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Abstract: Tree height–diameter relationship is very important in forest investigation, describing forest
structure and estimating carbon storage. Climate change may modify the relationship. However,
our understanding of the effects of climate change on the height–diameter allometric relationship is
still limited at large scales. In this study, we explored how climate change effects on the relationship
varied with tree species and size for larch plantations in northern and northeastern China. Based on
the repeated measurement data of 535 plots from the 6th to 8th national forest inventory of China,
climate-sensitive tree height–diameter models of larch plantations in north and northeast China
were developed using two-level nonlinear mixed effect (NLME) method. The final model was used
to analyze the height–diameter relationship of different larch species under RCP2.6, RCP 4.5, and
RCP8.5 climate change scenarios from 2010 to 2100. The adjusted coefficient of determination R2

adj,
mean absolute error (MAE) and root mean squared error (RMSE) of the NLME models for calibration
data were 0.92, 0.76 m and 1.06 m, respectively. The inclusion of climate variables mean annual
temperature (MAT) and Hargreaves climatic moisture deficit (CMD) with random effects was able
to increase R2

adj by 19.5% and reduce the AIC (Akaike’s information criterion), MAE and RMSE by
22.2%, 44.5% and 41.8%, respectively. The climate sensitivity of larch species was ranked as L. gmelinii
> the unidentified species group > L. principis > L. kaempferi > L. olgensis under RCP4.5, but L. gmelinii
> L. principis > the unidentified species group > L. olgensis > L. kaempferi under RCP2.6 and RCP8.5.
Large trees were more sensitive to climate change than small trees.

Keywords: nonlinear mixed-effects model; height–diameter model; climate change; climate-sensitive
growth model

1. Introduction

Tree height–diameter (H–D) models are one of the most useful tools in forest man-
agement. Because tree height measurement is time-consuming, expensive and difficult
in over-crowed and dense forests, a small number of trees are typically subsampled in
practice to measure tree height, while D is measured precisely for all trees in a plot [1].
Thus, H–D models are often constructed to predict missing total height measurements for
the rest of the trees. Numerous H–D models have been developed [2–15]. These mod-
els showed that the H–D relationship was context-dependent, and varied with genetic
characteristics [8], stand age [16], site condition [6,7,15,17], competition status [5–7,13],
silvicultural treatment [18,19] and climate [9,11,20,21].
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Under the background of global change, the effects of climate change on forest growth
are great concerns [22–25]. However, how climate change modifies H–D relationships has
only recently been considered [9,11,21,26,27]. For example, Hulshof et al. [9] developed
mixed-effects models to test H–D allometric differences due to climate and functional
groups, and models showed that temperature, and some extent precipitation, in part-
explained tree H–D allometric variation. Climate variables can significantly explain the
variation of the H–D relationship, and adding climate variables can improve the prediction
performance of the model in the context of climate change. Zhang et al. [11] developed
the tree level NLME model to show that temperature was a key climate factor shaping
height–diameter allometry of Chinese fir, and tree height increased with rising MAT. Fortin
et al. [21] developed generalized H–D models of 44 tree species across France and found
that the temperature effect was significant for 33 species and the precipitation effect was
significant only for 7 species. They estimated that two-thirds of climate sensitive species
were expected to be generally shorter under the RCP 2.6 scenario.

However, there were substantial variations in the direction and magnitude of climatic
effects on H–D relationships. For example, Hulshof et al. [9] showed that the coefficient
of MAT was negative but the model developed by Zhang et al. [11] showed MAT had
positive effects on H–D allometry. Feldpausch et al. [28] found that annual precipitation
coefficient of variation, dry season length, and mean annual air temperature were key drivers
of variation in H–D allometry at the pantropical and region scales. Ng’andwe et al. [27]
found that temperature negatively modulated H–D allometry of Pinus merkusii var. latteri and
P. michoacana var. cornuta Martínez in Zambia. Furthermore, how these climatic effects differ
among tree species and sizes are not well understood. The climate effects on H–D relationship
are likely to have an impact on tree stability, height estimation, yield prediction and forest
management decision, thus making it necessary to examine it under climate change.

Larch is an economically and ecologically important genus of tree species in China,
especially in the northern and northeastern regions. The area and volume of larch forests
amount to 6.50 and 6.77 percent of the total forest, respectively [29]. Both empirical
and process-based models found that future climate change would affect stand growth,
productivity, and biological rotation of larch plantations [10,30–33], but how climate change
will modify the H–D relationship is unknown yet. Therefore, the objectives of the study
were: (1) to develop a climate-sensitive H–D model for larch plantations in north and
northeast China; (2) to examine how the effects of future climate change on H–D relationship
vary with larch species and tree sizes. Quantifying the effects of climate change will help
better understand the H–D allometric relationship and adaptive forest management under
climate change.

2. Materials and Methods
2.1. Tree Height–Diameter Data

Tree H–D data used in this study were from 6th (year 2000), 7th (year 2005) and
8th (year 2010) National Forest Inventories in 7 provinces (Beijing, Hebei, Shanxi, Liaoning,
Jilin, Heilongjiang, and Inner Mongolia) in north and northeast China. We selected only
pure larch plantation plots to develop the H–D model. The larch species presented in
these plots are L. gmelinii, L. olgensis, L. kaempferi, L. principis. In addition, there were trees
not identified to specific species which were recorded as larch. According to the protocol
of NFI, heights of 3–5 average trees were measured in each plot. In total, 7304 pairs of
H–D measurements in 535 plots were obtained across seven Provinces. Data were split
into two parts for model calibration and validation by the following method: each plot
was randomly allocated to a number between 1 and 535, and plots with number less than
20th percentile of all plots were assigned as validation data (1609 pairs in 107 plots) and the
rest were fitting data (5695 pairs of H–D measurements in 428 plots). Table 1 showed the
summary statistics of tree and stand variables. The scatter plot can be found in Figure 1.
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Table 1. Summary statistics for tree and stand variables by provinces.

Data Province Number
of Plots

Number of Tree
Observations

D
(cm)

H
(m)

AGE
(a)

N
(Trees × ha−1)

BA
(m2 × ha−1)

Calibration Beijing 7 37 14.7 (4.6) 9.3 (2.3) 32.9 (10.6) 561.9 (418.5) 9.1 (9.9)
Hebei 72 3326 10.7 (4.5) 7.9 (2.2) 21.7 (6.7) 1072.6 (540.9) 9.3 (7.3)

Heilongjiang 96 706 14.5 (5.3) 13 (3.9) 27.9 (9.7) 653.9 (520.5) 4.6 (4.6)
Jilin 132 1058 12.9 (4.7) 11.4 (4.4) 25.2 (9.9) 1032.2 (565.3) 9.0 (5.6)

Liaoning 52 406 14.4 (4.8) 13.5 (4.5) 23.6 (10.2) 1292.3 (631.7) 13.5 (8.6)
Inner Mongolia 35 188 12.2 (3.7) 10.1 (3.2) 25.8 (7.1) 855.1 (617.7) 8.0 (6.4)

Shanxi 34 195 11.1 (3.1) 8.7 (2.8) 26.5 (9.3) 1297.8 (627.3) 9.4 (7.7)
total 428 5916 11.9 (4.8) 9.6 (3.8) 23.6 (8.5) 977.2 (610.6) 8.5 (6.9)

Validation Beijing 3 18 12.6 (1.7) 9.2 (1.6) 25.8 (3.1) 816.8 (469.2) 11.5 (10.7)
Hebei 12 620 11.4 (3.8) 8.9 (2.3) 24.8 (7.6) 994.9 (607.2) 8.5 (5.4)

Heilongjiang 27 193 15.2 (5.0) 13.1 (3.8) 29.5 (9.8) 559.3 (548.7) 6.0 (6.3)
Jilin 38 351 13.5 (4.4) 11.9 (4.0) 28.4 (11.1) 904.2 (532.9) 8.2 (4.9)

Liaoning 12 97 12.2 (4.5) 11.3 (5.4) 23.2 (9.3) 1207.8 (651.1) 17.7 (7.0)
Inner Mongolia 11 53 11.1 (4.4) 9.1 (4.1) 28 (9.9) 1135.5 (835.4) 7.3 (6.4)

Shanxi 4 21 9 (1.8) 6.7 (2.0) 17.9 (4.2) 848.6 (622.8) 7.3 (6.3)
total 107 1353 12.5 (4.4) 10.4 (3.8) 26.3 (9.4) 902.6 (626.8) 8.6 (6.8)

Note: D, diameter at breast height; H, tree height; N, the number of trees per hectare; BA, basal area per hectare;
AGE, stand average age; the numbers within parentheses are the standard deviation.
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2.2. Climate Data

The current climatic data for model calibration were downloaded from ClimateAP,
which is an application for dynamic local downscaling of historical and future climate data
in Asia Pacific [34]. Seasonal and annual climate variables (averaged from 1980 to 2010) for
a plot were produced based on latitude, longitude, and elevation (Table 2).

Table 2. Descriptions of the candidate climatic variables.

Variable Description

AHM Annual heat:moisture index
CMD Hargreaves climatic moisture deficit
DD_0 Degree-days below 0 ◦C

DD_18 Degree-days below 18 ◦C
DD18 Degree-days above 18 ◦C
DD5 Degree-days above 5 ◦C

EMT/◦C Extreme minimum temperature over a 30-year period
EXT/◦C Extreme maximum temperature over a 30-year period

EREF Hargreaves reference evaporation
MAP/mm Mean annual precipitation
MAT/◦C Mean annual temperature

MCMT/◦C Mean coldest month temperature
MWMT/◦C Mean warmest month temperature

NFFD The number of frost-free days
PAS/mm Precipitation as snow between August in previous year and July in current year

TD/◦C Temperature difference between MWMT and MCMT, or continentality

For projections of future H–D relationship under expected climate change, we used
the latest climate change scenarios of the 5th Assessment Report from the IPCC using a
downscaled global climate model (GCM) applied in three representative concentration
pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5 [35]. These pathways represent the scenarios
with low, medium and high concentrations of greenhouse gases and predictive radiative
forcing. The GCM model for future climate scenarios used in the study was CNRM-CM5
(The Centre National de Recherches Météorologiques coupled global climate Model) [36].
Future climate data for the time periods 2025 (average for 2010–2040), 2055 (average for
2040–2070) and 2085 (average for 2070–2100) were also downloaded from the ClimateAP.

2.3. Selection of Climate Variables

Principal Component Analysis (PCA) [37] can be an exploratory method for the
evaluation of the climatic variability and robust as an auxiliary technique when used in
combination with other statistical techniques [38]. We first used PCA method to analyze the
data for all climate variables. Owing to climate variables with different units, all variables
were standardized prior to PCA. Components explaining more than 80% of the variance
were retained. For each component, variables with large loadings were selected for further
analysis. These variables with strong correlations with H and the least multicollinearity
among them were served as options for modelling.

2.4. Basic H–D Models

The basic H–D model was from Zang et al. [10] for the same tree species in the region
and modified as Equation (1) which was a generalized H–D model with the inclusion of
competition effects besides tree diameter.

H = 1.3 + (a0 + a1BAL)× (1 − exp(−(b0 + b1BAL)× D))c + ε (1)

where H is the total tree height (m), D is the diameter at breast height (cm), BAL is the
sum of the basal area of the trees larger than a subject tree, a0, a1, b0, b1 and c are model
parameters, which have their own biological characteristics, and ε is random error.
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To evaluate the differences in H–D allometry among larch species, dummy variables
Sm were created: (1) S1 = 1 denotes the L. gmelinii and 0 the rest of cases; (2) S2 = 1 denotes
the L. olgensis and 0 the rest of cases; (3) S3 = 1 denotes the L. principis. and 0 the rest of
cases; (4) S4 = 1 denotes the L. kaempferi; and (5) the category which cannot be identified
was represent by S1 = S2 = S3 = S4 = 0 as the reference.

Therefore, the model could be written as:

H = f (β, Sm, D, BAL) + ε (2)

where β is the fixed-effect parameter vector, Sm was dummy variable denoting tree species,
and other variables are defined as above.

2.5. Nonlinear Mixed-Effect Climate-Sensitive H–D Model

To quantify the climatic effects on the H–D allometry, the selected climate variables
were added into the model by reparameterization for parameters in basic H–D model
(Equation (3)). Owing to the correlated H–D observations in plots violating the principle
of independence of error terms and the strong predictive ability of mixed effects model in
forestry data [5,7], Equation (3) was modified as Equation (4) with the inclusion of random
effect at the province and plot level.

H = f (β, BAL, Climate, Sm, D) + ε (3)

Hijk = f
(

β, Dijk, BAL, Climate, Sm, ui, uij

)
+ εijk (4)

where Climate is the climate variable vector selected by PCA and correlation analysis; Hijk
and Dijk is the kth individual tree height nested within the jth plot in the ith province; and
uij is the province- and plot-level random effects, ui ∼ N(0, σ2

province), uij ∼ N(0, σ2
plot);

εijk is the random error. Other variables were the same as mentioned above.
The estimated random effect parameter ui was calculated by Equation (5). To ac-

count for the within-unit heteroscedasticity and autocorrelation in the variance–covariance
matrix (Ri), the variance–covariance matrix was determined by Equation (6). The variance–
covariance matrix was used to reduce the heterogeneity in variance (Equation (7)). Parame-
ters in NLME models were estimated by restricted maximum likelihood implemented with
the ‘nlme’ package in R software [39].

^
ui =

^
Ψ

^
Z

T

i (
^
Zi

^
Ψ

^
Z

T

i +
^
Ri)

−1

ei (5)

where ûi is the estimated vector for random parameters, Ψ̂ is the estimated q × q variance–
covariance matrix for among-unit variability, where q is the number of random effects
parameters in the model, R̂i is the estimated k × k variance–covariance matrix for within-
unit variability, Ẑi is the partial derivatives matrix with respect to the random parameters
and ei is the residual vector determined by the difference between the observed and
predicted heights using fixed effect model.

Ri = σ2G0.5
i ΓiG0.5

i (6)

var
(

εijk

)
= σ2Ĥ2γ

ijk (7)

where σ2 is the residual variance of the estimated model, Gi is a diagonal matrix explaining
the variance of within unit heteroscedasticity, Γi is a diagonal matrix accounting for within
tree autocorrelation structure of errors, and AR(1) was used to reflect the within-tree
autocorrelation structure of errors for matrix Γi. Ĥijk is the estimated height of kth tree
nested in jth plot in ith province using fixed part of the mixed-effects model; γ is the
parameter to be estimated.
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2.6. Model Evaluation and Validation

The following statistics were employed for model evaluation and validation: the
adjusted coefficient of determination (R2

adj), Akaike’s information criterion (AIC), the mean
absolute error [38], and the root mean square error (RMSE).

R2
adj = 1 −

∑ni
i=1 ∑

nij
j=1 ∑

nijk
k=1 (Hijk − Ĥijk)

2

∑ni
i=1 ∑

nij
j=1 ∑

nijk
k=1 (Hijk − H)

2 × n − 1
n − p − 1

(8)

MAE =
∑ni

i=1 ∑
nij
j=1 ∑

nijk
k=1

∣∣∣Hijk − Ĥijk

∣∣∣
n

(9)

RMSE =

√
∑ni

i=1 ∑
nij
j=1 ∑

nijk
k=1 (Hijk − Ĥijk)

2

n
(10)

AIC = −2logLik + 2p (11)

where n is the number of observations, Ĥijk and Hijk are the estimated and observed heights
of the kth tree nested within the jth plot nested in the ith province, H is the observed mean
height for all data, ni, nij, nijk are the total number of the province, the plots nested in ith
province, and the trees nested in the jth plot nested in ith province, p is the number of
model parameters, and LL is the log-likelihood.

2.7. Comparisons of H–D Relationships among Larch Species under Future Climate Change

For each plot, we produced 37 simulated trees with diameter from 5 cm (minimum
value of D in calibration data) to 41 cm (maximum value of D in calibration data), and
these diameter values were set to be evenly distributed. The values of BAL were obtained
by mean value of each D with interval of 1 cm in calibration data. According to the final
NLME model with the inclusion of climate variables, tree heights for a given D of all plots
under different climate change scenarios were predicted. After the corresponding H of
each D was averaged, the H–D curves of different larch species under climate change
scenarios were generated. To observe how the climate change affects the H–D allometry in
details, the relative change of tree height ∆H was defined for comparisons with a given
D (Equation (12)). Similarly, after the corresponding ∆H of each D is averaged, the ∆H–D
curves of different larch species were generated.

∆H =
1
n

n

∑
1

(
Hchange − Hcurrent

)
/Hcurrent (12)

where n is the number of simulated trees, Hchange and Hcurrent represent predicted tree
height values under future and current climate scenarios, respectively.

3. Results
3.1. Selected Climate Variables

Three principal components described 95.27% of the variability of the climate
data (Table 3). For component 1, the variables with absolute loading values > 0.3 were
MAT, DD_0, DD5, DD_18 and NFFD, so the component 1 mainly represented the tempera-
ture variability. For component 2, the variables with absolute loading values > 0.3 were
TD, MAP, AHM and CMD, so the component 2 represented the moisture variability. For
component 3, TD and PAS were chosen following the same principle.
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Table 3. PCA analysis result of the climate variables.

Comp1 Comp2 Comp3

MAT 0.331 0.000 0.000
MWMT 0.265 0.248 −0.229
MCMT 0.282 −0.172 0.272
TD −0.114 0.341 −0.43
MAP 0.000 0.394 0.338
AHM 0.147 −0.387 −0.262
DD_0 −0.302 0.104 −0.238
DD5 0.301 0.185 −0.14
DD_18 −0.329 0.000 −0.104
DD18 0.269 0.243 −0.183
NFFD 0.311 0.150 0.000
PAS −0.172 0.265 0.388
EMT 0.287 −0.128 0.21
EXT 0.250 0.171 −0.357
Eref 0.249 −0.215 0.000
CMD 0.000 −0.444 −0.238
Accumulated variance 56.050 81.680 95.270

According to the loading, the most two important climate variables for each component
were selected which included MAT, DD_18, CMD, MAP, TD, and PAS. Table 4 presented
the correlation between these climate variables and tree height. Because of the collinearity
between MAT, DD_18, MAP, TD and PAS, only MAT and CMD were selected for further
reparameterization using NLME. Summary statistics of MAT and CMD can be found
in Table 5.

Table 4. Pearson correlation coefficient matrix between H and climatic variables.

Variables CMD TD PAS MAP DD_18 MAT H

CMD 1.000 - - - - - -
TD −0.424 *** 1.000 - - - - -
PAS −0.673 *** 0.193 *** 1.000 - - - -
MAP −0.841 *** 0.141 *** 0.566 *** 1.000 - - -
DD_18 −0.041 *** 0.435 *** 0.421 *** −0.358 *** 1.000 - -
MAT −0.004 −0.347 *** −0.412 *** 0.390 *** −0.995 *** 1.000 -
H −0.503 *** 0.404 *** 0.329 *** 0.414 *** 0.070 *** −0.029 *** 1.000

Note: ***, p < 0.001.

Table 5. Mean values of MAT and CMD under 3 climate change scenarios.

MAT Period: 2010–2040 Period: 2040–2070 Period: 2070–2100

RCP2.6 3.95 (2.40) 4.41 (2.41) 4.53 (2.43)
RCP4.5 3.92 (2.43) 4.87 (2.44) 5.70 (2.42)
RCP8.5 4.14 (2.42) 5.69 (2.42) 7.44 (2.36)

CMD Period: 2010–2040 Period: 2040–2070 Period: 2070–2100

RCP2.6 180.96 (88.22) 164.38 (75.68) 164.34 (87.09)
RCP4.5 158.82 (82.30) 142.16 (77.02) 180.26 (83.53)
RCP8.5 160.62 (83.16) 186.03 (82.88) 187.04 (82.78)

Note: The numbers within parentheses are the standard deviation.

3.2. Final NLME H–D Model with Climatic Variables

When climate variables were selected into the model, all the explanatory variables
were determined. Then, we tested all the combinations of dummy variables representing
different species, climate variables and province- and plot-level random effects to param-
eters from the basic model (Equation (1)). The final model with good convergence and
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the lowest AIC value was chosen for simulations. The climate variables were set into
parameters a and b, and the tree species dummy variables and random effects were set into
parameter a.

Therefore, the Equations (2)–(4) can be specifically rewritten representing basic
H–D model, climate-sensitive H–D model, and climate-sensitive mixed-effect
H–D model (Equations (13)–(15)).

Hijk = 1.3 +
(

a0 + a1BAL + ∑4
m=1gmSm

)(
1 − eb0Dijk+b1BAL

)c
+ εijk (13)

Hijk = 1.3 +
(

a0 + a1BAL + a2MAT + a3CMD + ∑4
m=1gmSm

)(
1 − e(b0+b1BAL+b2 MAT+b3CMD)Dijk

)c
+ εijk (14)

Hijk = 1.3 +
(

a0 + a1BAL + a2 MAT + a3CMD + ∑4
m=1gmSm + ui + uij

)(
1 − e(b0+b1 BAL+b2 MAT+b3CMD)Dijk

)c
+ ε ijk (15)

where g1 ∼ g4, a0 ∼ a3, b0 ∼ b3, c are the model parameters to be estimated; other
variables are defined as above.

3.3. Model Comparison and Evaluation

The calibration and validation results of the models are shown in Table 6. The base
model (Equation (13)) described 77% of the variations in tree heights for the calibration data
(R2

adj = 0.77). The climate-sensitive H–D model explained 79% of the variations (Equation (14)).
When tree species dummy variable and province-specific, plot-specific random effects were
included in the base model (Equation (15)), R2

adj increased from 0.79 to 0.92 (Table 6). Com-
pared with Equation (13), MAE and RMSE of Equation (15) decreased by 44.5% and 41.8%
for calibration data and by 8.0% and 11.3% for validation data, respectively. Mixed effect
model (Equation (15)) also removed the heteroscedasticity of residuals (Figure 2).

3.4. H–D Relationships among Larch Tree Species and Tree Sizes under Future Climate Change

Results showed different effects of climate variables on parameters a0 and b0, denoting
the maximum and relative change of tree height with diameter (Table 6). Parameter a1 was
significantly negative indicating that the increasing BAL will reduce the maximum height.
The coefficient a2 of MAT for parameter a was significantly positive meaning that the rising
MAT will increase the maximum tree height. This was also shown in Figure 3 where all
H–D curves of different species became steeper under RCP2.6 and RCP 4.5 from 2010 to
2070. However, parameter b2 was negative indicating that the rising MAT will lower the
tree height with the same diameter and there is a threshold for the effect of temperature on
H–D relationship of larch species. Parameter a3 was significantly negative indicating the
increase of CMD will reduce the maximum height. However, b1 and b3 were nearly zero
and thus both CMD and BAL showed marginal effects on H–D relationship.

Table 6 showed that all parameters of tree species dummy variables g1~g4 were positive,
but g1 and g4 were not significant, indicating that L. olgensis and L. kaempferi had a significant
difference with the unidentified group, which was also illustrated in Figure 3. Coefficient g2
was the largest indicating that the maximum tree height of L. olgensis was the largest.

MAT increased with the time and the temperature under RCP8.5 is the largest followed
by RCP4.5 and RCP2.6. The precipitation under RCP8.5 is smallest and had the steepest slope
followed by RCP4.5 and RCP2.6. Figure 4 showed that the ∆H–D curves of larch species
under climate scenarios RCP2.6, RCP4.5 and RCP8.5. Generally, tree species can be obviously
classified as two groups in terms of ∆H, which are group I (L. gmelinii, L. principis and the
unidentified larch species) and group II (L. kaempferi and L. olgensis). They showed strong
(∆H ranged −4.77% to 18.17%) and weak (∆H ranged −6.37% to 9.54%) responses to climate
change, respectively. The values of ∆H for Group I were positive which indicated that future
climate change increased tree height compared with current climate with the exception of
RCP 2.6 from 2010 to 2040 and RCP8.5 from 2040–2100. However, the values of ∆H were
complicated varying from negative to positive with the increasing diameter for Group II.
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Table 6. Parameter estimates and statistics for Equations (13)–(15).

Parameter Parameter Definition Equation (13) Equation (14) Equation (15)

Fixed-effects parameters a0 21.382 (0.000) 21.460 (0.000) 19.772 (0.000)
b0 0.078 (0.000) 0.088 (0.000) 0.106 (0.000)
c0 1.616 (0.000) 1.545 (0.000) 2.083 (0.000)
a1 BAL −0.137 (0.000) −0.085 (0.000) −0.111 (0.000)
a2 MAT 1.322 (0.000) 0.259 (0.0381)
a3 CMD −0.021 (0.000) −0.030 (0.000)
b1 BAL 0.001 (0.000) 0.001 (0.000) 0.005 (0.000)
b2 MAT −0.005 (0.000) 0.003 (0.0024)
b3 CMD 0.000 (0.07) 0.000 (0.000)
g1 L. gmelinii −5.137 (0.000) −3.790 (0.000) 0.216 (0.898)
g2 L. olgensis 3.234 (0.000) 3.317 (0.000) 1.879 (0.013)
g3 L. kaempferi −4.944 (0.000) −2.951 (0.000) 0.865 (0.050)
g4 L. principis 2.557 (0.000) 2.319 (0.000) 0.226 (0.735)

Variance components σprovince 1.349
σplot 2.700

Model performance

γ 0.674
AIC 23,007.83 22,368 17,911.4

Fitting data R2
adj 0.77 0.79 0.92

Fitting data MAE (m) 1.37 1.28 0.76
Fitting data RMSE (m) 1.82 1.72 1.06
Validation data MAE (m) 1.5 1.44 1.38
Validation data RMSE (m) 2.03 1.93 1.8

Note: σprovince and σplot are the variance for the random parameters ui and uij, respectively; γ is the parameter of
correlation structure. AIC is the Akaike’s information criterion. BAL is the sum of the basal area of the trees larger than
a subject tree; MAT represents mean annual temperature; CMD represents Hargreaves climatic moisture deficit.

Figure 4 showed that ∆H varied with tree diameter. Generally, large trees showed
large ∆H values, but there were different responses to the climate among larch species.
For tree species group I, the ∆H increased with the increase of tree DBH in small and
medium sizes and kept stable in large sizes. For group II, the absolute ∆H increased with
the increase of tree DBH but changed from negative to positive.

Mean absolute ∆H values with diameter among larch species under different climate
scenarios in period 2010 to 2100 (mean value of the absolute ∆H in period 2010 to 2040,
2040 to 2070 and 2070 to 2100) was shown in Figure 5. It can be observed that the climate
sensitivity of larch species was ranked as L. gmelinii > L. principis > the unidentified species
group > L. olgensis > L. kaempferi under RCP2.6 and RCP8.5, and the sensitivity was larger
under RCP8.5 than that under RCP2.6. However, the sensitivity was ranked as L. gmelinii >
the unidentified species group > L. principis > L. kaempferi > L. olgensis under RCP4.5.
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4. Discussion
4.1. Climate-Sensitive H–D Model

The climate-sensitive H–D allometry model with a two-level NLME approach at the
province and plot levels was developed for larch plantations in the study. Results showed
that a two-level mixed-effects model with the inclusion of climate variables provided
better performance compared to fixed-effects model without climate variables, which were
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consistent with other reports [7,10–13]. In this study, using the mixed-effects model and
including climate variables increased R2

adj by 19.5% and reduced the AIC, MAE and RMSE
by 22.2%, 44.5% and 41.8% for fitting data, respectively. The residual heterogeneity was also
reduced. Owing to the correlation among tree height–diameter observations, fixed-effect
model would lead to biased variance of the parameter estimates and thus invalidated the
hypothesis tests [39]. The mixed-effect modelling approach can be an appropriate solution
to this problem [5,40]. Similarly, Vizcaíno-Palomar et al. [41] reported that inclusion of
climate variables and random effects reduced the AIC by 9.0%. Sharma et al. [40] reported
that inclusion of random effects increased the R2

adj by 9.2% and the AIC and RMSE by 7.8%
and 25%, respectively.

The climate variables including MAT and CMD significantly affected H–D relationship
but the effect was not very strong which was in line with the previous studies [9,11,21].
Temperature usually affects the growth season and growth rate of tree height. Low tem-
perature will hinder the division and specialization of cambium and meristem cells, thus
accumulating more nutrients and carbohydrates and distributing them to the trunk. There-
fore, the shape of tree changed [42]. Fortin et al. [21] pointed out that the mean temperature
from March to September affected the H–D relationship of most French tree species. Tem-
perature was not a marginal effect that can be overlooked and its effect was also quadratic
so that an optimal temperature existed. Ng’andwe et al. [27] also found that increasing
the temperature beyond the optimum for Pinus merkusii and P. michoacana reduced the tree
growth and increased the rotation age. Similarly, in this study, MAT modified parameters
a2 and b2 positively and negatively, respectively, which also indicated that there was an
optimal temperature for larch tree height. Zhang et al. [11] reported that MAT was the
dominant climatic factor in modulating height–diameter allometry of Chinese fir, and
the effect of MAT and MWMT were positively associated with tree height of larch in the
region begins to grow in May, and the growth speed reaches the maximum in July, then
gradually slows down until it stops growing [43]. Therefore, the temperature in May and
the precipitation in the previous year are very important for the height growth of larch.
Our results showed that CMD had significant effects on H–D relationship. The coefficient
of CMD, a3, was negative which indicated that the height decreased with the increase of
water deficiency. This was consistent with a previous study [44] which found that the
precipitation from the previous October to the current April significantly promoted the
height growth of Mongolian pine. Sang et al. [45] also found that the negative effects of
CMD on the height of white spruce trees in northern Canada.

Besides climate, H–D relationship was affected by multiple biotic and abiotic variables,
for example genetic characteristics [8], stand age [16], site condition [6,46], competition
status [5,6]. Considering the inclusion of other stand factors will aggravate the model
complexity, we only used diameter and BAL as the independent variable for ensuring more
stable convergence. In addition, other methods such as machine learning were worthy of
further exploration in future study.

4.2. The Impact of Climate Change on H–D Relationship by Larch Species and Tree Size

Our model simulations showed that the effects of climate change on H–D relationship
varied with larch species. Generally, ∆H–D curves of larch species can be obviously
classified as two groups, which are group I (L. gmelinii, L. principis and the unidentified
species) and group II (L. kaempferi and L. olgensis). They showed strong (∆H from −4.77%
to 18.17%) and weak (∆H from −6.37% to 9.54%) responses to future climate change,
respectively. Under warmer and drier climatic conditions, L. kaempferi and L. ogensis will
grow thicker and shorter than the rest of tree species group, and their ∆Hs were lower than
those of group I for a given tree diameter. This may due to that these two tree species are
moisture loving species [43]. Under drought stress, the hydraulic conductivity of the xylem
of the trunk suffers irreversible loss. Therefore, the lack of water during the growing season
allows to allocate more resources for the growth of diameter [47]. Compared with group II,
group I is more resistant. As the temperature increases, more resources will be allocated to
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the growth of the height than the diameter, thus trees would be higher. Previous studies
also supported this result [46,48–50].

∆H also varied with tree diameter under future climate change. For tree species
group I, ∆H increased for small and medium sizes and kept stable for large sizes. This
may be resulted from the limited height growth of trees with large diameter because of
the limits to tree height [51]. For tree species group II, ∆H increased with the increasing
DBH, but changed from negative to positive, indicating that small trees will grow short but
large trees high. Campbell et al. [52] reported that large trees were most sensitive to annual
climate fluctuations. From the perspective of competition, larger trees in a stand have
more competitive advantages than smaller trees while the smaller neighbor trees do not
influence the growth of larger trees [53]. Under the warmer and drier climate in the future,
due to the developed root system of the big trees, their growth will not be affected by the
lack of water, and the growth of small trees may face drought stress. McDowell et al. [54]
pointed out that plants can avoid water damage caused by drought through stomatal
closure, leading to carbon starvation and a cascade of down-stream effects. Seedlings or
small trees are more likely to inhibit growth or even die due to hydraulic failure. The
phenomena of changing from negative to positive for ∆H of L. kaempferi and L. olgensis
along with increasing diameter supported this conclusion.

5. Conclusions

Two-level climate-sensitive NLME model was developed for larch plantations in
north and northeast China which showed biological and statistical reasonability. MAT and
CMD were the dominant climatic factors in modulating height–diameter allometry of larch
plantations. Model simulations showed that the climate sensitivity of H–D allometry varied
with tree species and diameter. According to the climate sensitivity, tree species could be
classified as group I (L. gmelinii, L. principis and the unidentified species) with large ∆H
(from −4.77% to 18.17%) and group II (L. kaempferi and L. olgensis) with small ∆H (from
−6.37% to 9.54%). Large trees were more sensitive to climate change than small trees.
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