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Abstract: A key aspect of vegetation monitoring from LiDAR is concerned with the use of comparable
data acquired from multitemporal surveys and from different sensors. Accurate digital elevation
models (DEMs) to derive vegetation products, are required to make comparisons among repeated
LiDAR data. Here, we aimed to apply an improved empirical method based on DEMs of difference,
that adjust the ground elevation of a low-density LiDAR dataset to that of a high-density LiDAR one
for ensuring credible vegetation changes. The study areas are a collection of six sites over the Sierra
de Gredos in Central Spain. The methodology consisted of producing “the best DEM of difference”
between low- and high-density LiDAR data (using the classification filter, the interpolation method
and the spatial resolution with the lowest vertical error) to generate a local “pseudo-geoid” (i.e.,
continuous surfaces of elevation differences) that was used to correct raw low-density LiDAR ground
points. The vertical error of DEMs was estimated by the 50th percentile (P50), the normalized median
absolute deviation (NMAD) and the root mean square error (RMSE) of elevation differences. In
addition, we analyzed the effects of site-properties (elevation, slope, vegetation height and distance
to the nearest geoid point) on DEMs accuracy. Finally, we assessed if vegetation height changes were
related to the ground elevation differences between low- and high-density LiDAR datasets. Before
correction and aggregating by sites, the vertical error of DEMs ranged from 0.02 to−2.09 m (P50), from
0.39 to 0.85 m (NMDA) and from 0.54 to 2.5 m (RMSE). The segmented-based filter algorithm (CSF)
showed the highest error, but there were not significant differences among interpolation methods or
spatial resolutions. After correction and aggregating by sites, the vertical error of DEMs dropped
significantly: from −0.004 to −0.016 m (P50), from 0.10 to 0.06 m (NMDA) and from 0.28 to 0.46 m
(RMSE); and the CSF filter algorithm continued showing the greatest vertical error. The terrain slope
and the distance to the nearest geoid point were the most important variables for explaining vertical
accuracy. After corrections, changes in vegetation height were decoupled from vertical errors of
DEMs. This work showed that using continuous surfaces with the lowest elevation differences (i.e.,
the best DEM of difference) the raw elevation of low-density LiDAR was better adjusted to that
of a benchmark for being adapted to site-specific conditions. This method improved the vertical
accuracy of low-density LiDAR elevation data, minimizing the random nature of vertical errors and
decoupling vegetation changes from those errors.

Keywords: multitemporal LiDAR; DEMs of difference; filtering algorithm; vertical error; pseudo-
geoid; vegetation growth

1. Introduction

A detailed understanding of the magnitude and source of error in LiDAR elevation
data and its derived products (i.e., digital elevation models (DEMs) and canopy height
models [CHMs]) is necessary for operational use of LiDAR in deriving accurate forest
inventory metrics [1–4]. Errors in the DEMs propagate to vegetation metrics hindering
multitemporal comparison [2,3,5]. However, the accuracy of the LiDAR derived DEMs has
been often overlooked, although each stage of the modelling process potentially introduces
error into the DEMs [6,7].
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The general principle of assessing the vertical accuracy of an elevation dataset is
to compare those elevations with a reference data, so that statistical parameters, such
as the root mean square error (RMSE), can be calculated [8]. Usually, the quantitative
assessment of LiDAR elevation data is conducted by comparing “true” terrain checkpoints
with LiDAR ground elevations by using DEMs [2,3]. The two DEMs are paired, and an
elevation difference is calculated for each pairing (i.e., DEMs of difference) [4,8,9]. The
main drawback of this approach is that field surveying is very time consuming and, in
some situations, such as in densely forested areas, it is impossible to collect elevation
data [10]. When true ground points are not available, interpolated checkpoints from
high-density LiDAR ground data have been used as benchmark DEM to either assess the
quality, correct other less accurate DEMs, or both, as photogrammetric [9,11] or satellite
derived ones (i.e., SRTM) [12,13] using DEMs of difference as procedure. This method has
demonstrated being robust to estimate vertical errors but only a few times, it has been
used to correct raw elevation values [12,13]. In the latter cases, elevation differences were
corrected by means of regression analysis, using several checkpoints but the corrected
DEMs continued being affected by the random nature of the elevation errors. Using
DEMs of difference as a local pseudo-geoid (i.e., all interpolated points with elevation
deviations) allow adjusting less accurate elevation data (e.g., low-density LiDAR) by means
of continuous elevation surfaces instead of only checkpoints. This procedure reduces
random and other methodological elevation errors increasing the comparability between
DEMs and derived vegetation products.

However, distinguishing between real changes and instrumental or methodological
noise requires appropriate error analysis to ensure that DEMs of differences are reliable [14].
Moreover, it has been seen that LiDAR errors are not constant within a site line but possibly
even neither within a single scan line [15]. The quality of LiDAR elevation data depends
on several factors that can be grouped as follows: instrumental, methodological, and site-
specific [3–5,15–18]. Developing suitable corrections for such bias has been challenging
because several factors contribute to the underestimation or overestimation of elevation
with respect to the benchmark one.

The elimination or reduction of instrumental errors in the system parameters have been
the focus of LiDAR research [15,19–21]. Instrumental errors are related to vertical accuracy,
density and spatial distribution of elevation points [8]. Errors in the vertical accuracy of
survey instruments (e.g., global navigation satellite systems (GNSS), total stations (TS), the
inertial navigation system (INS) and its derived inertial measurement units (IMU)) with
respect to a specified vertical datum are one of the most important factors affecting the
accuracy of LiDAR derived DEMs [4,22,23]. The misalignment between the IMU system
and the scanner (the boresight misalignment) is the largest source of systematic error in
a LiDAR and must be addressed before the sensor can be effectively used because errors
propagate into the subsequently derived products [20]. These misalignments may cause
systematic errors in DEMs of centimetric range over flat terrain, rising to decimetric range
over steep slopes [9]. Overall, vertical errors associated with instrumental issues occurred
near strip boundaries [15,24] and increasing flying height and off nadir scan angle [9,19].
In addition, LiDAR point densities and spatial distribution of ground LiDAR points have
significant effects on the accuracy of derived DEMs [3,10,14,25–27]. The quality of the
terrain model is determined by the number and distribution of pulses that successfully
reach the ground. Dense vegetation obstructs the LiDAR pulses and then, fewer pulses
reaching the ground are available for DEM construction [3]. It has been shown that very low
pulse density during initial acquisition of LiDAR data is likely to compromise the quality of
DEMs and derived canopy metrics [14,28]. However, with high-density LiDAR data point
density reduction can be carried out without compromising elevation accuracy [10,27,29].

Moreover, DEMs’ accuracy can be affected by methodological factors including the
filtering algorithm to classify LiDAR points as ground or not ground and the interpolation
methods [4,18]. Point cloud classification filters and their settings may induce DEM errors
by misclassifying understory or groundcover vegetation as ground returns [3,4,30–34].
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Classification filters can be grouped into three families: progressive densification, morpho-
logical and segmentation-based. The most popular progressive densification algorithm is
the progressive TIN densification developed by Axelsson [35] and implemented in LasTools
software [36]. The progressive TIN densification filter is specially designed for airborne
LiDAR and works very well in natural environments, such as mountains and forests [37].
Regarding morphological filters, the most outstanding is the progressive morphological
filter (PMF) proposed by Zhang [38]. Although the use of the PMF has proven to be suc-
cessful, the performance of that algorithm changes according to the topographic features of
the area, and the results are usually unreliable in complex and very steep areas [39]. Finally,
within the segmentation-based filtering, the “Cloth Simulation Filter” (CSF) developed by
Zhang [39] is the most used, and compared with a reference DEM, this filter preserved the
main terrain shape and the microtopography.

In addition, to transform raw LiDAR points into elevation surfaces (DEMs); those
points must be interpolated onto a regular grid. Even though LiDAR points are sampled at
very small separation distances, the interpolation from points onto a grid can introduce a
degree of uncertainty into DEMs [10,22,27,40]. The interpolation methods for constructing
a DEM can be classified into the following [41]: (i) deterministic methods, such as the
inverse distance weighted (IDW) (which assumes that each input point has a local influence
that decreases with distance) and the Delaunay triangulation-based interpolation that
performs interpolation within each TIN (triangulated irregular network); and (ii) geosta-
tistical methods, such as Kriging, which take into account both distance and the degree
of autocorrelation (the statistical relationship between sample points) [42]. IDW worked
well for dense and evenly distributed sample points [5]. However, if the sample points
are sparse or uneven, the results may not sufficiently represent the real surface [41], and
Kriging produced better elevation estimates [13,42,43]. Nevertheless, there is still a lack of
consensus about which interpolation method is most appropriate for the terrain data, and
none of the interpolation methods is universal for all kinds of data sources, terrain patterns
or purposes [5,18,44,45]. Finally, the level of uncertainty in DEM accuracy can vary greatly
with different grid sizes for resampling. Spatial resolution has significant effects on the
accuracy of LiDAR derived DEMs [10,27]. Behan [46] found that the most accurate surfaces
were created using grids which had a similar spacing to the original points. It has been seen
that the generation of high-resolution DEMs from low-density LiDAR data are more likely
to represent the shape of the interpolator used than the actual terrain (i.e., interpolation
artefacts will become significant) [47,48].

Furthermore, the vertical accuracy of the DEMs is affected by site conditions (mainly
vegetation and terrain morphological characteristics: steepness and roughness)
[5,16,17,22,49–51]. These influential site characteristics may be the largest contributors
to DEM error, exceeding, in some areas, that caused by instrumental or methodological
factors [17]. Moreover, the steepness and roughness of the terrain are also responsible
for errors in the acquisition of the original LiDAR data [22,52]. It has been found that as
terrain slope increases, the vertical error in a LiDAR-derived DEM increases [17], raising
uncertainty on dependent forest metrics [53,54]. Bollmann et al. [52] found a very low
vertical error (±0.05 m) at slope angles <40◦ and high error (±1.0 m) for slope angles >40◦.
On steep slopes, the spatial arrangement of ground and vegetation returns have similar
characteristics: large elevation differences within small horizontal distances [53,55]. Con-
sequently, the magnitude of DEM errors and therefore the accuracy of LiDAR-derived
terrain models in complex terrains can be very highly variable. Finally, dense canopy
vegetation caused large vertical error in LiDAR derived DEMs due to the reduced ground
point density [2,10,13,56,57]; making that error increases rapidly with tree height [13]. For
example, Tinkham et al. [33] showed DEM accuracies to vary from RMSEs of 0.13 m in forb
meadows to 0.30 m under coniferous forest canopies and woodland ecosystem. The effect of
vegetation on DEMs has resulted in both an overprediction [16] and underprediction [32,33]
of terrain elevation.



Forests 2022, 13, 380 4 of 23

The aim of this study was to apply an improved empirical method (i.e., DEMs of
difference) to make comparable multitemporal LiDAR datasets collected from different
sensors with different point density. The improvement consisted of using continuous
surfaces of elevation differences, that worked as a local and dense “pseudo-geoid”, instead
of a collection of checkpoints, for adjusting elevations of low-density LiDAR to a high-
density LiDAR benchmark. Moreover, we propose to use “the best DEM of difference” (with
the lowest vertical error) obtained from comparing the vertical errors raised from different
methodologies (i.e., classification filters, interpolation methods and spatial resolutions) to
more accurately correct the elevation of low-density LiDAR in each environment. This
approach will allow capturing of the micro-topography of each site and will reduce random
or methodological errors that would be very difficult to correct by using only checkpoints.
To accomplish this main objective:

(i) we explored the effects of methodological factors (i.e., classification filters, interpola-
tion methods and spatial resolution) on vertical errors of DEMs (from the difference be-
tween low- and high-density LiDAR derived DEMs) carrying out a factorial ANOVA;

(ii) we assessed how site-properties (elevation, slope and vegetation height as well as the
distance to the nearest national reference geoid point) explained the observed vertical
errors of DEMs by running GAMs using a random sampling,

(iii) we recalculated the DEMs and the canopy height models (CHMs) from the corrected
low-density LiDAR data using the best method (filtering-interpolation-resolution);
and finally,

(iv) we assessed if vegetation height changes continued or not related to DEMs eleva-
tion errors.

2. Materials and Methods
2.1. The Study Area

We selected 6 areas located in central Spain (Avila province) for which multitemporal
LiDAR data was obtained (Figure 1). These areas are representative of continental Mediter-
ranean climate conditions, with cold and wet winters and warm and dry summers. The
vegetation is composed of a mosaic of evergreen oaks (Quercus ilex L., Quercus suber L.) and
pine (Pinus pinaster Aiton) in the lowlands and deciduous oaks (Quercus pyrenaica Willd.)
and Pinus pinaster in montane areas. Shrublands are dominated by heather (Erica spp.) and
rockrose (Cistus spp.) at lower elevations and brooms (Cytisus spp.) at middle elevations in
abandoned or formerly burned areas. The study areas (sites) had a mean area of 2.77 ha
(±0.9) (Figure 1). Elevation ranged from ca. 535 to 1222 m, and slope from ca. 9 to ca. 26◦

(Table 1). These areas were mainly dominated by Pinus pinaster and shrublands, and were
burned, except site 5, from 1985 to 2019: site 1, in 1990; site 2, in 1985 and 1989; and sites 3,
4 and 6 in 2009. Vegetation height was low in all sites (<4 m in 2019) except in sites 1 and 5
(>15 m) on average (Table 1).

Table 1. Main properties of the study areas (sites) according to the high-density LiDAR data (2019).
Area in hectares (ha) and mean values and standard deviation of vegetation height (m), elevation (m),
slope (degrees) and distance to nearest national geoid point (m) are given.

High-Density
LiDAR (2019) Area (ha) Vegetation Height (m) Elevation (m) Slope (Degrees) Distance to Nearest

Geoid Point (m)

Site 1 3.72 15 ± 3.4 721.5 ± 20.5 25.2 ± 6.4 151.1 ± 35.2
Site 2 4.14 4.6 ± 2.9 534.6 ± 7.1 8.6 ± 3.6 527.91 ± 76.2
Site 3 2.56 3.6 ± 1.6 1000.7 ± 9.4 14.2 ± 4.7 481.81 ± 47.9
Site 4 1.55 2.6 ± 1.0 1152.9 ± 13.8 24.7 ± 5.3 968.51 ± 33.7
Site 5 1.98 18.5 ± 5.7 1034.7 ± 10.8 16.6 ± 4.0 889.41 ± 43.3
Site 6 2.66 2.9 ± 1.5 1222 ± 13.5 15.9 ± 6.3 265.21 ± 47.3
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Figure 1. Location of the sites where different flights were carried out. In the left panels the
orthophotos are shown of the year corresponding to the first flight (2014) which was carried out at
national level with low-density LiDAR data (0.5 points/m2); and in the right panels, the orthophotos
(2020) closer to the second flights (2019) done with high-density LiDAR data (300 points/m2).

2.2. LiDAR Data

Low-density LiDAR data from the National Plan of Aerial Orthophotography (PNOA)
was obtained from the 1st Spanish National LIDAR sites for the year 2014 and down-
loaded from the Spanish Geographic Institute (SGI) (http://centrodedescargas.cnig.es/
CentroDescargas/index.jsp (accessed on 20 December 2021)). These LiDAR data were
acquired with a Leica ALS60 Laser, which operated at a wavelength of 1064 nm and records
up to four returns per pulse. The average point density was 0.5 points/m2 (including all
returns), and the average point spacing was <1 m (Table 2) (for further details about LiDAR
data see: http://pnoa.ign.es/especificaciones-tecnicas (accessed on 20 December 2021)).

High-density LiDAR data was obtained from the LIDAR device TerraSystem-LidarPod
system formed by the Velodyne HDL-32e sensor (from now LidarPod) (https://www.
routescene.com/ (accessed on 20 December 2021)) onboard of an unoccupied aerial vehicle
(UAV). This system can obtain up to 700,000 points per second thanks to its 32 pairs of
laser sensors. The density of points was around 300 points/m2 and the average point
spacing was <0.05 m (Table 2). The equipment is complemented by a GNSS RTK system
(real time kinematic: real-time position corrections) with accuracies of up to 1 cm, and an
inertial navigation system (INS) that provides speed, acceleration and orientation. The
LidarPod sites were carried out in six areas during 15–16 October 2019. The UAV used
was a multirotor (Matrice 600 PRO). The flights were made at 5–7 m/s, 50 m height and

http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://pnoa.ign.es/especificaciones-tecnicas
https://www.routescene.com/
https://www.routescene.com/
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in parallel lines separated by 40 m with an overlap greater than 50% (Table 2). Further
technical details for each flight are given in Table S1.

Table 2. Technical characteristics of sites and operation of the low-density LiDAR (PNOA) and
high-density LiDAR (LidarPod) datasets.

Property Low-Density LiDAR (PNOA) High-Density LiDAR (LidarPod)

Sensor LiDAR ALS 60 Velodyne HDL-32e
San frequency (Hz) 70 Hz 100 Hz

Mean flying speed (km/h) 241 5–7 m/s
Site height 3000 m 50 m

Altimetry discrepancy between strips ≤0.40 m ≤0.06 m
Vertical accuracy (RMSE) 0.15–0.40 m <0.01 m (by vendor)

Field of view (degrees) 50–80◦ 360–41◦

Overlapping 60% >50%
Scan angle (degrees) ±22◦ ±30◦

Beam divergence angle (mrad) 0.22 0.17 (by vendor)
Point density (m2) 1.5 >300

Geodetic reference system WGS 84 WGS 84
Altimetric datum Orthometric Ellipsoidal

Point spacing 1.4 m <0.05 m

2.3. LiDAR Processing

Errors in the vertical and horizontal accuracy of survey instruments were corrected by
an automated boresight calibration method using a Bayesian multi-strip adjustment imple-
mented in BayesStripAlign software (http://bayesmap.com/products/bayesstripalign/
(accessed on 20 December 2021)) [58]. To eliminate the boresight misalignment in the bench-
mark high-density LiDAR, time-tagged LiDAR point cloud, navigation data (trajectory
position) and the position and orientation information for each pulse were used. This
calibration method can compensate the time-varying boresight errors coming from the
IMU, by working locally and directly from the site lines and removing corduroy artifacts
(vertical bands) due to noise on attitude angles. The method uses all the strips at once
in a Bayesian framework and directly computes the probability density function of the
boresight angles [58,59]. Main corrections in XYZ and residual mean errors (RME) after
correction are given in Table 3 and visual checking of the correction is shown in Figure S1.
According to the vendor, the absolute vertical accuracy of low-density LiDAR data (PNOA)
was around 15–40 cm based on real time kinematic (RTK) global positioning system (GPS)
points [60].

After boresight calibration, LiDAR data was preprocessed using LasTools software [36]:
(i) removing replicated points (lasduplicate); (ii) filtering LiDAR points for noise (lasnoise)
and (iii) transforming the altimetric datum (from ellipsoidal to orthometric) (lasheight using
the options: -all_ground_points and -replace_z). Afterwards, last returns were classified
into ground and no-ground classes using different classification filters (Figure 2): (i) the
progressive triangulated irregular network (TIN) that it is a densification filter based on
the method proposed by Axelsson [35], (ii) the progressive morphological filter (PMF),
a morphological filter developed by Zhang et al. [38]; and (iii) the cloth simulation filter
(CSF) that is a segmentation filter developed by Zhang et al. [39]. On the other hand,
the low-density LiDAR files were previously classified by the vendor; and this filter was
called “original”. This classification filter was only used for visual comparisons because
the vendor did not explicitly indicate the filter used.

http://bayesmap.com/products/bayesstripalign/
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The progressive TIN densification filter was implemented using lasground tool in
LasTools software. The parameterization of this tool consisted of the selection of two
settings: (a) the terrain type, that was modulated by two step sizes (3 m (-wilderness) and
5 m (-default)) and (b) the granularity, i.e., how much computational effort to invest into
finding the initial ground estimate using the switch “-hyper_fine”. Moreover, we fine-tuned



Forests 2022, 13, 380 8 of 23

the filter by specifying: (a) different thresholds at which spikes are removed from the
ground: 0.5 and 3 m, (b) the maximal offset up to which points above the current ground
estimate are included: 0.2 m; and (c) the bulge, a parameter specifying how much the
TIN is allowed to bump (0.5 m and 3 m) (Table 4). The progressive morphological filter
(PMF) and the cloth simulation filter (CSF) were implemented in the lidR package [61]
of RStudio software [62]. In the case of the PMF filter, we used the settings proposed by
Zhang et al. [39]: (a) ws: is the sequence of the size of the windows (in meters) used to
filter the ground point returns (seq (3, 12, 4)); and (b) th: is the sequence of the threshold of
heights above the ground surface over which a ground return is considered (seq (0.1, 1.5,
length.out = length (ws)).

Table 3. Boresight calibration of high-density LiDAR data by using BayesStripAlign software (http://
bayesmap.com/products/bayesstripalign/ (accessed on 20 December 2021)). Mean global corrections
and residual mean errors (RME) after correction are given.

Correction Mean (m) X Y Z

Site 1 0.05 −0.07 −0.20
Site 2 −0.04 0.01 −0.15
Site 3 0.01 −0.07 −0.14
Site 4 −0.10 0.01 −0.17
Site 5 0.03 0.02 −0.11
Site 6 0.01 −0.02 −0.26

Residual RMS (m) X Y Z

Site 1 0.06 0.05 0.06
Site 2 0.06 0.05 0.05
Site 3 0.06 0.04 0.05
Site 4 0.03 0.04 0.05
Site 5 0.03 0.05 0.01
Site 6 0.03 0.05 0.05

Table 4. Settings of the progressive TIN densification filter used in LasTools software. The setting
called Siose Forest (SF) came from the methodology followed to classify low-resolution LiDAR (PNOA)
in the Spanish region of La Rioja (https://www.iderioja.larioja.org/ (accessed on 21 December 2021)).

TIN Filter
Settings Terrain Type Granularity Step Spike Offset Bulge SD

Default (DEF) - - 5 - - - -
WILD wilderness extra fine 3 3 0.2 0.5 -
SW2 - hyperfine 10 0.5 - 3 -

Siose Forest (SF) - - 5 0.5 0.2 - 1

Once the LiDAR point clouds were classified into ground and non-ground using the
different filters and settings, DEMs derived from different interpolation methods at 2 m
and 5 m pixel size were generated from the ground returns (Figure 2). To carried out
this task, we used the lidR package [61] in RStudio applying the Grid Terrain function and
selected three types of interpolation: (i) TIN: based on Delaunay triangulation; (ii) knnidw:
based on the distance to the nearest neighbor (KNN) with an inverse distance weighting
(IDW) and (iii) Kriging: function combining the KNN approach and the Kriging approach
(based on spatial correlation). Finally, we built the canopy height models (CHMs), selecting
the better spatial resolution from the DEM of difference with the lowest vertical errors,
using a “spike-free” algorithm [63] (Figure 2). This method resolves the problem of the
empty pixels and so-called “pits” by the interpolation of first returns with a TIN and then,
rasterizing it onto a grid. It consisted of several layers of triangulation at different height
bins (at 0, 2, 5, 10, 15, 20 and 30 m). Moreover, the pit-free algorithm combined with the
subcircling tweak which replaces each return by a circle with a small radius (i.e., option

http://bayesmap.com/products/bayesstripalign/
http://bayesmap.com/products/bayesstripalign/
https://www.iderioja.larioja.org/
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“-subcircle 0.25”) worked adequately without empty pixels or pits. This algorithm was
implemented in LidR package in RStudio using the function “grid_canopy”.

2.4. DEMs of Difference: Correction of Low-Density LiDAR Ground Elevation

To correct ground elevation of low-density LiDAR, we took the high-density LiDAR
dataset (Figure 2) as the benchmark. We made differences between pairs of DEMs (low- vs.
high-density) for all methods (classification filters, interpolation methods and spatial resolu-
tions) and selected the one with the lowest differences (i.e. the best DEM of difference). This
approach worked like the standard method for converting ellipsoidal heights to orthometric
ones using the geoid and it was adapted to the specific site-conditions of each environ-
ment. The elevation differences were used to replace the elevation values of low-density
LiDAR using the lasheight function with the following parameters: “-all_ground_points”
and “-replace-z” in LasTools. Positive values in elevation differences indicated that the
surface derived from the low-density LiDAR was higher than the benchmark elevation and
then, over-predicted it, whereas negative values indicated the opposite. As pointed out by
Zandberger [64], errors in DEMs are often not normally distributed. Therefore, we checked
for non-normality by using quantile-quantile (Q-Q) graphs and calculating robust accuracy
measures for non-normal distributions [65]: (i) the 50% quantile (P50) of the errors that
is a robust estimator for a systematic shift of DEMs; (ii) the normalized median absolute
deviation (NMAD) (Equation (1)) that is a robust estimator, resilient to outliers in DEMs;
and (iii) the root mean square error (RMSE) that indicates on average how far observed
values differ from the benchmark values [66].

NMDA = 1.4826 × medianj
(∣∣∆hj −m∆h

∣∣), (1)

where ∆hj denotes the individual errors j = 1, . . . , n and m∆h is the median of the errors
(P50) [65].

2.5. Factors Influencing DEMs Accuracy

To assess if there were significant differences among the residual DEMs using different
classification filters, interpolations and resolutions, factorial ANOVA (analysis of variance)
was applied. In the factorial ANOVA, the response variables were the P50, the NMDA and
the RMSE of each residual DEM and the explanatory ones were site, classification filter,
interpolation method and spatial resolution. Later, the Kruskal–Wallis and Dunn tests were
used to assess which factors individually and combined, were significant in explaining the
differences among DEMs.

Moreover, to assess how site-specific factors (i.e., topographic features (elevation and
slope), vegetation height, and distance to the nearest geoid point) significantly explained
the vertical errors of low-density LiDAR derived DEMs, generalized additive models
(GAMs) (with linear terms) were carried out. We randomly sampled the study areas using
20 m as minimum distance between points to avoid autocorrelation and extracted elevation
differences and the values of the explanatory variables (the number of sampling points
ranged from 25 to 50 depending on the size of the sites). To assess the consistency of
the relationships, several GAMs were run at different levels of data aggregation: (i) a
global multivariate GAM including all explanatory variables and using the sampling points
of all sites and their replications by the different classification filters (the interpolation
method (TIN) and the spatial resolution (5 m) were kept fixed); (ii) univariate GAMs
(including only one explanatory variable) for each site using the replicated sampling points
from the different classification filters and, (iii) multivariate GAMs for each classification
filter within each site. For estimating distance to the nearest geoid point, the national
geoid model “EGM08-REDNAP” was downloaded from the geodesy area of the SGI
(https://www.ign.es/web/ign/portal/gds-area-geodesia (accessed on 21 December 2021)).
The EGM08-REDNAP provides points at 1′ × 1′ (1′ = 1.85 km) distant, that collect the
geoid ondulation, that is the deviation from the vertical (difference between the height
of the geoid and the ellipsoid (https://www.ign.es/web/ign/portal/gds-area-geodesia

https://www.ign.es/web/ign/portal/gds-area-geodesia
https://www.ign.es/web/ign/portal/gds-area-geodesia
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(accessed on 21 December 2021)). Finally, we used GAMs to assess if vertical errors could
influence the vegetation height changes observed between dates (2014–2019).

3. Results

The Q-Q plots of the elevation differences between low-and high-dense LiDAR de-
rived DEMs showed that vertical errors in each site followed a non-normal distribution
(Figure S2). Accordingly, the RMSE overestimated the vertical error, whereas the 50th
percentile (P50), underestimated it; the NMDA being more appropriate for being resilient to
outliers in DEMs [65]. Factorial ANOVA indicated that there were significant differences in
elevation errors among sites (93% of the variance in residual heights was explained by sites
(not shown)); and according to the NMDA and RMSE, among classification filters values
too (the CSF filter was significant different of the rest showing the highest error) (Table 5).
On the contrary, there were not significant differences in vertical errors aggregating by
the interpolation method or the spatial resolution. When vertical errors were analyzed
within each site, significant differences among classification filters were found but not
among interpolation methods or spatial resolutions (Tables S2–S4). The greatest errors
were in site 1 using the CSF filter (P50: −2.38 m; NMDA: 1.07 m and RMSE: 3.19 m) and
the lowest ones in site 2 using the TIN-SW2 filter (P50: 0.01 m; NMDA: 0.28 m and RMSE:
0.41 m) (Tables S2–S4).

Table 5. Mean and standard deviation of the uncorrected elevation differences between low- and
high-density LiDAR datasets (i.e., DEMs of difference) measured by the 50th percentile (P50), the
normalized median absolute deviation (NMAD) and the root mean square error (RMSE) grouping
by sites (sites), classification filters, interpolation methods and spatial resolutions. Letters indicate
significant differences within groups according to the post-hoc Dunn´s non-parametric test for
Kruskal-type ranked data with a significance level of p < 0.05.

Non-Corrected Residual Elevation Differences

P50 (sd) NMDA (sd) RMSE (sd)

Site Site 1 −2.09 ± 0.13 a 0.76 ± 0.14 a 2.50 ± 0.36 a
Site 2 0.02 ± 0.05 bc 0.39 ± 0.09 bc 0.54 ± 0.12 b
Site 3 −0.87 ± 0.35 bd 0.47 ± 0.29 bc 1.07 ± 0.38 c
Site 4 −1.21 ± 0.32 ad 0.85 ± 0.11 a 1.52 ± 0.27 d
Site 5 0.59 ± 0.03 c 0.64 ± 0.15 ac 1.01 ± 0.17 c
Site 6 −0.98 ± 0.38 d 0.49 ± 0.13 bc 1.14 ± 0.35 c

Algorithm CSF −1.19 ± 1.10 a 0.90 ± 0.19 a 1.84 ± 0.76 a
DEF −0.57 ± 0.84 a 0.49 ± 0.16 b 1.06 ± 0.53 b
PMF −0.74 ± 0.88 a 0.55 ± 0.20 b 1.26 ± 0.69 b

SF −0.65 ± 0.85 a 0.53 ± 0.17 b 1.14 ± 0.55 b
SW2 −0.66 ± 0.85 a 0.51 ± 0.19 b 1.15 ± 0.65 b

WILD −0.70 ± 0.87 a 0.61 ± 0.17 b 1.31 ± 0.50 ab

Interpolation IDW −0.76 ± 0.91 a 0.61 ± 0.22 a 1.32 ± 0.70 a
KRIG40 −0.75 ± 0.91 a 0.59 ± 0.23 a 1.28 ± 0.66 a

TIN −0.75 ± 0.91 a 0.59 ± 0.23 a 1.28 ± 0.66 a

Resolution 2 m −0.75 ± 0.92 a 0.60 ± 0.22 a 1.30 ± 0.67 a
5 m −0.73 ± 0.92 a 0.60 ± 0.22 a 1.29 ± 0.67 a

Visually checking the DEMs hillshades, we assessed that the TIN densification algorithms
using default parameters (DEF) or low spikes (0.5) (SF, SW2) were smoother (Figures 3 and S3)
showing lower vertical errors (Table 5) whereas the CSF and the TIN densification algorithms
using large spike (3) (i.e., WILD), followed by the morphological filter (PMF), showed a lot of
bumps and spikes (Figures 3 and S3); and also, high elevation differences (Table 5).
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Figure 3. Hillshades from DEMs (at 1 m pixel size for better interpretation) derived from high-density
LiDAR data using TIN densification with default parameters (DEF) and the segmentation-based
filtering, the “Cloth Simulation Filter” (CSF).

After subtracting the elevation differences to the raw low-density LiDAR data using
the best method (with the lowest vertical errors), a good adjustment was obtained (Figure 4).
Histograms of elevation differences before and after correction for each site using the best
method are shown in Figure S4. In addition, visual checking of the corrected hillshades
allowed assessing of the qualitative improvement in respect to the hillshades derived from
the original ground classification of low-density LiDAR data (Figure 5). Furthermore, a
cluster analysis on uncorrected and corrected elevation values using the k-means algorithm
and the Dunn´s non-parametric test for Kruskal-type ranked data confirmed the significant
effects of the correction of raw low-density LiDAR elevation data (Figure S5).

The corrected P50 ranged from −0.004 to −0.016 m, the NMDA from 0.06 to 0.10 m
and the RMSE from 0.28 to 0.46 m, aggregating by sites (Table 6). The corrected P50 did
not show significant differences among sites, classification filters, interpolation methods or
spatial resolutions. However, the corrected NMDA and RMSE indicated that the CSF filter
algorithm, the spatial resolution at 2 m and the IDW interpolation method, this latter only
in accordance with the NMDA, showed the greatest errors (Table 6). Moreover, factorial
ANOVA within each site showed significant differences among interpolation methods and
spatial resolutions. The greatest errors continued in site 1 using the CSF filter (P50: −0.091
m; NMDA: 0.14 m and RMSE: 0.69 m) and the lowest ones in site 3 using the TIN-DEF filter
(P50: −0.001 m; NMDA: 0.04 m and RMSE: 0.09 m). Overall, the TIN densification filters
with low spikes (SF, SW2) and default settings (DEF) showed the lowest errors as well as
the Kriging interpolation method and the spatial resolution of DEMs at 5 m (Tables S5–S7).
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Figure 4. Elevation differences (in meters) before (a) and after (b) correction using the best classifica-
tion filter. In sites 1, 4 and 6: TIN densification algorithm with Siose Forest settings (TIN-SF); in site 2,
the progressive morphological filter (PMF) and in sites 3 and 5, the TIN densification algorithm with
default settings (DEF). For all sites, the TIN interpolation method and 5 m spatial resolution was kept
constant. Maps are shown at 2 m spatial resolution for better interpretation.

 

2 

 
Figure 5. Hillshades of DEMs using the TIN densification filter with default parameters (DEF) (at 1 m
pixel size for better interpretation) from: (a) high-density LiDAR; (b) corrected low-density LiDAR
and (c) uncorrected low-density LiDAR using the original classification filter.
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Table 6. Mean and standard deviation of corrected elevation errors (i.e., DEMs of differences)
measured by the 50th percentile (P50), the normalized median absolute deviation (NMAD) and the
root mean square error (RMSE) grouping by sites (sites), classification filters, interpolation methods
and spatial resolutions. Letters indicated significant differences within groups according to the post
hoc Dunn´s non-parametric test for Kruskal-type ranked data with a significance level of p < 0.05.

Corrected Residual Elevation Differences

P50 (sd) NMDA (sd) RMSE (sd)

Site Site 1 −0.016 ± 0.030 a 0.08 ± 0.03 ab 0.46 ± 0.22 a
Site 2 −0.004 ± 0.007 a 0.07 ± 0.01 ab 0.30 ± 0.13 bc
Site 3 −0.007 ± 0.007 a 0.10 ± 0.25 c 0.36 ± 0.60 b
Site 4 −0.004 ± 0.008 a 0.09 ± 0.01 ab 0.35 ± 0.16 ac
Site 5 −0.009 ± 0.005 a 0.08 ± 0.03 ab 0.32 ± 0.13 abc
Site 6 −0.004 ± 0.009 a 0.06 ± 0.01 bc 0.28 ± 0.14 bc

Algorithm CSF −0.019 ± 0.034 a 0.15 ± 0.24 a 0.62 ± 0.56 a
DEF −0.011 ± 0.005 a 0.07 ± 0.02 ab 0.25 ± 0.09 b
PMF −0.004 ± 0.006 a 0.07 ± 0.02 ab 0.30 ± 0.14 bc

SF −0.008 ± 0.005 a 0.06 ± 0.02 b 0.26 ± 0.10 b
SW2 −0.007 ± 0.004 a 0.07 ± 0.02 ab 0.26 ± 0.09 b

WILD 0.001 ± 0.012 a 0.07 ± 0.02 ab 0.38 ± 0.16 ac

Interpolation IDW −0.007 ± 0.015 a 0.12 ± 0.17 a 0.42 ± 0.43 a
KRIG40 −0.008 ± 0.018 a 0.06 ± 0.02 b 0.30 ± 0.17 a

TIN −0.008 ± 0.016 a 0.07 ± 0.02 b 0.32 ± 0.16 a

Resolution 2 m −0.007 ± 0.017 a 0.31 ± 0.10 a 0.44 ± 0.27 a
5 m 0.021 ± 0.017 a 0.08 ± 0.10 b 0.25 ± 0.27 b

To explain vertical errors from site-factors, GAMs (with linear terms) at different
levels of aggregation were carried out. The global multivariate GAM including all sites
and classification filters explained ca. 47% of total deviance (Table 7). The slope and the
distance to the nearest geoid point were the most important explanatory variables. Overall,
as the slope increased, the elevation residuals were more negative (underestimation of
benchmark elevations) whereas as the distance to the nearest geoid point increased, the
elevation residuals were more positive (overestimation of benchmark elevations) (Figure 6).
Univariate GAMs for each site including all filters indicated that the distance to the nearest
geoid point was the best explanatory variable for all sites, except for sites 2 and 6 that
were poorly explained by the site conditions (Table 8). Finally, multivariate GAMs for each
classification filter within each site indicated that vertical errors in sites 1 and 4 were better
explained by site factors than those in the other sites (deviance explained 40% ± 0.07 and
57% ± 0.07, respectively) as well as the TIN densification filter with default settings (DEF)
and the PMF filter. Nevertheless, all these GAMs showed low fitting ability (from 13% to
57% of deviance explained) (Tables S8–S13).

Finally, we assessed if changes in vegetation height could be related to the vertical er-
rors found before correction. The results of this analysis indicated that changes in vegetation
height were decoupled from elevation vertical errors in nearly all sites (Tables S14 and S15).
Nevertheless, we found a significant relationship in site 4 and in site 6 (Figures S6 and S7).
In those cases, there was a positive relationship indicating that sampling points with large
negative vertical error had the lower vegetation height changes, and points with lower
elevation errors (less negative or positive) had larger vegetation height changes. As prelim-
inary results, we observed that from 2014 to 2019, the greatest vegetation height increases
occurred in site 1 (+3.9 m on average), followed by site 3 (+3.0 m) and 2 and 4 (ca. +2.0 m).
The lowest increases were found in site 6 (+1.33 m) and site 5 (+0.4 m) on average (Figure 7).
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Figure 6. Plots of partial relationships between the vertical errors of DEMs (y axes) derived from low-
density LiDAR and site-specific factors (x axes). Estimations are derived from the global multivariate
GAM that included all sites and all classification filters. From left to right: elevation, slope, vegetation
height (CHM: canopy height model) and distance to the nearest geoid point (DIST_REDP).

Table 7. Results of the global multivariate GAM (with linear terms) using as response variable
the vertical errors of DEMs derived from different classification filters in all sites using the TIN
interpolation method at 5 m pixel size; and as explanatory ones: site-specific factors (i.e., elevation,
slope, vegetation height and distance to nearest geoid point). Coefficients of main explanatory
variables (all significant with a p < 0.05, except the intercept), and global and partial adjusted R2 and
explained deviance of GAMs are given.

GAMs All Filters Estimates Partial Adj. R2 Deviance Explained

(Intercept) 0.023 (ns)
Elevation (m) −0.001 0.02 1.61%

Slope (degrees) −0.069 0.28 27.70%
Vegetation height (CHM) 0.016 0.01 0.74%

Distance to nearest geoid point 0.002 0.24 24.30%

Global Adj. R2 0.47
Deviance explained 46.70%

Table 8. Univariate generalized additive models (GAMs) of each site-specific factor to estimate their
relative importance in explaining the vertical errors of DEMs derived from low-density LiDAR. The
response variable is the vertical error of each site. All classification filters are included maintaining
the interpolation method (TIN) and the spatial resolution (5 m).

GAMs Elevation Slope Vegetation
Height

Distance to
Geoid Point Adj. R2

Site 1 0.18% 3.89% 0.71% 5.54% 29.70%
Site 2 3.82% 0.02% 2.16% 2.16% 6.56%
Site 3 0.77% 1.85% 1.91% 19.60% 20.90%
Site 4 0.12% 13.60% 8.91% 13.80% 44.80%
Site 5 8.90% 1.16% 10.40% 11% 17.30%
Site 6 0.41% 0.02% 5.66% 3.35% 12%

Quantitative assessment of vegetation changes by repeated LiDAR data is a challenge
because it requires producing reliable change maps that are robust to differences in survey
conditions, free of processing artifacts, and that consider various sources of uncertainty,
such as different point densities, georeferencing errors and geometric discrepancies [58,59].
Here, the raw elevation of low-density LiDAR was adjusted to the elevation of high-density
LiDAR using the best DEM of difference as local pseudo-geoid (i.e., all interpolated points).
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This approach improved the vertical accuracy of the target DEMs, minimized the random
nature of vertical errors and decoupled vegetation changes from ground elevation errors.
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Figure 7. Canopy height models (CHMs) from: (a) low-density LiDAR (2014), (b) high-density LiDAR
(2019) and (c) their height differences for each site using the best classification filter: In sites 1, 4 and
6: TIN densification algorithm with Siose Forest settings (SF); in site 2, the progressive morphological
filter (PMF) and in sites 3 and 5, the TIN densification algorithm with default settings (DEF).

4. Discussion

The first step before comparing low- and high-density LiDAR datasets was to assure
that there were no systematic or instrumental errors in data collection [15]. The calibration
method to eliminate boresight misalignment in the benchmark high-density LiDAR ensured
high internal vertical and horizontal consistency (1–6 cm of error in XYZ) and the vertical
accuracy given by the vendor was around 3–6 cm. In addition, low-density LiDAR strips
were aligned using GNSS ground checking points, and the vertical accuracy was 15–20 cm.
Main differences in vertical accuracy of both LiDAR data sets can be attributed to the greater
beam size and less sensitivity of the laser as site altitude increases. For example, Hyyppä
et al. [17], who used data collected in three separate sites, observed that the increase of site
altitude from 400 to 1500 m increased the random error of DEM derivation by 50%. This
was mainly due to the decrease of the pulse density and increase in the planimetric error
(for non-flat surface).

Nevertheless, DEM derived from low-density LiDAR data (ca. 1 point/m2 in our case)
is hampered by poor quality of ground returns [10,14,32,67]. Accordingly, the adjustment
of low-density LiDAR elevation with respect to a benchmark with higher point density
is recommended [7]. James et al. [11] demonstrated that extracting control points from
high-density LiDAR derived DEM can produce a photogrammetric DEM of comparable
quality to that achieved with high accurate ground checkpoints. However, to achieve
such positive results, it is important to choose suitable control points and to ensure that
change between epochs is minimal [11]. Moreover, the inadequate quantity and spatial
distribution of GCPs will in turn degrade the accuracy of DEM products [9]. In this sense,
other studies assessed certain limitations in correcting less accurate DEMs (i.e., SRTM DEM)
by applying regression models using checkpoints from LiDAR data [12,13]. For example,
Su and Guo [12] observed that, although vertical errors decreased (from over 12 to −0.8 m)
after correction, large errors continued by using the regression model. Likely, Su et al. [13]
following the same methodology assessed that the corrected SRTM DEM continued being
about 2.5 m lower than the GLAS elevation on average. These results might indicate that
the random nature of elevation errors can limit the usefulness of elevation corrections from
regression analysis based on some checkpoints and their properties.
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Here, we corrected elevation data from low-density LiDAR (1 point/m2 on average
taken at 3000 m of site height) to high-density LiDAR elevation data (300 points/m2 on
average and taken at 50 m of site height) using the entire grid of interpolated elevation
differences as true checkpoints with respect to the high-density LiDAR instead of only
some control points. By significantly increasing the number of checkpoints used in the
adjustment, the redundancy produced better results than using an inferior number of
ground control points [11]. Moreover, by means of the DEMs of difference, we conformed
high dense surfaces of elevation deviations (i.e., dense local “pseudo-geoids”) that served
to adjust the raw elevation of low-density LiDAR points to the benchmark ones giving a
straightforward quantitative control test whereby differences closest to zero represented
the best quality DEM surfaces [4,8,9].

However, before making such elevation corrections, a previous checking of the effect
of the classification filters, the interpolation methods and the spatial resolution on the
vertical errors of DEMs is required. It has been shown that the quality of a DEM is
dependent on a correct classification of these points as ground [3,23]. The performance
of the classification filters differs under different LiDAR point density as well as terrain
and vegetation conditions [2,34,35,68]. Moreover, there is little guidance in the literature
regarding the selection of parameters to optimize filtering [37]. Accordingly, due to the
lack of optimal classification filters, quality control becomes necessary to select the most
suitable in each context [31].

We observed large differences in vertical errors among classification filters. As the
Q-Q plots showed that vertical errors in each site followed a non-normal distribution,
the NMDA, resilient to outliers, was used to report more appropriate vertical errors in
DEMs [65]. Before correction, and according to all error metrics, the CSF and the TIN-WILD
filters showed significant higher vertical errors than TIN-DEF, TIN-SW2 and TIN-SF in all
sites. After correction, the vertical errors dropped significantly. The NMDA ranged from
0.14 (site 1 using CSF filter) to <0.06 m (in all sites and all classification filters except the CSF
and TIN-WILD). These errors were within the accuracy specifications of low-density LiDAR
data given by the vendor (0.15–0.20 m). Moreover, a detailed visual analysis of DEMs of
difference after correction revealed that vertical errors were more randomly distributed
although reflecting some artefacts derived from the used classification filter [47,48].

The TIN densification filter with “Default” settings (DEF) or low spikes (i.e., SW2
and SF) for both LiDAR datasets drew smoother DEMs whereas the segmented-based (CSF)
filter and TIN densification one using large spikes (i.e., WILD) showed many artifacts as
bumps and peaks. CSF and TIN-WILD erroneously included low and dense vegetation as
ground (type II error) but drew cliffs and steep slopes perfectly (see Viedma et al. [68] for
further details). On the contrary, TIN densification filters using low spikes (TIN -DEF, -SW2
and -SF) correctly classified understory or low/dense shrubs as non-ground but resulted in
several ground classification errors in steep slopes, cliffs and deeply incised stream banks
(type I error) [68,69]. In this way, as none of them worked perfectly, and all methods are
susceptible to both omission and commission errors, users might consider testing different
classification filters to avoid unpredictable results [30] and the possibility of combining
multiple classification procedures to exploit the strengths of each other [68,69]. For example,
Viedma et al. [68] combined different classification filters to estimate low (<2 m) and high
(>2 m) vegetation in a very complex terrain in eastern Spain, removing type I and II errors.

Besides the effects of the classification filters on vertical accuracy of DEMs, the in-
terpolation from points onto a grid can also introduce a degree of uncertainty into the
DEMs [6,10,28]. Here, we asserted that before correction there were not significant differ-
ences on vertical errors due to the interpolation method neither among nor within sites
(even by controlling the filter classification in the ANOVA (not shown here)). Nevertheless,
after correction, and according to the NMDA, the vertical errors were significantly lower us-
ing the Kriging method than using the IDW in all sites. It has been observed that the vertical
errors in DEMs are more dependent on the choice of interpolation method for low points
density than for high sampling density [67]. At lower sampling densities, Kriging yielded
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the best elevation estimations improving IDW (inverse distance weighted) [5,8,13,27,67,70].
However, if sampling data density is high, the IDW method performs well [10,42,67].
Moreover, Yilmaz and Uysal [18] found that the TIN interpolation was superior to other
interpolation methods with the lowest RMSE. According to these results, it is evident that
these interpolation methods are suitable for some specific conditions, and their general ap-
plicability is limited; there still being a lack of consensus about which interpolation method
is most appropriate for the different terrain data. None of the interpolation methods is
universal for all kinds of data sources, terrain patterns or purposes [18,42].

Furthermore, we found that there were not significant differences on vertical errors
due to the spatial resolution of DEMs. Before correction, none of the error metrics showed
significant differences in relation to the spatial resolution neither among nor within sites
(even by separating/controlling the filter classification in the ANOVA (not shown here)).
However, after correction, NMDA, followed by the P50 and RMSE, indicated that the larger
the pixel size was, the lower the vertical error. It was expected that the most accurate
surfaces were created using grids which had a similar spacing to the original points
(ca. 2 m) [10,46]. However, Guo et al. [27] showed that DEMs at high resolutions (0.5 and
1 m) produced relatively higher RMSE than DEMs at lower resolution (5 and 10 m), mainly
by the smooth effect of large pixel size.

On the other hand, the vertical accuracy of the DEMs is affected by site conditions
(mainly vegetation and terrain morphological characteristics) [3–5,17,22,33,49–51]. In re-
lation to the effects of vegetation, we showed that vertical errors in DEMs were low
and explained by vegetation height (CHM); reaching a maximum ca. 10% of deviance
explained in some sites. However, despite the low explanatory power of this factor, ver-
tical errors increased significantly with vegetation height favoring the overestimation of
benchmark elevations. These results agreed with other ones finding positive elevation
bias in high vegetated areas and negative bias in open vegetation and agricultural land
covers [7,9,11,13,53,66,71]. Nevertheless, other studies found the opposite [12,23,68]. For
example, Chaplot et al. [67] observed that elevations were overpredicted (6.0 cm) in open
vegetated areas and underpredicted (−3.8 to −6.0 cm) in brush low/trees and evergreen
forests. Likely, Su and Guo [12] assessed that the percentage of pixels with negative dif-
ference increases to nearly 100% in the group with the maximum vegetation height at all
study sites. Finally, others have not found any relationship [2,8,33]. In the case of Hodg-
son et al. [32], it was found that LiDAR derived elevation was significantly underpredicted
in all studied land cover classes; although the underprediction was largest in pine forest
areas, by up to 0.24 m.

Regarding the effects of terrain complexity on vertical accuracy of DEMs, it has been
shown that slopes, roughness or topographic variability (closely related to slope) contribute
significantly to the errors of DEMs [2,14,17,23,28]. For example, Razak et al. [51] observed
that DEM errors in slopes over 40◦ were significantly higher than the overall RMSE (1.53 m
vs. 0.89 m). Tinkham et al. [2], reported that the vertical error increased on slopes exceeding
30◦ and Hodgson and Bresnahan [23] that the elevation error in slopes about 25◦ was
twice those in flatter slopes (1.5◦). Finally, Mukherjee et al. [66] showed that significant
impacts occurred only with slopes above 10◦ on ASTER and SRTM DEMs accuracy. On the
contrary, Su et al. [13] showed that, compared to the influence of vegetation, slope had no
significant influence on the mean difference between the SRTM DEM and the LiDAR DEM.
Likely, Hodgson et al. [32] reported that, except for low grass, none of the other land cover
categories exhibited a statistically significant relationship between LiDAR elevation errors
and terrain slope. Here, terrain slope was the best predictor of vertical errors among sites
explaining ca. 28% of total deviance but this effect was lower within sites. These results
could be explained by the wide range of slope variability (0 to 40◦) covered among sites
and the low range of variability within them. Consistently, higher slopes increased vertical
errors and underpredicted benchmark LiDAR elevations (negative elevation differences).

In addition, we included as site-specific variable, the distance to the nearest geoid point.
This variable was never analyzed in previous studies and resulted in high explanatory
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power (24.3% of total deviance), following the slope. Results indicated that increasing the
distance to the nearest geoid points, the greater the positive vertical error (overprediction
of benchmark elevation). For example, Daniels [72] observed that the elevation difference
between the ellipsoidal heights and the orthometric ones increased as one travels north
from the Columbia River toward Washington. This regional trend implied that the use of
an orthometric height correction factor calculated for the base station alone will not correct
all offsets in the data, and that the correction factor required may vary based on the location
of the LIDAR instrument in relation to the base station.

Finally, we assessed that changes in vegetation height were decoupled from elevation
vertical errors. The significant relationship observed in some sites did not explain casualty;
mainly because we expected similar vertical errors in DEMs and CHMs after correction;
and in all cases, height differences were significantly larger than elevation errors; agreeing
with the results obtained by Dubayah et al. [73]. Finally, and as preliminary results, we
quantified an average annual growth of 0.39 ± 0.24 m/y that ranged from 0.13 (in site 5) to
0.87 m/y (in site 1) for 5 years (2014–2019). These different growth rates could be related to
the age of vegetation, assuming that younger trees had a faster growth rate than older ones
(site 1 was composed by trees burned in 1990 and site 5 by older trees never burned in the
last 40 years). For example, Vepakomma et al. [74], using multitemporal LiDAR, showed
that younger trees (ca. 10–15 m) grew ca. 2 m in 5 years (0.5 m/y) whereas the older ones
(>15 m) around 0.4 m (0.08 m/y) in Canada. Conversely, others have found larger growth
rates in old forests using repeated LiDAR. For example, Englhart et al. [75] quantified a
tree height increase of 2.3 m in 4 years (ca. 0.6 m/y) in unaffected forests and Hopkinson
et al. [76] an annual growth of 0.5 m/y in a red pine planation in Canada. Moreover,
Hudak et al. [77] reported even larger annual growth (0.8 m/y) in a mixed-conifer forest
in the US. These large height changes could be attributed to the way conifers trees grow.
Conifer trees grew by elongating their tips vertically, and by elongating existing branches
horizontally [74]. Accordingly, points that have hit on low surfaces near the crown borders
during the first LiDAR survey will be much higher in the last one as the result of hitting on
the crown due to lateral growth (Figure 8). These results indicated that changes in canopy
architecture over time are also important.

On the other hand, it has been reported that low-density LiDAR showed a noticeable
underestimation bias of trees height [78,79]. For example, Zhao et al. [79] quantified a
bias of −1.5 m (n = 598) in respect to field data mainly due to the increased probability of
missing treetops as pulse density decreases. Here, we show, as an example, the cloud of
points of some “supra crowns” to visually assess the canopy differences between low- and
high-density LiDAR datasets (Figure 9).
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As future work, several issues need to be resolved for improving the estimation of
vegetation growth from repeated LiDAR with different point densities: (i) a more robust
comparison of vegetation height changes from low- and high-density LiDAR datasets,
(ii) unmixing the effects of vertical and lateral growth and (iii) to develop robust models
between field growth measures (for example, from multitemporal national forest invento-
ries) and observed LiDAR values. In relation to a reliable comparison between low- and
high-density LiDAR datasets, we could apply the approach proposed by Zhao et al. [79]
who corrected the relative biases of low-density LiDAR measured tree heights using the
LiDAR data with the highest laser pulse rate and thinning it at a series of lower point
densities. This approach built a regression model whose coefficients were used to correct
tree heights derived from low-density LiDAR. In addition, to guarantee the comparability
of forest metrics from low- and high-density LiDAR surveys, area-based LiDAR metrics
will be applied for being more reliable in estimating forest metrics [79–81]. Compared to
individual tree analyses, area-based analysis is less affected by the inconsistencies between
low- and high-density LiDAR data to measure forest dynamics; and allow the classification
the spatiotemporal patterns of forest changes [79]. To unmix the effects of vertical and
lateral growth, height measures will consider only the common crown section, giving
more accurate height changes; and finally, to assure the robustness of the relationship with
ground data; separated LiDAR models for each LiDAR survey with temporally coincident
ground data can counteract the inconsistency in repeat LiDAR data with different point
densities [2,75].

5. Conclusions

Standardization of ground elevation is obligatory for comparison of LiDAR derived
forest metrics at different dates. After standardization, it can be reasonably assumed that
the relative accuracy between CHMs is like the DEM accuracy. In this paper, it has been
assessed that although high-density LiDAR data does not provide a perfect elevation model,
it was considerably more accurate compared to low-density LiDAR; and therefore, it was a
good benchmark. Our approach was novel mainly because continuous surfaces of elevation
differences, instead of a collection of checkpoints, were used to correct the raw elevation
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of low-density LiDAR. Moreover, using the “best DEM of difference” approach, based
on comparing the vertical errors raised from different methodologies (i.e., classification
filters, interpolation methods and spatial resolutions), the elevation of each site was more
accurately corrected reducing random or methodological errors that would be very difficult
to correct by using only checkpoints.

Overall, it was observed that the classification filters based on TIN densification
algorithm using default parameters or low spikes (TIN-DEF or TIN-SF), the Kriging in-
terpolation method and 5 m pixel size adequately corrected elevation deviations in all
sites. After correction, vertical errors declined drastically, reaching low values (from
0.04 to 0.08 m) using the best DEM of difference in each site. Nevertheless, none of the
classification filters worked perfectly in each site, and all of them are susceptible to both
omission and commission errors. Accordingly, the possibility of combining different classi-
fication filters in the same environment is recommended to exploit the strengths of each
other. On the other hand, the vertical errors observed between low- and high-density
LiDAR datasets were partially explained by site factors (maximum deviance explained was
57% ± 0.07). The slope and the distance to the nearest geoid point were the most important
explanatory variables. Overall, the higher the terrain slope and the distance to the nearest
geoid, the higher the vertical errors. Vegetation height played a minor role, but vertical
errors increased significantly with vegetation height. Finally, we assessed that changes in
vegetation height were decoupled from elevation vertical errors at all sites.

The findings of the study are important to understand the sources of DEMs error by
analyzing the role of methodological and site-specific factors; and also, to correct vertical
errors of low-density LiDAR derived DEMs by using “the best DEM of difference” method.
This approach considerably reduced the effects of elevation errors on vegetation height
changes. The study recommends that, before comparing LiDAR datasets with different
point densities, “the best DEM of difference” should be considered for correcting the
target elevation dataset; mainly because each environment has its own physical properties,
and this method allows adapting of the best DEM to each site. Finally, the estimation of
vegetation growth from repeated LiDAR with different point densities must be improved,
requiring further studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13030380/s1. Table S1: Technical characteristics of LiDAR
datasets; Tables S2–S4: Mean and standard deviation of uncorrected elevation errors (i.e., DEMs of
differences) measured by the percentile 50th, NMDA and RMSE, respectively; Tables S5–S7: Mean and
standard deviation of corrected elevation errors (i.e., DEMs of differences) measured by the percentile
50th, NMDA and RMSE, respectively; Tables S8–S13: GAMs (with linear terms) for each site using
as response variable the uncorrected vertical errors derived from the CSF, TIN-DEF, PMF, TIN-SF,
TIN-SW2 and TIN-WILD classification filters and as explanatory ones the site conditions; Table S14:
Estimated coefficients of the vertical errors of DEMs in GAMs for explaining the corrected vegetation
height changes (2014–2019); Table S15: The percentage of deviance in the corrected vegetation height
changes (2014–2019) explained by the vertical errors of DEMs. Figure S1: Clouds of points from high-
density LiDAR data before (left panel) and after (right panel) correction of the boresight misalignment;
Figure S2: Normal Q-Q graph for the distribution of the uncorrected elevation differences; Figure S3:
Hillshades of DEMs derived from high-density LiDAR data using different classification filters;
Figure S4: Histograms of the elevation differences between low- and high-density DEMs before
and after correction; Figure S5: Cluster K-means of the elevation differences between low- and
high-density LiDAR derived DEMs before and after correction; Figures S6 and S7: Scatterplots of the
relationship between the vegetation height changes (2014–2019) occurred in site 4 and the vertical
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