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Abstract: Pinus densiflora is an important evergreen coniferous species with both economic and
ecological value. It is an endemic species in East Asia. Global climate warming greatly interferes
with species survival. This study explored the impact of climate change on the distribution of this
species and the relationship between its geographical distribution and climate demand, so as to
provide a theoretical basis for the protection of P. densiflora under the background of global warming.
This research used 565 valid data points and 19 typical climatic environmental factors distributed
in China, Japan, and South Korea. The potential distribution area of P. densiflora in East Asia under
the last glacial maximum (LGM), mid-Holocene, the current situation and two scenarios (RCP 2.6
and RCP 8.5) in the future (2050s and 2070s) was simulated by the MaxEnt model. The species
distribution model toolbox in ArcGIS software was used to analyze the potential distribution range
and change of P. densiflora. The contribution rates, jackknife test and environmental variable response
curves were used to assess the importance of key climate factors. The area under the receiver-
operating characteristic curve (AUC) was used to evaluate model accuracy. The MaxEnt model had
an excellent simulation effect (AUC = 0.982). The forecast showed that the Korean Peninsula and
Japan were highly suitable areas for P. densiflora, and the area had little change. Moreover, during the
LGM, there was no large-scale retreat to the south, and it was likely to survive in situ in mountain
shelters. The results suggested that Japan may be the origin of P. densiflora rather than the Shandong
Peninsula of China. The distribution area of P. densiflora in the mid-Holocene and future scenarios
was reduced compared with the current distribution, and the reduction of future distribution was
greater, indicating that climate warming will have certain negative impacts on the distribution of
P. densiflora in the future. The precipitation of the warmest quarter (Bio18), temperature seasonality
(Bio4), mean annual temperature (Bio1) and mean temperature of the wettest quarter (Bio8) had the
greatest impact on the distribution area of P. densiflora.

Keywords: Pinus densiflora; climate change; habitat distribution; MaxEnt

1. Introduction

Since the Quaternary Period (from 2.58 Ma to now), the drastic changes in the earth’s
climate had an important impact on the current distribution pattern of species [1]. Ac-
cording to the sporopollen data, under the background of global cooling during the last
glacial maximum (LGM), the vegetation types in Eurasia and North America retreated
to the equator, and the forest area decreased and fragmented to varying degrees [2]. In
the recent warm period (mid-Holocene), due to the high temperature and humidity, the
forest belt in the northern middle latitude of Eurasia moved slightly northward, and the
warm temperate evergreen broad-leaved forest and mixed forest in China also moved
northward [2,3]. Obviously, climate has far-reaching impacts on the distribution range of
species and is a key factor determining the distribution of species on a large scale [4].

The fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC)
points out that the global climate is obviously warming [5]. With global warming, species
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distribution, population size and genetic diversity will change [6], which will lead to plant
migration, endangerment and even extinction [7–12]. Therefore, we should study the
response of the plant distribution pattern to climate change and understand the climate
demand of organisms and its relationship with the species geographical distribution. It is
important to reveal the history of species formation, migration and diffusion and to put
forward reasonable strategies for species diversity protection [13].

Species distribution models have been widely used to study the effects of climate
change on the potential geographic species distribution based on maximum temperature,
minimum temperature, relative humidity, rainfall and other environmental factors [14–19].
The MaxEnt model can simulate the potential geographic distribution of species based
on environmental variable layers, species distribution records, machine learning and the
maximum entropy principle. The MaxEnt model is suitable where the number of species
distribution points is uncertain and the correlation between environmental variables is
unclear [20,21]. Therefore, it is very suitable for modeling species distribution [22–24].
Moreover, MaxEnt is suitable when compared with other current approaches because it
works with “presence data only” and cannot detect and collect ‘absence data’, which are
rarely available [18,25]. The MaxEnt model has a continuous output (a maximum likelihood
estimate of the relative probability of presence) instead of a deterministic role [26]. The
MaxEnt model is widely used to study the relationship between species distribution
dynamics and climate change [27]. It is also used to predict the sanctuary of organisms
during the ice age [28,29].

P. densiflora can endure drought and barrenness, is an excellent pioneer species for
secondary succession, and, thus, is crucial for reforestation and soil and water conserva-
tion [30]. The seed propagation of P. densiflora can be used for reforestation in the steeper
barren hills. It can also be used as an ornamental tree species for afforestation in the sandy
land on both sides of rivers [31]. P. densiflora is one of the established species of temperate
coniferous forests in temperate and warm temperate forest regions. Moreover, a large
area of forest communities has formed in the eastern part of the Liaodong Peninsula and
Jilin Province, South Korea, North Korea, Russian Far East, and Japan [32]. Therefore,
P. densiflora is endemic to East Asia. However, global warming may change the distribution
of the P. densiflora due to the associated climate factors.

Many studies have assessed the population ecology, community characteristics, man-
agement techniques, and individual growth characteristics of P. densiflora in China and
abroad [33,34]. However, no study has reported on the suitable distribution of P. densiflora.
This study developed a prediction model employing extensive geo-referenced collections,
field surveys data, presence data, and bioclimatic variables via a species distribution model
with MaxEnt software. This study aimed to: (1) identify the most significant environmental
factors influencing the potential distribution of P. densiflora and (2) predict the change trend
of the geographical distribution of P. densiflora in different historical periods so as to provide
a scientific basis for the formulation of protection policy, the delimitation of reserve and
resource management of P. densiflora.

2. Materials and Methods
2.1. Data Collection

This study collected the distribution data of P. densiflora from the Global Biodiversity
Information Facility (https://www.gbif.org (accessed on 25 November 2021)), the Chinese
Virtual Herbarium (http://v5.cvh.org.c/ (accessed on 25 November 2021)), and survey
data. The data were sifted to eliminate repetitive samples and any samples without
detailed location information. Duplicate records were deleted and filtered spatially so
that only one point occurred within each grid cell (10 km × 10 km). This study obtained
565 comprehensive and accurate distribution records (Figure 1). The longitude and latitude
coordinates of the samples were recorded in the Excel database and converted into CSV
format for developing the MaxEnt model.

https://www.gbif.org
http://v5.cvh.org.c/
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Figure 1. Current distribution sites and potential distribution area of P. densiflora.

2.2. Climatic Data

Environmental variables are key factors affecting species distribution. The climate
data of the LGM, the mid-Holocene and the current climate data include 19 bioclimatic
variables. This study selected the 19 bioclimatic variables (Bio1-Bio19) from the world
climate database (www.worldclim.org (accessed on 20 May 2021)) using a spatial resolution
of 2.5 arc-minutes [35]. The future climate data (2050s and 2070s) were determined based
on the CCSM4 model, which has a strong simulation capability [36]. The model has four
emission scenarios from the Fifth Emission Report of the IPCC. This study chose the
lowest and the highest emission scenarios, RCP2.6 and RCP8.5, respectively. The ArcGIS
conversion tool was used to convert the environmental factors into the ASCII format.

2.3. Model Simulation

MaxEnt software (MaxEnt 3.3.3 http://www.cs.princeton.edu/wschapire/Maxent/
(accessed on 10 May 2020)) was used for modeling [37]. This study used 75% of the data
for training, and the remaining 25% were used to test the model’s ability to predict the
species distribution. Threshold-independent receiver-operating characteristic analysis
(ROC) was used to calibrate the model and validate its robustness. The area under the
receiver-operating characteristic curve (AUC) was used for additional precision. A jackknife
test was used to assess the relative importance of each variable [17]. Through SPSS 23.0
software, the Pearson correlation coefficient was used to test the multicollinearity among
the 19 climatic variables, and, finally, 7 climatic variables were selected for subsequent
modeling [38] (Table 1). ArcGIS 10.4 software was used for visual processing, and a natural
breakpoint classification method was adopted. According to the corresponding fitness
index (FI), the distribution area of P. densiflora was divided into four grades: high suitability
(FI≥ 0.6), medium suitability (0.4≤ FI < 0.6), low suitability (0.2 < FI < 0.4) and not suitable
(FI ≤ 0.2) [39]. The distribution prediction map of the potential fitness area of P. densiflora
in East Asia was drawn.

www.worldclim.org
http://www.cs.princeton.edu/wschapire/Maxent/
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Table 1. Environmental data used in this study.

Abbreviation Description Whether to Use for Modeling

Bio1 Mean Annual Temperature (◦C) Yes
Bio2 Mean Diurnal Range (Mean of monthly (max temp-min temp)) (◦C) No
Bio3 Isothermally (Bio2/Bio7) (×100) Yes
Bio4 Temperature Seasonality (standard deviation ×100) (C of V) Yes
Bio5 Max Temperature of Warmest Month (◦C) No
Bio6 Min Temperature of Coldest Month (◦C) No
Bio7 Temperature Annual Range (Bio5–Bio6) (◦C) No
Bio8 Mean Temperature of Wettest Quarter (◦C) Yes
Bio9 Mean Temperature of Driest Quarter (◦C) Yes

Bio10 Mean Temperature of Warmest Quarter (◦C) No
Bio11 Mean Temperature of Coldest Quarter (◦C) No
Bio12 Annual Precipitation (mm) No
Bio13 Precipitation of Wettest Month (mm) Yes
Bio14 Precipitation of Driest Month (mm) No
Bio15 Precipitation Seasonality (C of V) No
Bio16 Precipitation of Wettest Quarter (mm) No
Bio17 Precipitation of Driest Quarter (mm) No
Bio18 Precipitation of Warmest Quarter (mm) Yes
Bio19 Precipitation of Coldest Quarter (mm) No

2.4. Geospatial Analysis

ArcGIS 10.4 software was used to calculate the area of the different suitable areas in
each period, and SDM toolbox 2.4 tool was used to calculate the potential distribution
area and distribution center change of P. densiflora in the different periods. In ArcGIS 10.4
software, the “reclass” function was used to modify the grid values corresponding to the
suitable and not suitable areas that were predicted in each period of P. densiflora to 1 and 0,
respectively, and then to add the SDM toolbox and select the “MaxEnt Tools” subdirectory
in the “SDM Tools” module. The “distribution changes between binary SDMs” tool was
used to successively calculate the area change range of the potential distribution areas
in each period and to obtain the expansion area, stable area and contraction area of the
distribution. The “centroid changes (lines)” tool was used to calculate the geometric center
of displacement of the predicted distribution in the different periods and to detect the
overall change trend of the P. densiflora distribution area [40].

3. Results
3.1. Evaluation of MaxEnt Model Prediction Accuracy

The MaxEnt3.3.3k software was used to simulate the potential geographic distribution
of P. densiflora in East Asia based on 565 current distribution record data points and 7 climatic
variables. The average AUC value of the 10 replicates was 0.982 (Figure 2), indicating an
excellent level. The AUC values of the LGM, mid-Holocene and future (2050s and 2070s)
simulations were as high as 0.980 or more, indicating that the prediction results of the
MaxEnt model were accurate and suitable.

3.2. Climate-Dominant Factors and the Potential Distribution Areas of P. densiflora

The precipitation of the warmest quarter (Bio18) (67.7%), temperature seasonality
(Bio4) (13.9%), mean annual temperature (Bio1) (6.6%), mean temperature of the wettest
quarter (Bio8) (5.6%) and isothermality (Bio3) (5.1%) had the greatest impacts on the
distribution range of the P. densiflora population (Figure 3, Table 2). These results show that
precipitation and temperature are the main environmental factors affecting the distribution
of P. densiflora plants in East Asia. The response curve of P. densiflora plants to the main
climatic factors is shown in Figure 4. When the FI was greater than or equal to 0.6, the
suitability grade was a high-suitability distribution. The precipitation of the warmest
quarter (650–800 mm), temperature seasonality (900–1050), mean annual temperature
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(10–13 ◦C) and mean temperature of the wettest quarter (23–24 ◦C) were the major climatic
factors at this time.
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Figure 3. The impacts of the environmental variables on the distribution gain of P. densiflora detected
using the jackknife test.

Table 2. Contribution rate of the climatic factors.

Abbreviation Description Contribution (%)

Bio1 Mean Annual Temperature (◦C) 6.6
Bio3 Isothermality (Bio2/Bio7) (×100) 5.1
Bio4 Temperature Seasonality (standard deviation ×100) (C of V) 13.9
Bio8 Mean Temperature of the Wettest Quarter (◦C) 5.6
Bio9 Mean Temperature of the Driest Quarter (◦C) 0.2

Bio13 Precipitation of the Wettest Month (mm) 0.9
Bio18 Precipitation of the Warmest Quarter (mm) 67.7
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Figure 4. Response curves of the major climate factors. (a) Precipitation of the Warmest Quarter
(mm), (b) Temperature Seasonality (standard deviation ×100) (C of V), (c) Mean Annual Temperature
(◦C), (d) Mean Temperature of the Wettest Quarter (◦C).

The current distribution area of P. densiflora was mainly between 32–45.3◦ N and
114–141◦ E (Figure 1). The total suitable area was about 3.62 × 106 Km2. The areas of the
high-, medium- and low-suitability areas were about 5.24 × 105 Km2, 5.81 × 105 Km2 and
1.42 × 106 Km2, respectively (Table 3). Heilongjiang, Jilin, Liaoning, Shandong, Jiangsu,
Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guizhou, Henan, Hebei, North Korea, Korea and
Japan were the suitable areas for P. densiflora. The Korean Peninsula, Japan and China’s
Jilin Province, Liaoning Province and Shandong Province were the highly suitable areas.
Zhejiang, Jiangxi and Hubei had some fragmented distribution (Figure 1).

Table 3. Dynamics of the changes in the suitable habitat area under the different climate scenarios.

Period Low Suitability
Area/104 km2

Moderate
Suitability

Area/104 km2

High Suitability
Area/104 km2

Total Suitable
Area/104 km2

LGM 128.78 59.41 80.6 268.79
Mid-Holocene 171.32 76.27 72.29 319.88

Current 232.75 74.69 54.62 362.06
PCR2.6-2050 142.21 58.18 52.36 252.75
PCR2.6-2070 119.92 49.86 61.27 231.05
PCR 8.5-2050 131.11 58.66 53.79 243.56
PCR 8.5-2070 127.52 46 56 229.52

3.3. Potential Distribution and Changes of P. densiflora

In the LGM, mid-Holocene, current situation and future scenarios, the suitable area
shows a single-peak trend, and the current area is the peak (Figures 1 and 5, Table 3). The
total suitable areas of the LGM and the mid-Holocene decreased by 25.76% and 11.65%,
respectively. However, the high-suitability area increased by 47.56% and 32.35%, respec-
tively. During the LGM and the mid-Holocene, the medium-suitability area decreased by
20.46% and 20.12%, respectively, and the low-suitability area decreased by 44.67% and
26.40%, respectively. Under the RCP 2.6 scenario, the total suitable area in 2050 will be
about 2.52 × 106 km2, 30.19% less than the current distribution area. The high-suitability
area will decrease by 4.13%, the medium-suitability area will decrease by 22.10% and the
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low-suitability area will decrease by 38.90%. The total suitable area in 2070 will be about
2.31 × 106 km2, 36.18% less than the current distribution area. The high-suitability area
will increase by 12.18%, the medium-suitability area will decrease by 33.24% and the low
suitability area will decrease by 48.48%. Under the scenario of RCP 8.5, the total suitable
area in 2050 will be about 2.43 × 106 km2, 32.73% less than the current distribution area.
The high-suitability area will increase by 1.50%, the medium-suitability area will decrease
by 21.46% and the low-suitability area will decrease by 43.67%. In 2070, the total suitable
area will be about 2.30 × 106 km2, 36.61% less than the current distribution area. The
high-suitability area will decrease by 2.53%, the medium-suitability area will decrease by
38.41% and the low-suitability area will decrease by 45.21% (Table 3, Figure 5).
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As can be seen from Figures 6 and 7, the centroid (123◦33′ E, 36◦2′ N) of the habitat in
the LGM period was close to the Shandong Peninsula. Compared with current situation, the
latitude was increased by 3.42◦, and the distribution area was shrinking in most directions,
only slightly expanding in the northwest and northeast. The centroid (118◦ E, 33◦59′ N) of
the habitat in the mid-Holocene was in Jiangsu Province, China. Compared with the current,
the latitude was increased by 1.36◦, and the distribution area has obviously contracted
in the southeast and northeast, with slight expansion in the other directions. Under the
RCP 2.6 scenario, the distribution center of P. densiflora in 2050 will be located in Anhui
Province, China, which is about 0.46◦ higher than the current distribution center latitude.
The distribution area will obviously shrink in southeast and northeast China, will slightly
expand in northwest and northeast China and new suitable areas will appear in areas close
to Russia. The distribution center of P. densiflora in 2070 will increase by 0.42◦ compared
with that of 2050. The distribution area will contract significantly in southeast and northeast
China, and new suitable areas will appear in the coastal areas of Russia (Figures 6 and 7).
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Under the RCP 8.5 scenario, the distribution center in 2050 will also be located in Anhui
Province, China, which is about 0.72◦ higher than the current distribution center. The
distribution area will shrink significantly in northeast and southwest China, will only
expand slightly in a few areas and new suitable areas will appear in the coastal areas of
Russia. The distribution center of P. densiflora in 2070 will decrease by 0.1◦ compared with
that of 2050. The distribution area will contract significantly in northeast China, and new
suitable areas will appear in the coastal areas of Russia (Figures 6 and 7).
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4. Discussion

A detailed understanding of species distribution is crucial for the rehabilitation and
use of a species in an ecosystem [24,41]. This study performed a detailed analysis of the
suitable habitat for P. densiflora, providing an important first step in developing strategies
and policies for the management and utilization of P. densiflora.

4.1. Evaluation of the MaxEnt Model

Models are usually evaluated using overall accuracy, sensitivity, specificity, kappa
and true skill statistic indicators [42,43]. The threshold cannot affect the ROC curve. As a
result, the ROC curve is presently considered one of the best evaluation indicators. MaxEnt
software can directly draw the ROC curve and calculate the AUC value of the model and
is, thus, convenient for judging the predictive effect of the model. Therefore, ROC curves
are widely used in the evaluation of MaxEnt models. The stability of a model is usually
verified using 10 repeated AUC values. Herein, the average AUC value of the 10 repeated
runs of the model was 0.982, indicating that the simulation effect was ‘excellent’, and, thus,
the model can be used to simulate the potential distribution of P. densiflora in East Asia [44].

4.2. Habitat Suitability Response to Environmental Variables

Herein, Bio18, Bio4, Bio1 and Bio8 were the predominant variables influencing the
potential distribution of P. densiflora, indicating that those factors play important roles
in its distribution. Bio18 is one of the environmental factors affecting plant growth and
can be used to understand the effect of climate change on plant species diversity [45].
Precipitation is correlated with many environmental factors influencing the physiological
and biochemical processes of plants, e.g., soil moisture is the main factor affecting the plant
assimilation rate [46]. Excessive water can cause root rot, promoting pest and disease inva-
sion, especially at high temperatures and extremely high humidity [47]. Herein, the optimal
Bio18 value of P. densiflora was 650–800 mm, indicating a greater demand for precipita-
tion, consistent with the current distribution of P. densiflora. Moreover, the high-suitability
area was mainly in the temperate coastal mountains and plains. P. densiflora is a strong
light-loving species. Moreover, it has a strong cold resistance and is not affected by frost
damage at −40 ◦C, indicating that P. densiflora has strong adaptability to low temperatures.
The response curves of Bio4, Bio1 and Bio8 showed that temperature significantly affects
P. densiflora. However, the predicted reduction of the suitable area of P. densiflora in the
future showed that it is very sensitive to climate change. Therefore, a reasonable cultivation
technique must be adopted based on the growth traits when cultivating P. densiflora in
different regions.

Besides the above climatic factors, some other factors, such as soil texture and human
activities, can influence the suitable habitats for P. densiflora. Sandy soil is loose and allows
water discharge. Poor water discharge can cause plant disease, insect attack and root rot.
Therefore, sandy soils can effectively avoid such issues. The effects of land use transforma-
tion can also significantly increase the spatial extent of unsuitable habitats [48]. Although
this study suggested that P. densiflora has a wide distribution area, much of the suitable
area may disappear due to human exploitation. Therefore, further studies are needed to
verify the anthropogenic effects on the adaptation of P. densiflora to future climates.

4.3. Geographical Distribution and Change of P. densiflora

Although fossil sporopollen data show that the cold and dry climate during the Qua-
ternary glacial period forced many plants to migrate and take refuge southward, and the
northern boundary of the evergreen broad-leaved forest retreated southward (24◦ N) [2].
However, a large number of phylogeographic studies have revealed the pattern of in
situ refuge of subtropical plants in multiple shelters, and the potential distribution areas
predicted by many plants in the last glacial period have not completely retreated to the
south of 24◦ N [49]. During the LGM, the total suitable area contracted significantly in
the southeast (Figure 6). The Korean Peninsula and Japan were high-suitability areas for
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P. densiflora, and the areas had little change in different periods (Figure 5). The overlapping
areas of the past models and the current distribution may suggest a refuge area with rich
genetic diversity [50–52]. Moreover, the mountainous area itself has a high topographic het-
erogeneity, maintains a high species diversity and uniqueness and is usually an important
refuge for animals and plants. Therefore, it can be inferred that the P. densiflora population
did not retreat southward on a large scale during the LGM. It is likely to have survived
in the refuge formed by the complex mountainous terrain and mild microenvironment of
Japan and the Korean Peninsula. It has not been adversely affected or restricted by the ice
age, so it can also be speculated that Japan may be the origin of P. densiflora.

Many studies have shown that climate warming may reduce the potential distribution
area of species [53,54]. Compared with the last glacial period, the climate in the mid-
Holocene was warmer and wetter. The total suitable area was increased, but the high-
suitability area had little change (Figure 5, Table 3). The reason is that P. densiflora is a species
with a wide distribution range and strong ecological adaptability, which is related to a
variety of environmental conditions in this area [24]. In a certain range, global warming can
affect precipitation, accelerate the phenological process and prolong the growth season [55].
This study showed that the potential geographical distribution of P. densiflora under the two
emission scenarios in the future will be significantly reduced compared with the current
distribution area (Table 3), resulting in fragmentation (Figure 5). It showed that the future
climate warming will have certain negative impacts on the growth of P. densiflora, and
the habitat reduction of P. densiflora in the future will be much greater than that in the
historical period. The distribution area will shrink significantly in the southeast, and the
suitable areas in the southeast coast of Russia will increase significantly. The high-suitability
areas will still be concentrated in Japan, the Korean Peninsula, Liaodong Peninsula and
Shandong Peninsula (Figures 5 and 6), indicating the strict requirements of P. densiflora to
the temperature and precipitation range.

Research has shown that global climate change leads to the continuous rise of global
temperature, precipitation mode (time and space) and precipitation intensity [56]. More
than half of the research objects may be threatened by the 2080s, assuming that the species
cannot spontaneously spread in Europe [7]. As a result, many species will migrate with
global warming [6,57,58]. The results of this study showed that the distribution center
of P. densiflora changes to a small northward migration from current to the future climate
scenario. It showed the trend of north-south migration between the glacial and non-glacial
periods (Figure 7). It is probably due to the formation of glaciers in the high-altitude and
high-latitude areas under the glacial climate scenario that the species migrated to low-
latitude and low-altitude areas. After entering the Holocene, the glaciers melted, and the
species migrated to the high-altitude area with the continuous increase of temperature [59].
In short, the total suitable area of P. densiflora is different in different periods, but the
high-suitability area is stable. It showed that P. densiflora had strong adaptability to climate
change and had no extreme regression due to severe climate fluctuations. P. densiflora still
had a broad and suitable natural habitat.

5. Conclusions

Estimating how climate change will affect the distribution of P. densiflora species is
of vital importance for conservation. Herein, the MaxEnt model was used to identify a
wide suitable habitat for P. densiflora. The suitable habitat for P. densiflora in East Asia was
about 3.62 × 106 Km2. The Bio18, Bio14, Bio1 and Bio8 climatic factors were 650–800 mm,
900–1050, 10–13 ◦C and 23–24 ◦C in the high-suitability distribution area, respectively. From
the past to the future, the distribution area showed a single peak trend, and the current
distribution area was the largest. Under the different climate scenarios, the distribution
center of P. densiflora showed the trend of north-south migration between the glacial and
non-glacial periods. Under the future climate scenarios, the potential habitat range of
P. densiflora may increase fragmentation, which will have significant negative impacts on
the habitat of P. densiflora. P. densiflora plays an important role in the stability of the local
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ecosystem. Therefore, this research can provide a scientific basis for the response to climate
change and the protection and management of habitat.
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