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Abstract: Sea-level rise and climate change stresses pose increasing threats to coastal wetlands that
are vital to wildlife habitats, carbon sequestration, water supply, and other ecosystem services with
global significance. However, existing studies are limited in individual sites, and large-scale mapping
of coastal wetland degradation patterns over a long period is rare. Our study developed a new
framework to detect spatial and temporal patterns of coastal wetland degradation by analyzing
fine-scale, long-term remotely sensed Normalized Difference Vegetation Index (NDVI) data. Then,
this framework was tested to track the degradation of coastal wetlands at the Alligator River National
Wildlife Refuge (ARNWR) in North Carolina, United States, during the period from 1995 to 2019. We
identified six types of coastal wetland degradation in the study area. Most of the detected degra-
dation was located within 2 km from the shoreline and occurred in the past five years. Further, we
used a state-of-the-art coastal hydrologic model, PIHM-Wetland, to investigate key hydrologic pro-
cesses/variables that control the coastal wetland degradation. The temporal and spatial distributions
of simulated coastal flooding and saltwater intrusion confirmed the location and timing of wetland
degradation detected by remote sensing. The combined method also quantified the possible critical
thresholds of water tables for wetland degradation. The remote sensing–hydrologic model integrated
scheme proposed in this study provides a new tool for detecting and understanding coastal wetland
degradation mechanisms. Our study approach can also be extended to other coastal wetland regions
to understand how climate change and sea-level rise impact wetland transformations.

Keywords: coastal wetland degradation; remote sensing; NDVI; climate change; sea-level rise;
saltwater intrusion; hydrologic model; Alligator River National Wildlife Refuge; USA

1. Introduction

Coastal wetlands provide critical ecological functions and services for coastal commu-
nities, such as clean water and blue carbon storage, soil erosion mitigation, biodiversity
conservation, and wildlife habitat provision. Despite their importance, coastal wetlands
represent the most endangered ecosystems under a warming climate [1]. The combined
effects of global warming, changes in rainfall patterns, frequent extreme weather events,
and sea-level rise (SLR) are significant causes of coastal wetland degradation. Through
altering hydrologic processes, these disturbances dramatically affect coastal wetland struc-
ture, productivity, and ecological functions [2–11]. For example, Bianchette et al. [12] found
that massive wetland tree mortality is associated with flooding from storm surges along
Alabama’s Gulf Coast. Hopfensperger et al. [13] showed that drought-induced saltwa-
ter intrusions sped coastal wetland deterioration rates in the Mississippi River Deltaic
Plain. Furthermore, due to their low-lying nature, coastal wetlands are exceptionally
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vulnerable to SLR besides more frequent floods and droughts [14,15]. Landward saltwa-
ter migration driven by SLR can significantly impact the survival and productivity of
freshwater-dependent coastal plants [7].

Wetland degradation refers to the loss of wetland areas or downgrading wetland
types from which the system cannot recover. It leads to a long-term reduction in vegetation
coverage and changes in dominant vegetation species [16], which includes the complete loss
of wetlands (change to non-wetlands), as well as the conversion of a relatively structurally
complex and multi-layered wetland type (e.g., forested wetlands) to a less complex and
functional wetland type (e.g., emergent herbaceous wetlands) [17–19]. “Ghost forests”,
as a type of wetland degradation characterized by dead trees, falling trunks, and stumps,
have emerged sporadically along the North Atlantic Coast and the Gulf of Mexico in recent
decades [19,20]. However, the spatial and temporal patterns of coastal wetland degradation
at a large scale have not been systematically investigated. A lack of such knowledge
hinders formulating appropriate policies and implementing priorities of coastal wetland
restoration [21–23].

There are two types of methods for identifying coastal wetland degradation. The first
category compares observed wetland key variables (e.g., dominant plant species, hydro-
logic conditions, and soil organic carbon content) with their previous conditions or with
nearby reference non-degraded wetlands [24–27]. Degraded coastal wetlands usually have
few heterogeneous biotas [25,27,28], less suitable hydrologic conditions for wetland main-
tenance [9,29], and more rapid organic carbon decomposition rates [24,30]. For example,
Keim et al. [29] found that the exacerbated subsidence and increased flooding reduced
the productivity and regeneration of coastal wetland forests. Uzarski et al. [31] developed
standardized methods and indicators to assess wetland health based on field-sampled birds,
anurans, fish, macro-invertebrates, vegetation, and physicochemical conditions. These field
methods can accurately distinguish degraded wetlands from healthy wetlands. However,
these methods are often laborious and, thus, are costly and inapplicable to long-term
and/or large-scale spatial analysis.

The other category of wetland degradation detection methods takes advantage of re-
mote sensing technologies. This type of method [19,32,33] first trained supervised machine
learning algorithms to establish the relationships between the spectral characteristics of
satellite images and wetland vegetation types observed on sites. Based on the established
relationships and spectral information on the remote sensing images, coastal wetland vege-
tation types can be estimated where field observations are lacking. Degradation locations
can thus be identified from the changes of specific vegetation types during several time
slices. For example, Smart et al. [19] mapped coastal wetland forests, transition-ghost
forests, and marshes across the Albemarle-Pamlico Peninsula using the random forest
algorithm trained by remotely sensed surface reflectance data from Landsat and LiDAR
as well as 98 field observations in 2001 and 2014, respectively. Wetland vegetation types
were delineated by comparing coastal vegetation classification maps over the two years.
The advantages of remote sensing include collecting surface information over large spa-
tial areas, observing coastal wetlands systematically, and monitoring their changes over
time [34–36]. Unfortunately, the accuracy of the trained models for identifying vegetation
types could not be assured due to a limited number of ground truths as labels for training
supervised machine learning algorithms. Furthermore, the lack of sufficient long-term
ground observations makes this method incapable of detecting the exact time of coastal
wetland degradation.

The Normalized Difference Vegetation Index (NDVI) is one of the most widely used
vegetation indices in remote sensing for assessing and monitoring vegetation coverage
and ecosystem vitality [37–40]. Previous studies [41–43] successfully detected vegetation
changes from local to global scales by studying the evolution of NDVI over land. For
example, Pereira et al. [44] distinguished degraded and non-degraded grasslands over
the Brazilian Highlands by analyzing the trend of cumulative NDVI anomalies. Similarly,
using trend analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI



Forests 2022, 13, 411 3 of 24

time series, Eckert et al. [45] detected land degradation and regeneration in Mongolia.
However, although NDVI effectively expresses vegetation status and monitors changes
in vegetation over land [44,45], little effort has been made to quantify long-term coastal
ghost forest formations and wetland losses. This study proposed a new framework to
systematically detect the locations and timing of coastal wetland degradation by analyzing
the fine-scale, long-term NDVI time series. We applied the framework at the Alligator
River National Wildlife Refuge (ARNWR) as a case study. Then, a spatially distributed
hydrologic model, PIHM-Wetland [10], was adopted to evaluate the results derived from
the remote sensing-based framework and further understand the interactions between
wetland degradation and hydrology key to the coastal wetland degradation over the
ARNWR. This study demonstrates that a remote sensing-hydrologic model integrated
scheme can effectively identify coastal wetland degradation at multiple scales and improve
understanding of the relationship between coastal hydrology and vegetation dynamics.

2. Materials and Methods
2.1. Study Area

The coastal wetland study area is at the southeast part of the Alligator River National
Wildlife Refuge (ARNWR), located at the Albemarle-Pamlico Peninsula in Dare County,
North Carolina (NC), USA (Figure 1). This area differs from the coastal areas to the north
and south due to its unique lagoonal environment and geomorphic settings, including
extensive low-lying plain with very gentle slopes and poorly drained soils [46]. Buffered
by Outer Banks east of the study area, this lagoonal environment is free from astronomical
tides but has a micro-tidal inundation regime dominated by infrequent wind tides. These
features contribute to a prevalence of wetlands [47], mainly woody wetlands and emergent
herbaceous wetlands, about 81% and 15% of the study area, respectively (Figure 1). The
height of the vegetation ranges from 0.6 m in emergent herbaceous wetlands to up to
30 m in woody wetlands [9]. The majority of vegetation types in the woody wetlands
are evergreen forests (around 50%) and mixed forests (around 40%). Typical vegetation
communities in the woody wetlands include pond pine (Pinus serotine Michx.), loblolly pine
(Pinus taeda L.), red bay (Persea borbonia (L.) Spreng.), and sweetbay magnolia (Magnolia
virginiana L.). Tree density varies from 13 stems/ha to 177 stems/ha, with an average
density of 96 stems/ha and an average diameter at breast height (DBH) of 10 cm [48,49].
The vegetation types in emergent herbaceous wetlands are marshes (around 60%) and
shrubs (around 40%) [9,46], which include black needlerush (Juncus roemerianus Scheele),
sawgrass (Cladium), and panic grasses (Panicum) (U.S. Fish & Wildlife Service, Washington,
DC, USA, https://www.fws.gov/refuge/Alligator_River/ (accessed on 5 April 2021)).
Mean annual precipitation of the study area was 1366 ± 57 mm (1971–2018) and mean
annual temperature from 1971 to 2000 was about 16.9 ◦C, with the highest and lowest
temperature of 26.5 ◦C and 6.8 ◦C in July and January, respectively [9,50,51].

https://www.fws.gov/refuge/Alligator_River/
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Figure 1. The study area (35.558–35.863° N, 75.693–75.859° W, excluding Open Water) with land 
cover types as determined by 2016 National Land Cover Database (NLCD). Inset: the location of the 
study area in North Carolina (NC). The black box in the inset indicates the study area. The red dot 
in the inset indicates the location of the NOAA tidal station (Oregon Inlet Marina, NC). The red star 
indicates the groundwater observation site (35.768° N, 75.750° W). The pentagon represents field 
plots in the Forest Inventory and Analysis (FIA) data set. The zoom-in figure in the red box shows 
the detailed spatial distribution of field plots obtained from Smart et al. [19], Poulter [48], and Taillie 
et al. [49]. 

The ARNWR has been experiencing rapid SLR in recent decades. For example, tidal 
observations at the local station Oregon Inlet Marina, NC, showed that the mean sea level 
has increased by 0.18 m from 1995 to 2019, with an accelerated rate since 2009 (Supple-
mentary Figure S1). These rates are about twice as fast as eustatic SLR rates [52,53]. More-
over, the area experienced more frequent droughts and floods [14,15]. As a result, the 
coastal wetland ecosystems are rapidly transgressing, characterized by the conversion of 
wetlands to open water, mortality of low elevation forests, migration of emergent herba-
ceous vegetation inland, and formation of a transition zone between emergent herbaceous 
wetlands and forested wetlands [19,33,49]. 

To capture detailed information on the coastal wetland degradation, we classified the 
entire wetland area into three types: emergent herbaceous wetlands, transitional forested 
wetlands, and forested wetlands following Smart et al. [19], Poulter [48], and Taillie et al. 
[49]. Emergent herbaceous wetlands were defined as a mainly treeless area dominated by 
emergent herbaceous vegetation [46,54], whereas forested wetlands mainly consisted of 
living trees [55,56]. The transitional forested wetlands were the transition zones between 
emergent herbaceous wetlands and forested wetlands, dominated by woody vegetation 
with a mixture of emergent herbaceous vegetation, standing dead trees, and some persist-
ing live trees. Thus, transitional forested wetlands and forested wetlands together consist 
of woody wetlands. 

Figure 1. The study area (35.558–35.863◦ N, 75.693–75.859◦ W, excluding Open Water) with land
cover types as determined by 2016 National Land Cover Database (NLCD). Inset: the location of
the study area in North Carolina (NC). The black box in the inset indicates the study area. The red
dot in the inset indicates the location of the NOAA tidal station (Oregon Inlet Marina, NC). The red
star indicates the groundwater observation site (35.768◦ N, 75.750◦ W). The pentagon represents
field plots in the Forest Inventory and Analysis (FIA) data set. The zoom-in figure in the red box
shows the detailed spatial distribution of field plots obtained from Smart et al. [19], Poulter [48], and
Taillie et al. [49].

The ARNWR has been experiencing rapid SLR in recent decades. For example, tidal
observations at the local station Oregon Inlet Marina, NC, showed that the mean sea level
has increased by 0.18 m from 1995 to 2019, with an accelerated rate since 2009 (Supplemen-
tary Figure S1). These rates are about twice as fast as eustatic SLR rates [52,53]. Moreover,
the area experienced more frequent droughts and floods [14,15]. As a result, the coastal
wetland ecosystems are rapidly transgressing, characterized by the conversion of wetlands
to open water, mortality of low elevation forests, migration of emergent herbaceous vege-
tation inland, and formation of a transition zone between emergent herbaceous wetlands
and forested wetlands [19,33,49].

To capture detailed information on the coastal wetland degradation, we classified
the entire wetland area into three types: emergent herbaceous wetlands, transitional
forested wetlands, and forested wetlands following Smart et al. [19], Poulter [48], and
Taillie et al. [49]. Emergent herbaceous wetlands were defined as a mainly treeless area
dominated by emergent herbaceous vegetation [46,54], whereas forested wetlands mainly
consisted of living trees [55,56]. The transitional forested wetlands were the transition
zones between emergent herbaceous wetlands and forested wetlands, dominated by woody
vegetation with a mixture of emergent herbaceous vegetation, standing dead trees, and
some persisting live trees. Thus, transitional forested wetlands and forested wetlands
together consist of woody wetlands.
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Except for the cultivated crop area in the northeast corner of the study area and some
roads across the area (Figure 1), the study area is protected. Therefore, the area has rarely
been affected by anthropogenic activities such as timber harvesting or beach development,
which make the ARNWR a natural site for studying the impacts of climate change, SLR,
and its associated saltwater intrusion on coastal wetland ecosystems.

2.2. Data for Wetland Degradation Detection
2.2.1. Landsat Data

To capture the details of coastal wetland degradation across the study domain, we
adopted the long-term, high spatial resolution (30 m) Landsat [57,58] remote sensing data
from 1995 to 2019, the same period when digitalized tidal observations are available in this
study area. Due to the difference in the time coverage of different Landsat satellites, we
compiled the surface reflectance products from Landsat 5 Thematic Mapper (TM), Landsat
7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI)
(courtesy of the US Geological Survey). We used 962 images (see Supplementary Section S2
for more details) with their red and near-infrared (NIR) spectral bands. All images were first
processed to mask out clouds and cloud shadows based on the bit-mapped values provided
in the Landsat Collection 1 Level-1 Quality Assessment (QA) Band, then co-registered to
one another with a spatial accuracy of ±1 pixel (30 m), and finally, mosaicked and clipped
by the study area boundary to form mapping units.

2.2.2. Landsat-Derived Normalized Difference Vegetation Index (NDVI)

The NDVI was calculated as the ratio of the difference between near-infrared (NIR)
and red reflectance measurements to their sum [59]. The formula of NDVI is as follows:

NDVI =
NIR − Red
NIR + Red

(1)

where NIR and Red stand for the near-infrared and red reflectance measurements, respectively.

2.2.3. Ancillary Datasets

Previous analysis demonstrated that different vegetation types often have different
NDVI values [60–62]. Therefore, NDVI ranges of wetland vegetation types from all avail-
able peer-reviewed literature were employed to establish the connections between NDVI
and vegetation types. Specifically, non-vegetated areas have very low values of NDVI
(i.e., 0.1 and below) [63,64], grasslands correspond to moderate values (i.e., 0.2 to 0.3) [65,66],
while high NDVI values indicate rainforests (i.e., 0.6 and above) [67–72].

To further explore and confirm the correspondence between coastal wetland vege-
tation types and the satellite-derived NDVI values over the ARNWR (Figure 1), we also
assembled coastal wetland vegetation data published by Smart et al. [19], Poulter [48],
and Taillie et al. [49] and the Forest Inventory and Analysis (FIA) spatial data [73,74]
from the United States Department of Agriculture’s Forest Service. Measurements by
Smart et al. [19], Poulter [48], and Taillie et al. [49] provided detailed information about the
three coastal wetland vegetation types over the ARNWR (green, brown, and yellow dots in
Figure 1). To the best of our knowledge, these data are the only field measurement data
about vegetation types within our study domain available in the peer-reviewed literature.
In addition, the FIA dataset [73,74] includes the most recent inventories of forests in the
ARNWR. Each FIA site provides information on forests, including species, size, the health
of trees, and the total tree growth and mortality. Within the study area, eight FIA plots
of forested wetlands and transitional forested wetlands (green and brown pentagons in
Figure 1) were available. Each FIA plot location was fuzzed within a one-mile radius
circle around the actual location to protect the integrity of the FIA sample under the Food
Security Act of 1985, Public Law 99–198 Stat. 1657, 23 December 1985, Confidentiality of
Information, 7 U.S.C. 2276, as amended through Public Law 106–850, 31 December 2000.
Different wetland types can be distinguished by comparing the NDVI values at these field
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measurement sites. Furthermore, the results are compared with land cover maps classi-
fied by the National Oceanic and Atmospheric Administration Coastal Change Analysis
Program (C-CAP, with the same spatial resolution and available in 1996, 2001, 2011, and
2016) [75] to evaluate the performance of NDVI-based wetland classification.

2.3. Methodology

Figure 2 showed the workflow of the study. First, we proposed a new remote
sensing-based framework to identify when and where coastal wetland degradation
occurred (Section 3.1). Then, the PIHM-Wetland model was employed to simulate hydro-
logic variables, including groundwater tables (GWTs) and saltwater tables (SWTs), key to
coastal wetland degradation. Lastly, we investigated the mechanism of coastal wetland
degradation by analyzing simulated GWTs and SWTs at the locations that degradation
occurred.
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2.3.1. PIHM-Wetland Model

Previous research demonstrated that disturbances/drivers affect wetlands degrada-
tion mainly through altering their hydrologic processes [3,4,6–10]. Therefore, to evaluate the
results obtained from the coastal wetland degradation detection framework and understand
the causes of degraded wetlands from hydrologic aspects, a coastal wetland hydrologic
model, PIHM-Wetland [10], was employed over the ARNWR. The PIHM-Wetland model is
a distributed, physically based, and coastal processes coupled hydrologic model [10]. It
tracks the changes of the groundwater, soil water, and saltwater by simulating water ex-
change through canopy interception, infiltration, overland flow, channel flow, unsaturated
and saturated water flow, saltwater lateral flow, and evapotranspiration (ET). The model
has been successfully employed to study the wetland resilience of this study area [9,10].

2.3.2. Data Used in the PIHM-Wetland Model

PIHM-Wetland uses openly available national datasets for meteorological forcing,
soil parameterizations, land cover properties, and coastal processes. Specifically, we used
meteorological data from Phase 2 of the National Land Data Assimilation System (NLDAS-
2) [76] as the forcing data, including precipitation, surface air temperature, specific humidity,
air pressure, and solar radiation due to their agreement with the in-situ measurements from
the observation sites [10]. For soil parameterizations, the national Gridded Soil Survey
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Geographic database (gSSURGO) was utilized to derive vertical and horizontal hydraulic
conductivity, porosity, and coefficients for the soil–water retention curve to simulate the
infiltration processes, recharge, and lateral groundwater flow. Finally, for land cover
properties that govern the processes of ET, overland flow, and energy budget, the Mapped
Monthly Vegetation Data (https://ldas.gsfc.nasa.gov/nldas/web/web.veg.monthly.table.
html (accessed on 9 November 2020)) was applied to obtain maximum leaf area index
(LAI), minimum stomatal resistance, reference stomatal resistance, albedo, vegetation
fraction, Manning’s roughness, and root zone depth. Moreover, we adopted the tide
observations from the nearest National Oceanic and Atmospheric Administration (NOAA)
tidal station (Oregon Inlet Marina, NC, Figure 1) (https://tidesandcurrents.noaa.gov/
(accessed on 13 November 2020)) in the coastal process simulation. Detailed descriptions
and formulations of the PIHM-Wetland model can be found in Zhang et al. [10]. Besides,
Digital Elevation Model (DEM) from the US Geological Survey (USGS) was employed to
generate PIHM-Wetland unstructured triangular grids.

2.3.3. Model Setup

The entire study area was decomposed into 17459 unstructured triangular elements
based on the domain topography, with an average size (longest edge of the triangular
element) around 100 m. The boundary at the ocean–land interface was set as an open
boundary condition, where terrestrial surface and subsurface water interact with coastal
sea-level changes. In contrast, the inland boundary was set as a closed boundary condition.
Moreover, the soil layer of each element was divided into two layers: a well-drained top
layer (0–0.3 m) and a poorly drained bottom layer (0.3–1 m) according to the soil features
obtained from the gSSURGO dataset and field measurements [9,10]. Groundwater table
observations showed that the subsurface hydrologic activities primarily occur in the top
one-meter soil zone [51].

The PIHM-Wetland model was first calibrated and validated by comparing the simu-
lated GWT and ET with in-situ GWTs (Figure 1) and MODIS ET. Next, model performance
was evaluated by Nash-Sutcliffe Efficient (NSE, [77]) (see [10]). Then, a 25-year hydrologic
simulation from 1995 to 2019 with daily outputs was conducted after a ten-year spinning-up
(the system reached a relative equilibrium state). Finally, as the water level has critical
impacts on coastal wetlands’ health and survival [9,13,78,79], we analyzed GWTs and
SWTs from the model simulation to assess the wetland hydrologic resilience to climate
change [4,9,10]. In this study, negative (positive) water tables represent the water level
below (above) ground.

3. Results and Discussion
3.1. Framework to Detect Wetland Degradation

We proposed a new framework by analyzing seasonal NDVI time series to identify
when and where coastal wetland degradation occurred. As Landsat crosses every point on
Earth once every 16 days, a maximum of two images are available in a month. However,
many monthly scale NDVI data contain missing values due to clouds and aerosols over the
study area. Annual scale NDVI can minimize cloud contamination issues, but it smoothed
out the seasonal vegetation variations and reduced the data available for analysis. Thus,
seasonal scale NDVI data were used. This study obtained the seasonal NDVI value as
the maximum of all available NDVI in the same season instead of the average value. We
used the maximum rather than the average value to avoid the potential issues of broken
and thin clouds, which may not be adequately masked out and would slightly reduce the
value of NDVI [80,81]. It turned out that the seasonal NDVI time series allowed us to not
only get NDVI values almost without contamination from clouds and aerosols at each
pixel in the study area but also more accurately capture canopy transitions in the coastal
wetland ecosystems. Here, the four seasons are defined as spring (March–May, MAM),
summer (June–August, JJA), fall (September–November, SON), and winter (December of
the current year and January and February of the following year, DJF), respectively. We

https://ldas.gsfc.nasa.gov/nldas/web/web.veg.monthly.table.html
https://ldas.gsfc.nasa.gov/nldas/web/web.veg.monthly.table.html
https://tidesandcurrents.noaa.gov/
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analyzed the seasonal NDVI time series during the period from 1995 to 2019 to determine
where and when coastal wetlands degraded in each pixel based on the established criteria
described below.

We first analyzed field-collected wetland plots from Smart et al. [19], Poulter [48], Tail-
lie et al. [49], FIA dataset [73,74], and their corresponding maximum seasonal NDVI values
in the collection years to explore and confirm the correspondence between coastal wetland
vegetation types and the satellite-derived NDVI values over the ARNWR (Figure 3). Emer-
gent herbaceous wetlands and non-vegetated areas are well separated from forested and
transitional forested wetlands. The NDVI values of the forested wetlands are significantly
higher compared to those of the transitional forested wetlands (Figure 3), in agreement with
the conclusion of Anyamba and Tucker [65], Bhandari et al. [67], Chouhan and Sarma [68],
Gandhi et al. [69], Jamali et al. [63], Karlsen et al. [64], Meneses-Tovar [70], Rousta et al. [71],
Weier and Herring [72], and Zheng et al. [66]. Table 1 summarized the NDVI ranges for
different coastal wetland types: for forested wetlands, its maximum seasonal NDVI values
within a year fall in 0.5 to 1.0; for transitional forested wetlands, the range is 0.4 to 0.5; for
emergent herbaceous wetlands, the range is 0.1 to 0.4; and when the seasonal NDVI values
within a year are all smaller than 0.1, the area is considered as non-vegetated areas. Accord-
ing to these NDVI-based criteria, our coastal wetland classification results are consistent
with the classification in C-CAP, confirming the feasibility and accuracy of using NDVI
ranges to classify coastal wetlands into forested wetlands, transitional forested wetlands,
and emergent herbaceous wetlands.
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Table 1. NDVI ranges and structural complexity of different coastal wetland types.

Coastal Wetland Types NDVI Ranges Structural Complexity

Forested wetlands 0.5 ≤ NDVI ≤ 1.0 Very High
Transitional forested wetlands 0.4 ≤ NDVI < 0.5 High
Emergent herbaceous wetlands 0.1 ≤ NDVI < 0.4 Moderate

Non-vegetated areas −1.0 ≤ NDVI < 0.1 Low

After establishing the correspondence between coastal wetland types and NDVI
ranges, whether wetlands are degraded can be identified by analyzing NDVI and its
change over time at each pixel. Figure 4 shows the entire framework of wetland degradation
detection by analyzing seasonal NDVI time series. Specifically, we considered six types of
wetland degradation (Table 2 and Figure 4). Forested wetlands (0.5 ≤ NDVI ≤ 1.0) could
degrade to transitional forested wetlands (0.4 ≤ NDVI < 0.5, Type 3 degradation in Table 2
and Figure 4), emergent herbaceous wetlands (0.1 ≤ NDVI < 0.4, Type 2 degradation in
Table 2 and Figure 4), or non-vegetated areas (−1.0 ≤ NDVI < 0.1, Type 1 degradation in
Table 2 and Figure 4); transitional forested wetlands (0.4 ≤ NDVI < 0.5) could degrade
to emergent herbaceous wetlands (0.1 ≤ NDVI < 0.4, Type 5 degradation in Table 2 and
Figure 4), or non-vegetated areas (−1.0 ≤ NDVI < 0.1, Type 4 degradation in Table 2
and Figure 4); emergent herbaceous wetlands (0.1 ≤ NDVI < 0.4) could only degrade to
non-vegetated areas (−1.0 ≤ NDVI < 0.1, Type 6 degradation in Table 2 and Figure 4).
Meanwhile, the specific year when degradation occurred can be accurately determined
(Supplementary Section S3).

Table 2. Identified Wetland degradation over the ARNWR from 1995–2019.

Type Wetland Degradation Types Number of Wetland
Degradation Pixels 1

Areas of Wetland
Degradation

(Hectares)

Degradation
Percentage of the
Study Area (%)

1 Forested wetland degraded to
non-vegetated areas 930 84 0.21

2 Forested wetlands degraded to
emergent herbaceous wetlands 2538 228 0.56

3 Forested wetlands degraded to
transitional forested wetlands 20,011 1801 4.44

4 Transitional forested wetlands
degraded to non-vegetated areas 1276 115 0.28

5
Transitional forested wetlands

degraded to emergent
herbaceous wetlands

10,681 961 2.37

6 Emergent herbaceous wetlands
degraded to non-vegetated areas 4224 380 0.94

Sum 39,660 3569 8.80
1 The number of wetland degradation pixels summarized here only counts those wetlands that initially have
a relatively complex structure before degrading to a relatively simple structure by the end of 2019, regardless
of the intermediate types they went through. For example, for wetlands with forested wetland degrading to
non-vegetated areas (Type 1 degradation), they were original forested wetlands and experienced transitional
forested wetland states, then emergent herbaceous wetland states, and finally non-vegetated area states from
1995 to 2019. In this study, these wetlands were only counted as forested wetland degraded to non-vegetated
areas (Type 1 degradation). Therefore, every degraded wetland pixel only belongs to a certain type of wetland
degradation and is only counted once.
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Figure 4. A framework of wetland degradation detection by analyzing seasonal NDVI time series
derived from Landsat.

Here, we show an example of applying the framework to a randomly selected pixel
within ARNWR from 1995 to 2019 (Figure 5). In 1995, the maximum seasonal NDVI by
pixel was 0.55, suggesting that the selected wetland was forested (0.5 ≤ NDVI ≤ 1.0).
However, the maximum seasonal NDVI values of the wetland pixel fell below 0.4 in 2003
and never came back to 0.5 (the lower NDVI threshold of forested wetlands) by the end
of the study period (2019 winter). It indicated that the forested wetland changed to an
emergent herbaceous wetland in 2003; thus, this pixel is labeled as the Type 2 wetland
degradation, and the degradation occurred in 2003. We noticed that in 1996 and 2000,
the maximum seasonal NDVI values were 0.42 and 0.47, respectively (Figure 5), lower
than 0.5, but in the following years (1997 and 2001, respectively), the NDVI values came
back to be higher than 0.5. These implied that disturbances might cause NDVI values to
decrease temporarily in 1996 and 2000. However, these disturbances were still within the
self-restoring capacity, and wetlands re-flourished in the year following the disturbances.
Similar phenomena were also founded by Armitage et al. [82], Hu and Smith [83], and
Steyer et al. [84], suggesting that if the disturbances are short-term and not beyond the
wetland resilience, the vegetation can re-grow in the following growing season/year after
the disturbances. Thus, for the degraded wetland pixels, their seasonal NDVI values
must be continuously below the NDVI threshold of the relatively higher structure-complex
wetland type for at least eight consecutive seasons until the end of the study period.
Detailed criteria for different types of wetland degradation are summarized in Figure 4.
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3.2. Wetland Degradation during the Period from 1995 to 2019
3.2.1. Detected Locations of Wetland Degradation over the ARNWR

We summarize the detected degradation of the coastal wetlands over the ARNWR
from 1995 to 2019 (Table 2 and Figure 6). In 1995, the study domain’s total wetland area,
i.e., the sum of forested wetlands, transitional forested wetlands, and emergent herbaceous
wetlands, was 40,542 hectares (ha). Over the 25 years, a total of 3569 ha (8.8% of the
study area) of wetlands have degraded, and 579 ha (1.4% of the study area) have been
de-vegetated, mostly converted to open water (Table 2). Specifically, about 84,228 and 1801
ha of forested wetlands are found to degrade to non-vegetated areas (Type 1 degradation),
emergent herbaceous wetlands (Type 2 degradation), and transitional forested wetlands
(Type 3 degradation), respectively. About 115 ha of transitional forested wetlands changed
to non-vegetated areas (Type 4 degradation), and 961 ha changed to emergent herbaceous
wetlands (Type 5 degradation). Original emergent herbaceous wetlands disappeared by
380 ha (Type 6 degradation). For those pixels that experienced more than one type of
degradation during the 25-year period, for instance, original forested wetlands converted
into transitional forested wetlands, then emergent herbaceous wetlands, and finally non-
vegetated areas, Table 2 only counts these pixels as the Type 3 degradation for simplicity;
but the framework presented here and the PIHM-Wetland model analysis are still valid for
these pixels (not shown).

A net loss of 1388 ha (3.4% of the study area) of woody wetlands over the 25 years was
detected (Table 2), highlighting the dire situation that woody wetlands face in a warming
climate. Several studies [19,33,49] also confirmed the losses of woody wetlands in the
ARNWR. On the other hand, the emergent herbaceous wetlands increased by about 213.0%
during the study period; this is mainly because the conversion of woody wetlands (transi-
tional forested wetlands plus forested wetlands) to the emergent herbaceous wetlands was
more significant than the degradation of emergent herbaceous wetlands (Table 2).
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Figure 6. Detected wetland degradation locations over the ARNWR from 1995 to 2019. (a) Type 1
degradation: Forested wetlands degrading to non-vegetated areas; (b) Type 2 degradation: Forested
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wetlands degrading to emergent herbaceous wetlands; (c) Type 3 degradation: Forested wetlands
degrading to transitional forested wetlands; (d) Type 4 degradation: Transitional forested wetlands
degrading to non-vegetated areas; (e) Type 5 degradation: Transitional forested wetlands degrading
to emergent herbaceous wetlands; and (f) Type 6 degradation: Emergent herbaceous wetlands
degrading to non-vegetated areas. (Red: Degradation Locations; Green: Land).

Detected wetland degradation mainly occurred within 2 km of the shoreline (Figure 6).
At the same time, Type 3 (forested wetlands to transitional forested wetlands) and Type 5
(transitional forested wetlands to emergent herbaceous wetlands) degradations were also
found in the interior part of the landscape or along the developed road (Figure 6c) and
at the flooding plain northeast of the study area (Figure 6e), respectively. Figure 6 also
indicates a gradient of the wetland degradation from the shoreline to the inland. Therefore,
it is not surprising that the detected degradation was in the order of emergent herbaceous
wetlands (Figure 6f), transitional forested wetlands (Figure 6d,e), and forested wetlands
from the sea toward land (Figure 6a–c) given that emergent herbaceous wetlands and
woody wetlands were initially distributed along with shoreline areas and inland, separately
(Figure 1).

For the pixels that initially were classified as the same wetland type, the wetlands
closer to the sea tended to degrade to more minor structural-complex wetland types than
those further to the ocean (Figure 6). For example, for the initial forested wetlands, the
Type 1 degradation (forested wetlands degrading to non-vegetated areas) occurred closest
to the sea, while Type 2 (forested wetlands degrading to emergent herbaceous wetlands)
and Type 3 degradations (forested wetlands degrading to transitional forested wetlands)
were in more inland areas. Similar patterns can also be found for the transitional forested
wetlands pixels (Figure 6d,e). This phenomenon emphasizes the impacts of rising sea levels
and their associated saltwater intrusions on coastal wetland degradation.

3.2.2. Detected Time of Wetland Degradation

We also determined the time when the identified wetland degradation occurred using
this framework. Figure 7 summarizes the total number of wetland pixels experiencing
degradation over the ARNWR in each year. Most wetland degradation occurred within
the past five years; 2014 and 2017 witnessed the most significant percentage of coastal
wetland degradation.

3.2.3. Uncertainties in Detected Coastal Wetland Degradation

In this study, thresholds of NDVI for different coastal wetland types were determined
through analyzing and synthesizing literature, field measurements, and FIA data. Due to
the scarcity of field data, NDVI thresholds for different wetland types are only accurate to
one decimal place. Thus, a change of thresholds of NDVI may lead to the change of the
exact number of detected wetland degradation pixels. Nevertheless, the overall spatio-
temporal patterns of coastal wetland degradation will not change (not shown). In addition,
compared to the C-CAP land cover classification maps, woody wetlands classified in this
study are highly consistent with forested wetlands and scrub/shrub wetlands in C-CAP
(user accuracy of 95%), and emergent herbaceous wetlands classified here correspond to
emergent wetlands in C-CAP (user accuracy of 62%). Thus, the wetland classification results
from the proposed framework are highly consistent with those of the C-CAP Scheme, and
the framework could be applied to other coastal wetland regions. For areas with long-term
field observations, thresholds of NDVI values can be accurately determined for different
wetland types. In contrast, several rough thresholds can be estimated based on previous
studies and experts’ experience for areas with almost no historical in-situ measurements
or hard to access. After determining the NDVI ranges of different wetland types, wetland
degradation can be detected by analyzing NDVI time series derived from free-available
and global-covered Landsat data.
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Besides, multiple surface reflectance imageries from Landsat 5 TM, 7 ETM+, and 8
OLI were used in the study. The sensors carried by Landsat 5 TM and Landsat 7 ETM+
have almost the same spectral bands, while the sensor of Landsat 8 OLI has narrower
bands. According to Ke et al. [85], Roy et al. [86], and Xu and Guo [87], NDVI calculated
from Landsat 8 OLI images is slightly larger than that calculated from Landsat 5 TM/7
ETM+ images in lower-vegetation covered areas. As for our study, the slight difference
of NDVI between Landsat 8 OLI and Landsat 5 TM/7 ETM+ can be negligible since it
is considered that wetland degradation occurred when NDVI values were continuously
below the NDVI threshold of the relatively higher structurally complex wetland type for
eight consecutive seasons.

3.3. PIHM-Wetland Modeling Analysis
3.3.1. The Selected Transect for Analysis

To analyze hydrologic processes key to the changes of coastal wetlands, we selected
model grids along a transect almost perpendicular to the shoreline (Figure 8) because emer-
gent herbaceous wetlands, transitional forested wetlands, and forested wetlands are located
from the shoreline to inland successively. The transect included five representative model
grids with detected wetland degradation, i.e., emergent herbaceous wetlands degrading
to non-vegetated areas (Type 6 degradation, Figure 8a), transitional forested wetlands
degrading to emergent herbaceous wetlands (Type 5 degradation, Figure 8c), forested
wetlands degrading to transitional forested wetlands (Type 3 degradation, Figure 8e) and
model grids without wetland degradation (emergent herbaceous wetlands (Figure 8b)
and transitional forested wetlands (Figure 8d)), respectively, during the period from 1995
to 2019.
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Figure 8. The selected transect and representative model triangular grids. (a) Emergent herbaceous
wetlands degrading to non-vegetated areas (Type 6 degradation); (b) Emergent herbaceous wetlands
without degradation; (c) Transitional forested wetlands degrading to emergent herbaceous wetlands
(Type 5 degradation); (d) Transitional forested wetlands without degradation; (e) Forested wetlands
degrading to transitional forested wetlands (Type 3 degradation). (For.: Forested wetlands; Tran.:
Transitional forested wetlands; Herb.: Emergent herbaceous wetlands; Non.: Non-vegetated areas).

3.3.2. Correlations between NDVI and Water Tables

Firstly, we explored the relationship between annual maximum NDVI and sea-
sonal/annual water tables to understand the impacts of water table variations on wet-
lands. Wetland managers and stakeholders are more interested in the degradation
information on yearly scales [88,89], and seasonal-scale GWTs/SWTs could elucidate the
role of water table variation/change on degradation [90–92]. In addition, the resulting fig-
ure can be much clearer without seasonal cycles, and the overall conclusions using seasonal
NDVI are similar to those using annual maximum NDVI (Supplementary Section S4).

We calculated the correlations between grid-wise mean annual maximum NDVI and
seasonal/annual mean GWTs and SWTs (Figure 9) for the model grids in Section 3.3.1
and Figure 8. The model grids (spatial resolution on average 100 m) may include a few
Landsat pixels (30 m × 30 m). Still, we chose the pixels that have the same type of
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wetland degradation/non-degradation with similar NDVI values within the model grids
and averaged the vegetation indexes at these pixels to get the grid-wise mean NDVI values.
It is shown that NDVI was negatively correlated with GWTs and SWTs for all the grids
with coastal wetland degradation (Figure 9a,c,e) but positively correlated with GWTs and
SWTs for the grids where coastal wetlands did not degrade (Figure 9b,d). For the grids with
wetland degradation, the negative correlations between NDVI and SWTs were more robust
than those between NDVI and GWTs, especially in the summer season. These features are
much more apparent for Type 6 and Type 5 degradations (Figure 9a,c). Their correlations
between NDVI and summer SWTs are −0.53 and −0.68 (p values < 0.01), respectively.
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out degradation, summertime SWTs and GWTs have never reached that height (Figure 
10b). The results suggest that inundation negatively impacted the emergent herbaceous 
wetland, and 0.16 m above the ground might be a critical threshold of the water table for 
emergent herbaceous plants’ survival. 

Figure 9. Correlations of grid-wise mean annual maximum NDVI to seasonal/annual mean saltwater
tables (SWTs) and groundwater tables (GWTs) for different types of wetland evolution. (a) H2N:
Emergent herbaceous wetlands degrading to non-vegetated areas (Type 6 degradation). Due to
the fact that this triangular irregular grid was next to the sea (Figure 8a), and the simulated SWT
was above the land surface, there was no distinction between saltwater and ground freshwater.
Therefore, only the grid-wise mean annual maximum NDVI time series with seasonal/annual mean
SWTs were presented; (b) H2H: Emergent herbaceous wetlands without degradation; (c) T2H:
Transitional forested wetlands degrading to emergent herbaceous wetlands (Type 5 degradation);
(d) T2T: Transitional forested wetlands without degradation; (e) F2T: Forested wetlands degrading to
transitional forested wetlands (Type 3 degradation). p < 0.05 is denoted with a single star (*); p < 0.01
is denoted with double stars (**).

3.3.3. Thresholds of Water Table Depth to Coastal Wetland Degradation

We analyzed how summer GWTs and SWTs variations impact wetland degradation
because summertime water tables (GWTs and SWTs) were most correlated with grid-wise
mean annual maximum NDVI (Figure 9). Figure 10a shows the evolution of grid-wise mean
annual maximum NDVI and summer SWTs for the pixels with the Type 6 degradation
(i.e., emergent herbaceous wetlands degrading to non-vegetated areas). In 1995, the NDVI
value was 0.18, suggesting that it was an emergent herbaceous wetland (0.1 ≤ NDVI < 0.4).
From 1995 to 2009, although the NDVI values of the wetland were occasionally below 0.1
due to environmental stresses/disturbances, its value came back to be higher than 0.1 a
year later before 2010. Things changed in 2011. Its NDVI value fell from 0.13 to 0.06 in the
year (2011) and never recovered by the end of the study period (2019), indicating that the
emergent herbaceous wetlands degraded to non-vegetated areas (Type 6 degradation) in
2011. Correspondingly, the summertime SWT rose above ground by 0.16 m and maintained
a high level after 2011. However, for emergent herbaceous wetlands without degradation,
summertime SWTs and GWTs have never reached that height (Figure 10b). The results
suggest that inundation negatively impacted the emergent herbaceous wetland, and 0.16 m
above the ground might be a critical threshold of the water table for emergent herbaceous
plants’ survival.
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grading to non-vegetated areas). Summer mean GWTs are not presented for the same reason in 
Figure 9a; (b) Emergent herbaceous wetlands without degradation; (c) Type 5 degradation (transi-
tional forested wetlands degrading to emergent herbaceous wetlands); (d) Transitional forested 
wetlands without degradation; (e) Type 3 degradation (forested wetlands degrading to transitional 
forested wetlands). Red and black horizontal dash lines represent the critical thresholds for emer-
gent herbaceous wetlands (0.16 m) and woody wetlands (−0.10 m), respectively. Solid dots in red 
highlight NDVI, SWTs, and GWTs of degraded wetlands in the year degradation occurred. 

For the pixels with the Type 5 degradation, forested wetlands transitioned to emer-
gent herbaceous wetlands in 2003 (Figure 10c). The SWT dramatically rose from −0.11 m 
in 2002 to −0.05 m in 2003 and kept a high value greater than −0.10 m after that. Similar 
water table changes were also found for the Type 3 degradation in 2010 (Figure 10e); the 
SWT of the wetlands was −0.12 m in 2009, then it jumped to −0.07 m in 2010, and never 

Figure 10. Evolution of the grid-wise mean annual maximum NDVI (left), summer GWTs (right, unit:
m), and SWTs (right, unit: m) for (a) Type 6 degradation (emergent herbaceous wetlands degrading
to non-vegetated areas). Summer mean GWTs are not presented for the same reason in Figure 9a;
(b) Emergent herbaceous wetlands without degradation; (c) Type 5 degradation (transitional forested
wetlands degrading to emergent herbaceous wetlands); (d) Transitional forested wetlands without
degradation; (e) Type 3 degradation (forested wetlands degrading to transitional forested wetlands).
Red and black horizontal dash lines represent the critical thresholds for emergent herbaceous wetlands
(0.16 m) and woody wetlands (−0.10 m), respectively. Solid dots in red highlight NDVI, SWTs, and
GWTs of degraded wetlands in the year degradation occurred.

For the pixels with the Type 5 degradation, forested wetlands transitioned to emergent
herbaceous wetlands in 2003 (Figure 10c). The SWT dramatically rose from −0.11 m in 2002
to −0.05 m in 2003 and kept a high value greater than −0.10 m after that. Similar water table
changes were also found for the Type 3 degradation in 2010 (Figure 10e); the SWT of the
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wetlands was −0.12 m in 2009, then it jumped to −0.07 m in 2010, and never dropped back
to lower than −0.10 m since 2010. Correspondingly, in 2010, forested wetlands degraded to
transitional forested wetlands. In contrast, for the woody wetlands without degradation,
the summertime SWT was lower than −0.10 m (Figure 10d). These results implied that the
summertime SWT within 10 cm below the ground is critical for woody vegetation.

Figure 10 also provided insight into the opposite correlations between water tables
and NDVI for degraded wetlands (Figure 9a,c,e) and non-degraded wetlands (Figure 9b,d).
For the non-degraded emergent herbaceous wetlands (Figure 10b), during the 25 years,
although the SWT had risen from −0.30 m in 1995 to −0.12 m in 2019 (Figure 10b), it still
below the critical value (0.16 m). Meanwhile, rising GWTs allowed the plants to quickly
draw fresh water from the soil, conducive to vegetation growth and increasing NDVI
values [93]. Thus, positive correlations exist between water tables (GWTs and SWTs) and
NDVI values in non-degraded wetlands (Figure 9b). On the contrary, for the degraded
emergent herbaceous wetland (Figure 10a), the water table rose above the critical threshold
(0.16 m), leading to the decline of vegetation (i.e., decreases of NDVI values). As a result,
negative correlations between water tables and NDVI values can be found in the degraded
wetlands (Figure 9a). Similar phenomena are observed in degraded (Figures 9c,e and 10c,e)
and non-degraded woody wetlands (Figures 9d and 10d).

Coastal marshes have been widely considered salt-tolerant, while forests are salt-
sensitive [20,52,94], which was also confirmed by our results. However, the thresholds of
the water table for emergent herbaceous wetland and woody wetland survival are site-
specific. These thresholds may change in other coastal wetland regions. As mentioned
in Section 2.1, our study area is in a lagoonal environment with a micro-tidal inundation
regime dominated by infrequent wind tides. Salinity in the sounds around the study
area is controlled by the balance between the inflow of the Atlantic Ocean marine water
through inlets along the Outer Banks and freshwater input from rivers, making this area
an oligohaline condition [46,95–97]. Therefore, the ARNWR is distinct from other coastal
wetlands due to its particular geomorphologic configuration. For a different wetland
region with different hydraulic, vegetation, soil, climate, and geomorphologic settings,
the PIHM-Wetland model could help to simulate the surface and subsurface hydrologic
processes after modifying model parameters.

4. Conclusions

A new scheme is proposed to detect where and when coastal wetland degradation
occurred on a regional scale by combining traditional remote sensing techniques and
wetland hydrologic modeling. Applying the scheme to the ARNWR in NC, USA, we
identified the spatio-temporal patterns of six types of coastal wetland degradation from
1995 to 2019 and determined critical thresholds of water tables for the degradation of
different coastal wetland types.

Most of the coastal wetland degradation occurred within 2 km of the shoreline and in
the past five years. During the 25-year study period, about 8.8% of the total wetlands have
degraded, and 1.4% have been de-vegetated, mostly converted to open water. Although
380 ha of emergent herbaceous wetlands were converted into open water, the total area of
emergent herbaceous wetlands increased by 213.0%, primarily due to a net loss of 1388 ha
of woody wetlands.

The PIHM-Wetland model confirmed that both groundwater tables and saltwater
tables were negatively (positively) correlated with NDVI within degraded (non-degraded)
coastal wetlands. Rising sea levels and/or flooding inundated the emergent herbaceous
wetlands on the shoreline, causing emergent herbaceous wetlands to degrade to non-
vegetated areas. Elevated saltwater table posed stresses on inland forested wetlands and
transitional forested wetlands, moving woody-herbaceous boundary further inland. In
addition, we determined critical thresholds of water tables for the degradation of different
coastal wetland types. Specifically, in the ARNWR, emergent herbaceous wetlands are
likely to degrade when the water table is 0.16 m above the ground. In contrast, woody
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plants are more sensitive to the rising of the saltwater table. When the saltwater tables are
higher than −0.10 m, the forested and transitional wetlands are inclined to degrade.

This study establishes a remote sensing–hydrologic model integrated scheme for
assessing coastal wetland health. Such a scheme offers an advanced tool in detecting and
understanding coastal wetland degradation at a large scale and can be extended to other
coastal wetland regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13030411/s1, Figure S1: Annual average sea levels observed
at the local station Oregon Inlet Marina, NC from 1995 to 2019; Figure S2: Time series of NDVI of a
randomly selected pixel with the Type 6 wetland degradation within ARNWR. Figure S3: Correlations
of grid-wise mean seasonal NDVI to the seasonal saltwater table and groundwater table for different
types of wetland evolution. Figure S4: Evolutions of the grid-wise mean seasonal NDVI, seasonal
GWTs, and SWTs for degraded/non-degraded wetlands.
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