-sloped hillsides, which, to a
certain extent, could promote drought-tolerant conifers species (Pinus halepensis) adapted to
arid climatic conditions. This pattern agrees with local studies in the Murcia region, where
land abandonment processes and related successional dynamics were negatively associated
with precipitation [119]. Therefore, climate factors and water availability, specifically in
semiarid regions, determine land productivity (even irrigated plots, depending partly
on precipitation) and increase the uncertainty about the rain irregularity [11], affecting
cropland and natural vegetation productivity. Moreover, Vidal-Macua et al. [19] found
a positive relation between crop abandonment and medium-term droughts occurrences
(6-month SPEI timescale) over at least 7–8 months in the central Ebro basin.

4.3. Answers to the Hypotheses

According to our first hypothesis, NFs are mainly associated with successional dynam-
ics, i.e., shrublands and grasslands, and secondarily with crop abandonment processes, i.e.,
the main sources along the transect. Natural/semi-natural source categories predominate
in absolute values along the transect. In relative terms, 17.2% and 7.52% of natural surfaces,
in addition to 2.86% and 0.69% of croplands, evolved towards NF in the Eurosiberian and
Mediterranean biogeographic regions, respectively. The transect also revealed contrast-
ing driving forces (topoclimatic and socioeconomic) throughout space and time. In the
Eurosiberian area, distance to forests was selected in 20.0% of cases, solar radiation in
17.8% and precipitation in 15.6% in the first period, while the distance to provincial capitals
was selected in 17.5% of cases and precipitation and slope in 15.0% in the second period.
Only on one occasion were socioeconomic drivers selected in the Eurosiberian context. On
the contrary, the distance to forests in the Mediterranean area was selected in 19.2% of
cases, precipitation in 14.4% and temperature in 11.2% in the first period, while the same
drivers showed similar values in the second. Remarkably, socioeconomic drivers were
selected in 7.2% and 6.7% of the first and second period cases in the Mediterranean context,
respectively.

According to our second hypothesis, the distance to provincial capitals and urban
settlements explained NF occurrence in remote territories (the longer the distance, the
more likelihood of NF appearance). Moreover, two factors constraining the productiv-
ity and mechanization of traditional farming practices triggered rural abandonment and
subsequent forest expansion processes, representing an increase in employment outside
agriculture (industry and service activities) and small agricultural areas (small and frag-
mented, less competitive, and economically viable fields), especially in depopulated regions
and regions with steeper slopes [17,141]. Spatially, the forestation processes associated with
agricultural land abandonment were most intensive in mountain regions (i.e., Montane and
Supramediterranean BRs) and in the piedmont transitions to plain areas along large hydro-
graphic basins (i.e., Southern and Northern Mesomediterranean), especially for new BEF
and NEF groups. These constraints make mountainous areas (Pyrenees, Iberian, and Baetic
mountain systems) less competitive, but more susceptible to a higher rate of agricultural
abandonment in the future [151].

Regarding the third hypothesis, NF appearance depicted different temporal patterns
(besides changes in drivers’ explanatory power, order, and drops). Generally speaking, the
appearance of NF in relative terms was more extensive in the Eurosiberian context in the
P1, being more extensive in the Mediterranean in the P2. During the P1, NFs were closely
related to previously forested areas (consolidation, patch completion process) and further
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away in the P2, during which the explanatory power of the driver decreased. Furthermore,
soil erosion showed a clear decrease in importance in the P2. Grasslands denoted a higher
temporal variability in the Eurosiberian context for BDF/BEF (increasing the explanatory
power of the number of holdings in the P2) and especially in the Mediterranean for NEF
(the utilized agricultural area drop as a driver, and its appearance in neighboring BRs
between periods). Crop categories (rainfed and irrigated) in new BEFs were related to the
workers in the building/service sectors, the utilized agricultural area in the P1, and the
population density in the P2. In the case of rainfed and irrigated crops to new NEF, the
number of holdings and the livestock units decreased in importance in the P2.

4.4. Future Research Lines

Several aspects of our results require additional research to elucidate new questions
arising from this work. (i) As we have shown, we have covered the sample size used
for modeling, representativeness, etc., with full attention; nevertheless, those aspects
could be explored in depth, including the design of testbeds expanding different sample
structures, LC changes, and autocorrelation levels in the sample tested using BRT models.
(ii) The bias reduction in the absence samples should also be analyzed thoroughly in the
context of extensive and widely spread sample locations, as well as scarce and localized
presence–absence sample locations. (iii) This study provides the basis to investigate new
forests in detail over more specific regions in the transect; for instance, in the transition
between the Supramediterranean and the Southern Mesomediterranean BRs, topoclimatic
and socioeconomics drivers may have conditioned new forests due to their proximity
to big cities and capitals. Furthermore, the Iberian range, the Pyrenees, and the Sierra
Nevada mountain ranges are contrasting biogeographical regions with high interest as
climate laboratories and areas in the future, affected by land abandonment processes and
successional dynamics. (iv) The role of drought, together with other climate drivers, require
a more detailed analysis in order to elucidate spatio-temporal patterns along the transect.

5. Conclusions

This research aimed to apply a consistent and rigorous methodology to extract and
assess NF occurrences over a regional gradient in the Iberian Peninsula, focusing on crop
abandonment and successional dynamics. According to our methodological approach, NF
extraction benefits from coherent spatio-temporal training areas used for map production
(high accuracy maps), the application of uncertainty filtering (higher model performance),
the presence–absence selection according to BRs, the absence sampling bias reduction
strategy, and a three step modeling approach. LC change analysis was based on 30 potential
drivers, both physical and socioeconomic. Our main contributions shed light on three main
aspects: thematic, spatial, and temporal.

Regarding thematic aspects, this study uses high-quality remote sensing maps with
detailed legends to provide insights on driving forces that explain the LC trajectory, i.e.,
from the different source categories to the target forest categories. We summarize the main
findings below.

• Driving forces involved in new BDF. (i) From crop categories: distance to the hy-
drographic network, distance to forests, distance to provincial capitals, precipitation,
and distance to urban settlements. Unexpectedly, remoteness through the distance
to roads little explained crop abandonment. (ii) From grasslands: distance to forests,
temperature, solar radiation, precipitation, and distance to provincial capitals. The
proximity to forests was the main driver in humid mountainous regions. (iii) From
shrublands: precipitation, temperature, distance to forests, solar radiation, and dis-
tance to provincial capitals. Topoclimatic (water availability) drivers were the main
ones in humid mountainous regions.

• Driving forces involved in new BEF. (i) From crop categories: distance to forests,
temperature, soil erosion, precipitation, and slope. Remoteness was hardly relevant,
and socioeconomic drivers (population density, workers in building/service sectors)



Forests 2022, 13, 475 26 of 33

played a secondary role in the Supramediterranean and Southern Mesomediterranean
BRs. (ii) From grasslands: precipitation, distance to forests, distance to provincial capi-
tals, temperature, and solar radiation. Lower humidity conditions at lower altitudes
on steep hillsides favored the transition. (iii) From shrublands: distance to forests,
precipitation, solar radiation, temperature, and distance to provincial capitals. The
proximity to forests showed a significant forest encroachment and expansion process
in the mountainous regions.

• Driving forces involved in new NEF. (i) From crop categories: distance to provincial
capitals, the number of holdings, distance to forests, distance to main roads, and
precipitation. Remoteness and socioeconomic drivers (number of holdings, livestock
units and the utilized agricultural area) played a secondary role in the Southern Me-
somediterranean region, and an unexpected positive trend was related to livestock
units. (ii) From grasslands: distance to forests, precipitation, slope, distance to provin-
cial capitals, and temperature. The proximity to forests showed a densification and
expansion in mountainous regions, associated with lower humidity requirements
and slope steepness. (iii) From shrublands: distance to forests, precipitation, solar
radiation, slope, and distance to provincial capitals. In terms of climatic conditions,
forest densification and expansion occurred from the humid northern conditions (Pi-
nus sylvestris, P. nigra) to the more xeric southern conditions (P. halepensis), with the
latter being unexpectedly favored by lower precipitation rates.

Concerning spatial patterns, Supramediterranean and Mesomediterranean BRs were
the areas of higher NF appearance regarding cropland abandonment and natural succession
dynamics. This is not surprising as they are the both regions with more NF occurrences in
first and second periods (Table 3). Nevertheless, in relative terms, it was in the Thermo-
mediterranean and Northern Mesomediterranean BRs where the NF increase was more
significant regarding the previously forested area in the region. Rural depopulation was a
widespread process in most of the Mediterranean fringe, affecting mainly mountainous
areas. In our study ambit, most NF occurrences took place in the Supramediterranean
BR, which gathers a large proportion of municipalities with a clear population decline;
hence, leading to the abandonment of traditional agricultural activities, crops, and pas-
tures activities. Natural/semi-natural succession mainly occurred in the Montane and
Supramediterranean BRs due to natural successions derived in part from abandoned land
and natural/semi-natural dynamics in the proximity to previously mountainous forested
areas. Overall, in the Eurosiberian context, precipitation appeared in 15.3% of cases, solar
radiation in 15.2%, distance to forests in 14.1%, slope in 14.0%, and temperature in 11.8%.
In the Mediterranean context, precipitation appeared in 16.6% of cases, distance to forests
in 14.8%, solar radiation in 11.7%, temperature in 10.7%, and slope in 9.7%.

Regarding temporal resolution, during the second analysis period, the rate of change
(area of change) was slightly superior to the first one, and consequently, a higher number of
dynamics was evaluated. Nevertheless, differences between regions were observed. During
the first period, NFs were related to a fulfilling process (encroachment and densification)
in the open spaces within forested areas (combination of forests and grasslands in mosaic
landscape), while expanding throughout their limits. Furthermore, abandoned crop fields
in the proximity to forests were annexed to pre-established forests in more remote locations.
In this period, the distance to forests appeared in 19.4% of cases, precipitation in 14.7%,
temperature in 11.8%, solar radiation in 10.6%, and slope in 9.4%. In the second period,
the patterns show a significant forest expansion process from the original patches and to
a greater distance (throughout the upper and lower forests limits), creating new forest
nuclei in areas where shrublands and grasslands dominated, like in lowlands close to
human settlements. In the case of new broadleaf deciduous forests, this pattern was notably
located in areas close to the hydrographic network. In this period, the distance to forests
appeared in 16.1% of cases, precipitation in 14.6%, distance to provincial capitals in 12.2%,
temperature in 10.2%, and distance to the hydrographic network in 10.2%.
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In summary, considering all forest groups, the main drivers that have conditioned NF
occurrence in the last thirty years have also been associated with topoclimatic variables (i.e.,
temperature, precipitation, solar radiation, and slope), as well as accessibility and distance
drivers (distance to forests the hydrography network, capitals, and urban settlements).
In addition, other predictors, as socioeconomic drivers and climatic water availability
(drought/water oversupply), have played a secondary role at more specific BRs and
temporal resolution. The rate of change was slightly higher during the second period of
analysis (2002–2017), with a higher number of NF dynamics evaluated. Because of their
considerable extension, Supramediterranean, Southern, and Northern Mesomediterranean
BRs gathered most of the NF dynamics and changed areas in absolute terms, while the
Thermomediterranean and the Northern Mesomediterranean gathered the most dynamics
in relative terms. In our opinion, this study will contribute to the understanding of forest
dynamics in the Iberian Peninsula since it has been performed in light of a representative
transect of the entire area after a rigorous methodological treatment of high-detail data.
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