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Abstract: Species shift their ranges in response to climate change (CC). However, they may not
be able to track optimal conditions as soon as possible, due to limited dispersal ability or habitat
fragmentation, caused by land use and land cover change (LULC). This study aimed to explore
the combined impacts of CC, LULC and dispersal limitations on the future range dynamics of
Quercus acutissima Carruth., Q. variabilis Blume and Q. chenii Nakai, three dominant Cerris oak tree
species in warm-temperate and subtropical deciduous forests of China. We used the Maximum
Entropy (Maxent) algorithm to predict the suitable habitats for the years 2050 and 2070, under three
representative concentration pathways (RCPs). Habitat fragmentation patterns were examined to
assess the influence of LULC. Two migration scenarios (full- and partial-migration) were compared
to evaluate the effect of dispersal limitations. We found that annual precipitation (AP), minimum
temperature in the coldest month (MTCM) and temperature seasonality (TS) play a key role in
determining the present distributions of Q. chenii, while AP, MTCM and annual mean temperature
(AMT) contribute the most to the distribution models of Q. variabilis and Q. acutissima. For all the
three species, LULC will increase the level of habitat fragmentation and lead to the loss of core areas,
while limited dispersal ability will restrict the accessibility of future potentially suitable habitats.
Under the scenarios of CC and LULC, the suitable areas of Q. chenii will decrease sharply, while
those of Q. variabilis in South China will become unsuitable. Our findings highlight the importance
of considering dispersal ability, as well as land use and land cover change, for modeling species’
range shifts in the face of global warming. Our study also provides vital information for guiding
the management of East Asian Cerris oaks in China; Q. chenii should be listed as a species requiring
priority protection, and the threatened habitats of Q. variabilis should be protected to buffer the
impacts of CC and LULC.

Keywords: climate change; dispersal limitation; land use and land cover change; Maxent; Quercus;
species distribution model

1. Introduction

Global climate change (CC) has become one of the major threats to biodiversity and
conservation [1,2]. CC caused by human activities, especially greenhouse gas emissions,
results in alterations in temperature and precipitation patterns, affecting plant growth and
development across the entire life cycle [3,4]. On one hand, species may respond to CC by
shifting their ecological niches through plastic changes to avoid range contractions and
extinctions [5,6]. On the other hand, many species’ ranges have shifted to prevent being
affected by adverse climatic conditions [7].

Given that climate has been documented to play a key role in determining large-
scale species distributions [8,9], ecologists often use species distribution models (SDMs) to
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quantify the relationships between existing occurrence records and climatic factors through
multivariate algorithms [5]. These models can generate a prediction for species’ future
habitat suitability, thus, providing us with a useful tool for evaluating habitat vulnerability
in the face of global warming [10,11]. However, as most SDMs are targeted at potential
ecological niches, the majority of SDM studies prefer to apply full-migration scenarios in
predicting species’ range shifts in response to CC [5,12]. Indeed, species may not be able to
track favorable habitats as soon as possible due to dispersal limitations. Thus, the existing
models may hinder our accurate assessment of the real risk to a species [13]. Recently,
more researchers have noticed this issue and tried to use various modeling approaches to
incorporate migration scenarios into SDMs, for example, future projections for fir species in
Southwest China and amphibians in the Himalayas [14,15]. These predictions took species’
dispersal abilities into account and improved the accuracy of SDMs, which will guide
the conservation of endangered species more reliably than the models only considering
full-migration or no-migration scenarios.

The migration of a species is not only determined by the species’ dispersal ability,
but also by the levels of habitat fragmentation and connectivity [16]. Land use and land
cover change (LULC) reflects the changes in land cover [17]. Different land types have
different species composition and vegetation cover, and constantly transform local micro-
climates [18,19]. Hence, although many areas are climatically suitable for species’ survival,
effective dispersal may be severely restricted due to strong geographical isolation caused
by LULC [20]. With the increase in human activities, 10% to 20% of natural grasslands and
forests are expected to be replaced by agricultural and urban infrastructure by 2050 [21],
which will accelerate habitat loss and fragmentation for most wild species [22,23]. In this
sense, it is essential to explore the combined effects of LULC and dispersal limitations on
the changes of species’ ranges in response to CC.

Oaks (Quercus spp.) are one of the most common broad-leaved tree species in the
Northern Hemisphere, usually occupying a (co-)dominant position in local forest ecosys-
tems [24]. This genus has recently been divided into two subgenera and eight sections [25],
of which sect. Cerris is mainly distributed in Eurasia and comprises 13 species. Among these
species, only Quercus acutissima Carruth., Q. variabilis Blume and Q. chenii Nakai are native
to East Asia, while the other 10 species are endemic to western Eurasia [25]. In this study,
we chose to predict the range shifts of the three East Asian Cerris oak species because they
are among the dominants of East Asian warm-temperate and subtropical deciduous forests.
Previous studies have shown that historical climate change has significantly affected the
distributions of these oak forests. Global cooling during the Last Glacial Maximum (LGM,
~22,000 years ago) may have resulted in the southward retreat of temperate deciduous oak
forests to between 22◦ N and 31◦ N. In contrast, climate warming during the mid-Holocene
(~6000 years ago) may have caused their northward expansion [26,27].

Currently, Q. acutissima and Q. variabilis are widely distributed across East Asia, while
Q. chenii exhibits a narrow distribution in eastern subtropical China [26,27]. The areas of
pure stands of Q. variabilis and Q. acutissima in China are estimated to be 13,634.6 km2 and
7451.1 km2, respectively, while the forested area with Q. variabilis, Q. acutissima or Q. chenii
as a (co-)dominant species is more than 70,000 km2 [28]. As major contributors to ecosystem
function, the three oak species are regarded as indicator species for assessing local forest
health [29]; in many cases, the disappearance of oaks in forests means the disappearance of
endemic species and a reduction in species diversity [30,31]. Furthermore, East Asian Cerris
oaks provide local residents with wood products, food, and fuel, and have been listed as
one of the precious wood species by the government [28]. Given that East Asian Cerris
oaks are not only ecologically but also economically important [26,27], it is reasonable to
use them as a model to understand the impacts of CC, LULC and dispersal limitations on
future range dynamics of keystone forest tree species in East Asia.

Here, we integrate both SDMs and migration models to explore the roles of CC, LULC
and dispersal ability in shaping the range dynamics of East Asian Cerris oaks. We aimed
to (1) determine the key climatic factors that affect habitat changes in response to CC;
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(2) explore the combined effects of LULC and dispersal limitations on range shifts of East
Asian Cerris oaks; (3) identify habitats potentially threatened by CC and LULC and provide
guidance for the future management of East Asian Cerris oak forests.

2. Materials and Methods
2.1. Species Occurrence Records and Climatic Data

The study was conducted in China, which is in the eastern part of Asia. Species occur-
rence records of the three East Asian Cerris oaks were obtained from the Chinese Virtual
Herbarium (CVH) [32], Plant Photo Bank of China (PPBC, [33]) and field investigation. We
did not use the data of Global Biodiversity Information Facility (GBIF) because they are
a subset of the CVH database. For occurrences lacking geographic coordinates, we used
the Getpoint tool of Baidu Maps to complement the latitude and longitude information
according to explicit geographic locations [34]. Moreover, any duplicate records or those
of introduction and cultivation were excluded. Because SDMs require input data to be
spatially independent so that they can perform well, we cleaned our data to ensure that
only one occurrence record per species was used within each grid cell at a resolution
of 0.05◦ [35]. Finally, we obtained 402, 52, and 431 records for Q. acutissima, Q. chenii,
and Q. variabilis, respectively (Table S1). Maps of these Quercus species occurrences were
visualized in ArcGIS 10.3 (Figure 1) [36].
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Figure 1. Maps of occurrence records and leaf photos (taken by Y.L.) of the three East Asian Cerris
oaks. The green, blue and red dots represent the presence points of Quercus acutissima Carruth.
(n = 402), Q. variabilis Blume (n = 431) and Q. chenii Nakai (n = 52), respectively.

The raster layers of 19 bioclimatic predictors (1970–2000) were obtained from the
WorldClim version 2.1 database at a spatial resolution of 2.5 min and then projected
to the GCS_WGS_1984 system (see Table S2 for specific factors) [37]. Highly collinear
variables allow alternative model structures to yield very similar model fits [38]. To
avoid the interference of multicollinearity between variables [39], we examined the cross-
correlation of the 19 variables using the ‘band collection statistics’ function in ArcGIS and
eliminated the highly correlated (|Pearson r| ≥ 0.8) climatic variables. Although the
correlation between annual precipitation (AP) and precipitation of driest quarter (PDQ)
exceeded 0.8 (|Pearson r| = 0.859), we retained these two variables to investigate the
impact of extreme precipitation on species distributions. Finally, out of the total 19 variables,
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only seven variables were selected as predictors (Table S3), including AP, PDQ, annual
mean temperature (AMT), isothermality (IT), temperature seasonality (TS), minimum
temperature of coldest month (MTCM) and precipitation seasonality (PS).

2.2. SDMs Incorporating CC

We used a Maximum Entropy approach as implemented in Maxent version 3.4.1 [40]
to simulate the modern distributions of East Asian Cerris oaks in China. Maxent can predict
probability distribution of a given occurrence dataset based on presence-only points and
predictors [41]. We chose the Maxent method because it is one of the best-performing
models among all the SDMs [42]. To reduce uncertainty caused by sampling artefacts, we
randomly divided occurrence data into training data (75%) and validation data (25%). We
ran the model 20 times independently and used the subsampling method to validate the
robustness of the models. The default setting of Maxent used automatic method to generate
feature types, 5000 as maximum number of iterations, and 10,000 as maximum number of
background points for seeking the optimal solution.

We projected the model to two future periods (2050 and 2070) to predict the impacts of
CC on range shifts of East Asian Cerris oaks. Three representative concentration pathways
(RCPs) were considered, including RCP 2.6, RCP 4.5, and RCP 6.0, representing different
concentration trajectories from eco-friendly (RCP 2.6) to bad case (RCP 6.0) [43]. In the RCP
2.6 scenario, mean annual temperature in China is estimated to increase by 1.36 ◦C from
current to 2070, while in the RCP 4.5 and RCP 6.0 scenarios, it is predicted to increase by
2.13 ◦C and 2.36 ◦C, respectively. These data were generated using the global climate model
(GCM) BCC-CSM1-1 (Beijing Climate Centre, China Meteorological Administration), which
is considered one of the more suitable GCMs for climate change research in China [44].
All the layers for future climatic variables were downloaded from WorldClim version 2.1
database at a spatial resolution of 2.5 min [37]. Finally, we used the resampling function
based on the nearest neighbor method in ArcGIS 10.3 to convert the resolution of the climate
data to 0.05◦, matching with the resolution of land use and land cover data (see below).

We used the maximum training sensitivity plus specificity (MTSS) threshold to convert
the continuous suitability scores (range of 0 to 1) of the Maxent outputs into binary suitability:
unsuitable habitats (<MTSS), and suitable habitats (≥MTSS) [45]. We used the variable
importance index provided by Maxent to evaluate the contributions of each variable to the
model. For each environmental variable in turn, the values of the variable on training presence
and background data were randomly permuted and the model was reevaluated using the
permuted data and then normalized the AUC loss to percentages [41]. We adopted the area
under the receiver operation curve (AUC) to verify the accuracy of each model. An AUC
value greater than 0.9 often indicates that the model fits the observed dataset well [5].

2.3. SDMs Incorporating LULC

To predict the impacts of LULC on range dynamics of East Asian Cerris oaks, we
extracted the Chinese land use and land cover data for now, 2050 and 2070, from an open-
source global future land use dataset [17]. This dataset is obtained based on a global change
analysis model (GCAM) and a land use spatial downscaling model (Demeter version
1.0.0) under the framework of the Shared Socioeconomic Pathways (SSPs) [46]. The grid
shows all different land use types in the form of proportion. Compared with the existing
similar datasets, this dataset has a higher spatial resolution (0.05◦ × 0.05◦) and considers
uncertainties from the forcing climates [17]. To investigate the habitat changes of East Asian
Cerris oaks in China, we extracted the land use categories ‘coniferous forest’ (CF) and
‘broad-leaved forest’ (BF) in the dataset, which represent the proportion changes of global
coniferous forests and broad-leaved forests in each grid in the future. To be comparable
with the three CC scenarios, we grouped SSPs 2 with the RCP 2.6 scenario, SSPs 3 with the
RCP 4.5 scenario, and SSPs 4 with the RCP 6.0 scenario.

To assess the impacts of LULC on habitat change, we calculated the number of patches
(NP) and core area (CA, ×104 km2) of habitats through the ‘SDMtools’ package in R
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4.0.2 [47]. NP reflects the level of habitat fragmentation, and the increase in NP indicates
that the original habitat is transforming to many isolated fragments [48]. CA is the area
where its four parallel neighbors are not disturbed by the unsuitable habitats. The increase
in CA means more undisturbed habitats with high population connectivity [49]. We
first compared the differences in NP and CA between SDMs considering CC and those
considering both CC and LULC (i.e., CC + LULC), and then we used the CC + LULC model
to predict the changes of future habitats for East Asian Cerris oaks in China.

2.4. SDMs Incorporating Dispersal Ability

To simulate the effects of dispersal ability on the accessibility of future suitable habitat
areas, the following two different migration rates were assigned to all species: full migration
(FM, unlimited m/year) without any dispersal limitations, and partial migration (PM,
500 m/year) based on literature [50]. The FM model was obtained directly from the Maxent
outputs of the CC + LULC model applying a species-specific MTSS threshold, coinciding
with the most optimistic assumption that species could colonize all suitable habitats under
CC and LULC [45].

For the PM scenario, we used the KISSMig model in R 4.0.2 [13], a simple 3 × 3
raster-based stochastic approach to simulate dynamic changes in species distributions on
top of habitat suitability maps generated by the CC + LULC model. Under this model,
species disperse based on the current range at a given ratio of migration. The algorithm is
generally used to detect the overall migration pattern through time and provides rough
estimates of the general migration rates [13]. It is widely used in niche modeling of species
with limited vagility (e.g., endangered species and plants) [14,51]. Alpha-shapes associated
with the original presence points were used to restrict the current species range [15]. We
used binary suitability values (unsuitable: 0, suitable: 1) for migration simulations instead
of using quantitative suitability values [14]. From the present (2020) to the years 2050 and
2070, the migration distance was set to 15 km and 25 km, respectively.

3. Results
3.1. Model Performance and Key Climatic Factors

The mean AUC values (±SD) on the observed dataset of each species were higher
than 0.9 (Q. acutissima: 0.974 ± 0.006; Q. chenii: 0.977 ± 0.004; Q. variabilis: 0.925 ± 0.004),
indicating that our SDMs had an excellent overall prediction ability. The SDMs only
considering climatic variables showed that AP, MTCM and AMT were the most important
variables for predicting the distributions of the two widespread species, Q. variabilis and
Q. acutissima (Figure 2c). Their cumulative relative importance exceeded 75%. For the
narrowly distributed species Q. chenii, AP, MTCM and TS were the most important variables,
accounting for 84.6% of the cumulative relative importance, while AMP showed little
contribution to predicting the suitable habitats of Q. chenii (Figure 2c).

3.2. Sensitivity to LULC in SDMs

SDMs showed that the overall range of current habitats did not change significantly
after taking the LULC data into account (Figure 3). The importance of the two LULC
variables was much lower than that of climatic variables, as indicated by the fact that CF
and BF only accounted for 0.4% of the cumulative relative importance in the model of
Q. chenii, and for less than 10% in models of Q. acutissima and Q. variabilis. However, after
adding the LULC data, the landscape patterns of habitats changed significantly. For all the
three species, the values of NP were found to be higher under the CC + LULC scenario than
under the CC scenario (Figure 2a), while the values of CA showed an opposite tendency
(Figure 2b). The increase in NP was greater in widely distributed species Q. acutissima and
Q. variabilis than in narrowly distributed species Q. chenii. The proportion of reduction in
CA was also much smaller in Q. acutissima and Q. variabilis than in Q. chenii.
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Figure 2. (a,b) Changes of landscape patterns, i.e., number of patches (NP) (a) and core area (CA) (b),
between species distribution models (SDMs) only considering climate change (i.e., the CC model)
and those considering CC as well as land use and land cover (LULC) change (i.e., the CC + LULC
model). (c,d) Variable importance index provided by Maxent to evaluate the contributions of each
variable to SDMs. (c,d) show the importance of each variable in the CC model and CC + LULC
model, respectively. AMT, annual mean temperature; AP, annual precipitation; BF, broad-leaved
forest; CF, coniferous forest; IT, isothermality; MTCM, minimum temperature of coldest month; PDQ,
precipitation of driest quarter; PS, precipitation seasonality; TS, temperature seasonality.
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Figure 3. Current suitable habitats of the three East Asian Cerris oaks in China predicted by species
distributions models (SDMs) only considering climate change (i.e., the CC model, green) and those
considering CC as well as land use and land cover (LULC) change (i.e., the CC + LULC model, blue).
The species-specific maximum training sensitivity plus specificity (MTSS) thresholds were used to
classify the suitable habitats (>MTSS) and unsuitable habitats (<MTSS).
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3.3. Projected Future Changes in Species Habitats

Under the FM model, both suitable habitat areas and CAs were predicted to change
significantly from 2050 to 2070 (Figures 4 and 5, Table 1). For Q. acutissima, the area of current
suitable habitats was estimated to be 253.33 × 104 km2. It will increase under all the three
CC scenarios (RCP 2.6, RCP4. 5 and RCP 6.0) of 2050, but will decrease to ~214.33 × 104 km2

under the RCP 6.0 scenario of 2070. The value of CA will decrease in the future; the loss of CA
is predicted to be smaller in the RCP 2.6 scenario than in the other two RCPs.
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Figure 4. Future suitable habitats of the three East Asian Cerris oaks in China in the years 2050 and
2070 under three representative concentration pathways (RCPs), i.e., RCP 2.6, RCP 4.5, and RCP 6.0.
They were predicted by species distributions models (SDMs) considering climate change (CC), land
use and land cover change (LULC) and dispersal limitations. The green and blue areas represent
the suitable habitats under the full migration (FM, i.e., migration unlimited) and partial migration
(PM, 500 m/year) scenarios, respectively. The species-specific maximum training sensitivity plus
specificity (MTSS) thresholds were used to classify the suitable habitats (>MTSS) and unsuitable
habitats (<MTSS).
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and Q. chenii Nakai (c) in China from the present to the years 2050 and 2070 under three representative
concentration pathways (RCPs), i.e., RCP 2.6, RCP 4.5, and RCP 6.0. The habitat areas were estimated
based on the results of species distributions models (SDMs) considering climate change (CC), land use
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unsuitable habitats (<MTSS).

Table 1. Changes of core areas (CAs) for Quercus acutissima Carruth., Q. variabilis Blume, and Q. chenii
Nakai in China predicted by species distributions models (SDMs) considering both climate change
(CC) and land use and land cover change (LULC). Three representative concentration pathways
(RCPs) were considered, including RCP 2.6, RCP 4.5, and RCP 6.0, representing different concentration
trajectories from eco-friendly (RCP 2.6) to bad case (RCP 6.0).

Years RCPs Q. acutissima Q. variabilis Q. chenii

current 228.66 217.00 78.33

2050
RCP 2.6 221.22 189.32 48.41
RCP 4.5 208.98 180.66 64.86
RCP 6.0 215.46 179.98 51.74

2070
RCP 2.6 223.45 198.48 75.41
RCP 4.5 207.96 178.80 68.32
RCP 6.0 165.42 158.95 66.71

For Q. variabilis, the suitable areas will be reduced in the future, which will shrink
rapidly in southern China but expand slightly in northern China. In 2050 or 2070, the
suitable habitat area was predicted to be the largest under the RCP 2.6, followed by RCP
4.5 and RCP 6.0. The CA of Q. variabilis will decrease in the future, and the loss of CA is the
smallest under the RCP 2.6 scenario.

For Q. chenii, the suitable habitat area will also be reduced in the future. In 2050, it will
be the largest under the RCP 6.0 scenario, followed by RCPs 4.5 and 2.6. In the RCP 2.6
scenario, the suitable habitat area was estimated to be only 66.23% of that at the present.
In 2070, the suitable habitat area will increase, which will exceed the present area under
the RCP 2.6 scenario, reaching 85.85 × 104 km2. The CA of Q. chenii will be reduced in the
future, and the loss of CA is the smallest under the RCP 6.0 scenario.
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For all the three species, the areas of suitable habitats were predicted to be smaller
under the PM scenario than under the FM scenario (Figures 4 and 5). The suitable habitat
area of Q. acutissima under the PM scenario was shown to be more expanded in 2050. It
was only reduced under the RCP 6.0 scenario of 2070, accounting for 85.84% of the current
area. The future suitable habitat area of Q. variabilis under PM was smaller than that at the
present, and the estimated habitat area in 2070 was smaller than that in 2050. The suitable
habitat area of Q. chenii under PM will increase in all scenarios. It will increase by 34.85%
under the RCP 6.0 scenario in 2050, and by 57.00% under the RCP 6.0 scenario in 2070.

4. Discussion
4.1. Key Variables Shaping Species Distributions

On the regional scale, geographical distributions of plants are mainly restricted by
climatic factors, in which hydrothermal conditions play a leading role [52]. Our research
found that Q. acutissima and Q. variabilis are mainly affected by AMT, AP and MTCM.
One of the main factors why Q. variabilis and Q. acutissima do not expand northward
under global climate change may be that their northern range limits are restricted by
low temperature [27,52]. Winter temperatures in northern China are predicted to drop
further in the future [53]. The extreme low-temperature events are greatly damaging to
the mechanical structure of forest trees, limiting their distributions in high latitudes and
altitudes [54]. At the same time, Q. variabilis is drought-resistant and its root tissue is more
sensitive to flooding [26]. Therefore, the increase in AP and PS in southern China may
explain its rapid contraction in this region [55]. However, the endemic Q. chenii is almost
mainly affected by TS and MTCM. The influence of TS on distributions has also been found
in the study of other endemic Quercus species [56]. TS is coupled with the seasonal variation
of oak functional traits, and the narrow-distributed oak species may have worse elasticity
in their functional traits [57], so it is difficult for them to adapt to more extreme seasonal
changes in temperature.

Many studies showed that the contribution of land use and land cover change to SDM
is not as decisive as climate factors at a large scale [58]. Our research proves this opinion and
shows that climatic factors play a more important role in predicting species habitats on the
macro scale. The degree of contribution of LULC to SDMs may be related to the resolution
and accuracy of LULC data [17]. Under the resolution of 0.05◦, human activities will not
have a significant impact on the current forest cover. Although LULC is shown to have
little impact on the overall range of suitable habitats, it was predicted to deeply change the
landscape patterns. We found that LULC will lead to the fragmentation of suitable habitats
and reduce the value of CA. Previous studies on oak trees in the western Himalayas used
land use data to limit their distribution in evergreen forests [59], but evergreen forests
cannot cover all the suitable habitats of Quercus. We also added coniferous forests as a land
cover factor to predict East Asian Cerris oaks’ habitats and found that the suitable areas
of Q. chenii are more related to coniferous forests than broad-leaved forests. This may be
due to the fact that they are important company tree species in coniferous forests, which
always converge in the gap of pine forests [60]. Considering the huge impact of LULC
on habitat fragmentation and CA, we should not ignore the effect of LULC on predicting
species habitats, and we should also take the CA as a key index in future forest protection.

4.2. Ecological Niches of East Asian Cerris Oaks

The FM model predicts potentially colonizable areas that cannot be accessed in non-
migration scenarios, which means that it predicts all ecological niches suitable for species
survival [14]. The niche conservation hypothesis holds that the niche similarity between
closely related species is higher than that between distant species [61]. Therefore, it is
expected that species in the same group may have the same habitat change trend under
CC. However, under the FM model, we found that the degree of suitable habitat change
differs among the three species, although they belong to the same section of Quercus.
For Q. acutissima, we found that its suitable area only changes greatly under the RCP 6.0
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scenario in 2070, reflecting its robustness to climate change. For Q. variabilis, its habitat loss
increases under more serious emission scenarios, coinciding with the general prediction
that the species habitat will shrink in scenarios worse than RCP 4.5 [14,26,62]. For Q. chenii,
its suitable habitats fluctuate greatly in different periods, which is mainly related to the high
level of CC and LULC in eastern China [63]. Overall, the suitable habitats of Q. acutissima
are predicted to be more stable, while those of Q. chenii are found to be more sensitive to
CC and LULC.

We believe that evolutionary history is one of the main reasons why the suitable
habitats of the three species have different responses to CC. Q. chenii was historically
widely distributed in China under the warm climate in the mid-Pliocene [64]. However, the
climate cooling in the Pleistocene led to the extinction of Q. chenii in northern China. The
present populations of the species are the descendants of those who survived in the refugia
of eastern China [65]. They may have adapted to the past climate but show maladaptation to
future climate change. In contrast, the historical distribution of Q. acutissima was relatively
stable. The occurrence of multiple marginal refugia contributed to the preservation of its
genetic diversity under Quaternary climate fluctuations [66]. Hence, it may have stronger
plasticity in response to climate change. Given that Q. chenii is more sensitive to CC, we
suggest that it should be listed as a species requiring priority protection.

4.3. Future Habitats under Dispersal Limitations

Considering species dispersal limitations, the suitable areas of East Asian Cerris oaks in
China are predicted to be smaller than those under the full migration scenario. An important
reason for species habitat reduction under the PM scenario is that many suitable habitats
will become inaccessible due to geographical isolation and habitat fragmentation [1,14]. In
addition, the current actual distribution area of species is always smaller than the optimal
area predicted by the SDMs, due to sampling deviation and other reasons [15]. Our results
showed that the suitable habitats of Q. chenii and Q. acutissima under dispersal limitations
are gradually expanding. However, the suitable habitats of Q. variabilis gradually decrease,
which means that the new habitats of Q. variabilis under future CC are geographically
isolated from the current habitats, while its current habitats are rapidly disappearing.
Hence, we should take measures to protect the current habitats of Q. variabilis. Finally,
the accuracy of species migration ratio is an important factor affecting habitat prediction
in our study. Some studies posited that there is no migration process of oak trees in the
eastern mountains under the current conditions [27], while others pointed out that with the
improvement of forest management mode, the expansion of oak trees is accelerating [66].
Therefore, more evidence of seed and population dispersal may be needed to refine our
study in the future. Although the partial migration rate used in this study may not
accurately reflect the actual migration capacity of each species, it provides a more complete
picture of potential future changes in the distributions of the studied species.

5. Conclusions

Our results reveal the complex effects of CC and LULC on the future distributions of
East Asian Cerris oaks in China. LULC does not have a significant impact on the current
range size of the three species but will lead to habitat fragmentation and a reduction in CA,
which may further restrict the future migration of oaks across the landscape. Under the
scenarios of CC and LULC, we found that the suitable habitats of the narrowly distributed
species Q. chenii will be greatly reduced, while those of Q. variabilis in southern China will
no longer be suitable for its growth. The management of current Q. variabilis stands should
be strengthened and transplantation is needed to buffer the impacts of climate change.
At the same time, protective measures should be taken to prevent the suitable habitats of
Q. chenii from being threatened by land use and land cover change. Our work emphasizes
that it is essential to take the effects of LULC and dispersal limitations into account when
predicting species’ habitat change in the face of climate warming.
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