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Abstract: Many forests have suffered serious economic losses and ecological consequences of pine
wilt disease (PWD) outbreaks. Climate change and human activities could accelerate the distribution
of PWD, causing the exponential expansion of damaged forest areas in China. However, few studies
have analyzed the spatiotemporal dynamics and the factors driving the distribution of PWD-damaged
forests using continuous records of long-term damage, focusing on short-term environmental factors
that influence multiple PWD outbreaks. We used a maximum entropy (MaxEnt) model that incorpo-
rated annual meteorological and human activity factors, as well as temporal dependence (the PWD
distribution in the previous year), to determine the contributions of environmental factors to the
annual distribution of PWD-damaged forests in the period 1982–2020. Overall, the MaxEnt showed
good performance in modeling the PWD-damaged forest distributions between 1982 and 2020. Our
results indicate that (i) the temporal lag dependence term for the presence/absence of PWD was the
best predictor of the distribution of PWD-damaged forests; and (ii) Bio14 (precipitation in the driest
month) was the most important meteorological factor for affecting the PWD-damaged forests. These
results are essential to understanding the factors governing the distribution of PWD-damaged forests,
which is important for forest management and pest control worldwide.

Keywords: pine wilt disease; outbreak; short-term environmental factor; MaxEnt

1. Introduction

Forests are the largest component of the terrestrial carbon cycle, acting as a large
carbon sink in terrestrial ecosystems and maintaining the Earth’s carbon balance [1]. Pine
wilt disease (PWD), caused by the presence of pine wood nematode (PWN), is one of
the most severe forest diseases worldwide [2,3]. PWN, also known as Bursaphelenchus
xylophilus, is native to North America and has spread to several countries since the early
20th century (Japan in 1905, China in 1982, Taiwan in 1985, Korea in 1988, and Portugal
in 1999) [4–8]. It was introduced to China in 1982, and the most serious PWD outbreak
occurred in 2018–2020, with an increase of 1200% in the damaged forest area relative to
that in 2017 [9]. PWD-damaged forests were discovered in 718 county-level administrative
divisions in 17 provinces of China by the end of December 2020, with ~19.5 million dead
trees and ~1.81 million hectares infected [9]. This widespread PWD outbreak in China
caused major economic losses and ecological consequences for pine forests [5,10,11].

Climate change and human activities have contributed to the extent and severity of
PWD outbreaks [2,12,13]. Temperature and precipitation are the primary climatic factors
associated with these outbreaks [2,14,15]. Warm winter temperatures enhance the survival
of overwintering populations of PWN, whereas cold temperatures retard its spread and
delay its life cycle [16–18]. Previous studies have demonstrated that PWD has never
occurred when the mean air temperature is <20 ◦C in the warmest month or <−10 ◦C in
the coldest month [15,19]. Another important climatic driving of PWD is the water stress
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experienced by the host trees. A significant drought is likely to pose a greater risk to host
tree species than PWN, so pine species affected by water deficit are highly susceptible to
PWD outbreaks [20,21].

The rapid expansion of the geographic range of PWD into new areas of China in recent
years indicates that its changing distributions are probably associated with short-term
climatic variation [22]. The bioclimatic variables provided by the World Climate database
(WorldClim) are the factors most commonly used to predict species distributions [23]. The
WorldClim bioclimatic (BIO) variables are climatic factors averaged over several decades,
which have been widely used for modeling species distribution. However, they are not
adequate for explaining a sudden PWD outbreak (such as the serious PWD expansion in
China in 2018–2020) because this coarse temporal resolution (typically 30 years) does not
fully reflect the local conditions of an outbreak. Furthermore, climate is characterized not
only as the average weather over an extended period but also as short-term extreme climate
and weather events. The analysis of short-term climate changes, which are characterized
by annual BIO variables using the monthly and quarterly observations for each year, on
species outbreaks has become particularly important with increasingly serious climate and
weather anomalies [24]. However, few studies have reported the direct or indirect effects of
short-term climatic variations and extreme events on PWD outbreaks using BIO variables
at a fine temporal resolution (within an interval of 1 year).

The temporal lag effects of the existing distribution of a species are also considered in
species distribution modeling to estimate the presence of new infestations in an area [25].
The existing PWD distribution in the current year is strongly associated with the previ-
ous year’s distribution owing to significant temporal trends of population growth. This
temporal dependence is related to the short dispersal distance of PWN within short time
intervals, which can easily spread to close locations that tend to have similar environmental
conditions with the infested areas.

Human activities increase the risk of the transportation of PWN-infested wooden
packaging materials and may be responsible for the long-distance spread of PWD [19].
Such activities are usually characterized by trade and transportation networks at coarse
temporal resolutions (usually >5 years), which could explain the long-term variations
in species distributions [19]. A time-series nighttime light (NTL) dataset (1992–2020)
generated from satellite imagery provides valuable support for monitoring human activities
at relatively high temporal (≤1 year, on average) and spatial (≤1 km) resolutions, which
is useful in understanding how human activities and economic activities affect species
distributions [26,27].

Species distribution models (SDMs) are powerful tools, not only for modeling the
potential species distributions but also for quantifying the relative importance of environ-
mental factors in determining those distributions [28]. Maximum entropy (MaxEnt), a
machine learning-based SDM, has been widely used to simulate potential distributions of
forest pests [2,22]. These MaxEnt models are generally built by integrating PWD occur-
rences (presence-only or presence-absence records) with different spatial environmental
factors [28,29]. Several studies have investigated the meteorological factors that control the
current PWD distribution, such as the average monthly mean temperatures in the warmest
3 months and the aridity in three geographic regions (Europe, North America, and East
Asia) in 2017 [2]; the mean annual temperature, as the most important of the 19 bioclimatic
variables at the national, regional, and local spatial scales in Japan [30]; and water deficit,
which increases the susceptibility of pines to PWN [14]. However, there is no agreement
among their conclusions. It can be inferred that factors affecting PWD distributions vary
across time and space. However, few studies have focused on the changes in factors af-
fecting PWD distributions over a long time series, especially including multiple outbreak
cycles.

In this study, we analyzed the distributions of PWD-damaged forests in China and
addressed the following questions. (1) What are the spatial and temporal patterns in the
distributions of PWD-damaged forests nearly 40 years after the first occurrence of PWD in



Forests 2022, 13, 261 3 of 15

1982? (2) What are the primary factors driving the distribution of PWD-damaged forests,
and how do they differ from those of historical PWD outbreaks? The results of this study
should be helpful in explaining the multiple outbreaks of PWD in China, should allow
the formulation of effective management strategies to control PWD-damaged forests, and
should provide new insights into the field of PWD prediction.

2. Materials and Methods
2.1. Study Area and Data

The entire Chinese mainland (excluding Hong Kong, Macau, and Taiwan, for which no
original PWD data are available) was included in the study. The locations of PWD-damaged
forests in China were identified from maps in the published literature and announcements
of China’s State Forestry and Grassland Administration. Figure 1 shows the locations
of the PWD-damaged forests in 2020. The location data obtained at the district level
were converted to points by using the centroids of districts, as several other authors have
done [31,32], which could be used for the further analysis of the distribution of PWD-
damaged forests. The location data for 1982–2002 were obtained directly from existing
maps and are generally less accurate than actual announcements.

Figure 1. Locations of PWD-damaged forests in 2020 at the district level, as used for MaxEnt
modeling.

2.2. Environmental Factors

Several environmental factors (climatic variables, elevation, and human activity) were
integrated into the model to explain the distribution of PWD-damaged forests between
1982 and 2020. Nineteen bioclimatic variables, measured on short temporal scales (annually,
quarterly, or monthly), were used in this study. The definitions of these variables are given
in Table 1. They were calculated from the daily 2 m air temperature and daily precipitation
data for the historical period 1982–2020 and were obtained from the China Meteorological
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Data Service Center (http://data.cma.cn/, accessed on 15 October 2020). The spatial mete-
orological data were interpolated to a spatial resolution of 30 arc second (~1 km) by using
the records of 699 weather stations with the Australian National University Spline (ANUS-
PLIN) method [33]. The 19 bioclimatic variables most commonly used over a long temporal
range (usually from 1950 to 2000), with a spatial resolution of 30 arc second, obtained from
the WorldClim database (http://www.worldclim.org, accessed on 15 October 2020), were
also compared with the abovementioned short-term climatic variables to measure the
distribution of PWD damaged-forests [23].

Table 1. Environmental factors used to predict potential PWD-damaged forest distribution in this
study.

Type Definition

19 Bioclimatic variables

Bio1 (Tmean) = annual mean temperature; Bio2 (Trange) = mean
diurnal range (mean of monthly) (maximum temperature −

minimum temperature)); Bio3 (ISO) = isothermality (Bio2/Bio7)
× 100; Bio4 (STD) = temperature seasonality (standard

deviation × 100); Bio5 (Tmax) = maximum temperature in
warmest month; Bio6 (Tmin) = minimum temperature in

coldest month; Bio7 (Tmaxmin) = annual temperature range
(Bio5−Bio6); Bio8 (Twet) = mean temperature in wettest quarter;

Bio9 (Tdry) = mean temperature in driest quarter; Bio10
(Twarm) = mean temperature in warmest quarter; Bio11 (Tcold)

= mean temperature in coldest quarter; Bio12 (P) = annual
precipitation; Bio13 (Pmax) = precipitation in wettest month;

Bio14 (Pmin) = precipitation in driest month; Bio15 (Pseason) =
precipitation seasonality (coefficient of variation); Bio16 (Pwet)
= precipitation in wettest quarter; Bio17 (Pdry) = precipitation

in driest quarter; Bio18 (Pwarm) = precipitation in warmest
quarter; and Bio19 (Pcold) = precipitation in coldest quarter

DEM Digital elevation model

Human activity Nighttime light

Temporal dependence Presence/absence of PWD-damaged forest in the cell for the
previous year

Digital elevation model (DEM) data at a resolution of 90 m were collected from the
Shuttle Radar Topography Mission (SRTM) dataset supplied by the United States Geological
Survey (USGS) (https://earthexplorer.usgs.gov/, accessed on 10 January 2021). To maintain
consistency with the spatial resolution of the climatic variables in this study, the DEM data
were resampled at a resolution of 1 km. A time-series nighttime light dataset (1992–2020) at
a spatial resolution of 30 arc second, generated with the Defense Meteorological Satellite
Program/Operational Linescan System (DMSP-OLS) and the Visible Infrared Imaging
Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite, were
used to represent human activities [26,27]. The temporal lag dependence term related to the
biological properties of PWD dispersal was also considered in the dataset of environmental
factors, characterized by a binary response variable to reflect the presence/absence of
PWD-damaged forest in the cell for the previous year.

There were severe multicollinearities among the environmental variables (Table 1),
which can result in overfitting in species distribution modeling [34]. We used Pearson’s
correlation test to remove highly correlated environmental factors, for which r > 0.8, which is
consistent with the previously published criterion for removing multicollinearity [35]. This
procedure was conducted to minimize the effect of multicollinearity and model overfitting,
as follows. First, Pearson’s correlation coefficients between all pairs of predictors were
computed to obtain a correlation matrix of predictors. Second, the pair of predictors with the
highest correlation was selected, and the variable in the pair that had the highest correlation
with the other variables was removed. These two operations were repeated until the correla-

http://data.cma.cn/
http://www.worldclim.org
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tions between all the selected variables were <0.8. This procedure eventually produced the
selected environmental variables for use in further analyses. The Pearson’s correlation test
for the dataset was repeated for each year (1982–2020), which selected different variables
among years as a result of short-term variations in the annual environmental variables. All
the gridded environmental factors were converted to average values at the district level to
maintain consistency with the scale of the PWD-damaged forest distribution.

2.3. Piecewise Polynomial Fitting

Piecewise polynomial fitting is a popular method used to observe the trend in time series
and to identify the timing of change points by minimizing the residual sum of squares of
all possible combinations of segments representing time intervals of several years [36,37].
Breakpoint years, which showed significant changes in the PWD-damaged forest distribution,
were estimated, and separate periods with significant trend changes were identified.

2.4. Spatial Autocorrelation Analysis

Global spatial autocorrelation, which is generally measured using Moran’s index
(Moran’s I), was used to assess the overall clustering of data and quantify the similarity
of PWD occurrence in spatially adjacent units. A positive Moran’s I value (close to +1)
indicates low–low or high–high clusters of the PWD occurrence and a negative Moran’s I
value (near to −1) conforms to a dispersed occurrence pattern (i.e., high–low pattern). We
calculated the Moran’s I to explore the spatial autocorrelation of the PWD-damaged forest
distributions in China between 1982 and 2020.

2.5. MaxEnt Model

We conducted our analyses using the MaxEnt software v.3.3.1, which is a freeware
package (http://www.cs.princeton.edu/~schapire/maxent/, accessed on 1 October 2020).
The MaxEnt model is widely used in the field of species distribution modeling and pro-
vides the potential areas of a particular species. Here, we used a function of the model
that compares the contributions of environmental factors, i.e., the factors determining
the distribution of PWD-damaged forests, especially sudden increases in the number of
PWD-damaged forest areas (defined as “outbreaks” in this study). The MaxEnt model
uses the theory of maximum entropy to identify statistical relationships between species
presence-only data and environmental variables, thus identifying in detail the contributions
and permutation importance of environmental variables to the PWD distribution. The
percent contributions and permutation importance of environmental variables included
in the Maxent outputs were then used to assess the importance of the environmental vari-
ables [28,29]. The percent contribution represents how much an environmental variable
contributes to the PWD distribution, which is based on the path selected for a particular
run. Permutation importance is determined by changing the values of the environmental
variables between presence and absence points and observing how that affects the perfor-
mance of the model. The permutation importance depends on the final model, not the
path used in an individual run, and is more appropriate for evaluating the importance of
a particular variable. Therefore, the permutation importance was used to investigate the
environmental factors influencing the distribution of PWD-damaged forests.

We ran the MaxEnt model using occurrence data from each year (i.e., one model for
each year), focusing on the PWD outbreaks. The MaxEnt model was run with default
parameter settings: the auto feature type that included hinge, linear, and quadratic features
was used for the PWD modeling; a regularization parameter of 1.0 was used to avoid
over-fitting; the maximum number of iterations was set at 500. For each MaxEnt model,
75% of randomly selected PWD occurrence data were used to build the model and the
remaining 25% of the data were used to test the model’s performance [38]. The area under
curve (AUC) value was used to evaluate the performance of the model in measuring
the distribution of PWD-damaged forests, with an AUC value of 0.9–1 deemed excellent,
0.8 –0.9 good, 0.7–0.8 fair, and < 0.7 poor [38,39].

http://www.cs.princeton.edu/~schapire/maxent/
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3. Results
3.1. Spatiotemporal Distribution of PWD-Damaged Forests
3.1.1. Temporal Distribution Characteristics

Figure 2 shows the cumulative forest areas damaged by PWD in China, indicating an
almost exponential increase between 1982 and 2020. Since the first incidence of PWD in the
Zhongshan Mausoleum of Nanjing, China, in 1982, the number of damaged forest areas
has increased each year, with different increasing trends between 1982 and 2020. Piecewise
polynomial fitting was used to divide the time series of cumulative forest areas damaged
by PWD into six segments of different lengths. Figure 2 shows the almost linear increasing
trend during the first five stages, before 2018, with significant increases in the growth rate.
The cumulative PWD-damage areas increased relatively slowly (~770 ha/year) during
stage 1 (1982–1987). This was followed by a continuous increase in the growth rate of
cumulative damage areas between 1988 and 2007: with growth rates of ~2630 ha/year for
stage 2 (1988–1994), ~5050 ha/year for stage 3 (1995–2000), and ~6710 ha/year for stage
4 (2001–2007). The rate of increase in the cumulative forest areas damaged by PWD then
slowed to ~4960 ha/year during stage 5 (2008–2017). However, this slowing trend did
not continue, and the cumulative damaged areas increased explosively from 234,120 ha
to 526,490 ha (growth rate of ~97,457 ha/year) after entering stage 6 (2018–2020). The
stacked bar charts in Figure 2 present the contributions of each environmental factor to
the accumulated damage area in the outbreak years (1988, 1995, 2001, 2008, and 2018).
The selected factors are determined by the permutation importance values in the MaxEnt
models, and detailed results are given in Section 3.2.1.

Figure 2. Temporal changes in the cumulative forest areas damaged by PWD in China from 1982 to
2020. The time series of cumulative damaged areas was divided into six intervals with piecewise
polynomial fitting. The contributions of the three most important factors, namely, PWD (the PWD
distribution in the previous year), Pmin (Bio14: the total precipitation during the driest month),
and DEM, in outbreak years (1988, 1995, 2001, 2008, and 2018), to the accumulated damage area are
presented in the stacked bar charts.

3.1.2. Spatial Distribution Characteristics

Nearly 40 years (1982–2020) of continuous datasets on PWD-damaged forests were
used in this study, and these included multiple PWD outbreak cycles. The spatial spread of
the PWD-damaged forest distribution recorded between 1982 and 2020 was analyzed in the
six time intervals derived from the temporal patterns described above (Section 3.1.1). As
shown in Figure 3, the initial spread of PWD in China was observed in Jiangsu and Anhui
provinces in stage 1 (1982–1987), where transmission was concentrated in a small range
around the site of its first discovery at the Sun Zhongshan Mausoleum in Nanjing. The
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area of PWD-damaged forests continued to expand around the site of its first discovery,
with a typical diffusion distance to adjacent provinces, including Zhejiang, Fujian, and
Shandong, in the second stage (1988–1994). It then spread rapidly to the surrounding areas
in the following 6 years during the third stage (1995–2000), which may have been related to
PWN population growth in these years. During the fourth stage (2001–2007), the spatial
spread of PWD extended not only into surrounding areas, but also into remote regions,
such as Chongqing, Guangxi, and Hubei provinces. The PWD-damaged forest areas still
increased sporadically over the next 10 years during the fifth stage (2008–2017), but the rate
of spread in the cumulative PWD-damage areas did not exceed that in the previous (fourth)
stage because intensive control efforts were undertaken during this period. This scattered
distribution was not maintained during the sixth stage (2018–2020), and the distribution of
PWD expanded dramatically, especially during the outbreak of 2018 (marked in green in
Figure 3f), which covered almost the whole of China’s southeastern region and expanded
into the northern region.

Figure 3. Spatial spread of PWD-damaged forests in China in the six stages between 1982 and 2020
(the first year in each figure denotes the current distribution of PWD-damaged forests in this year
(green area), and the areas in the following years indicate the increased PWD-damaged forest areas)
(a) 1982–1987; (b) 1988–1994; (c) 1995–2000; (d) 2001–2007; (e) 2008–2017; (f) 2018–2020.
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A spatial autocorrelation analysis also showed that the Moran’s I increased signifi-
cantly (p < 0.001) in this period, from 0.12 (1982) to 0.46 (2020), indicating that the spatial
distribution of the PWD-damaged forest areas in China showed high spatial autocorrelation,
and the areas of high–high clustering expanded significantly.

3.2. Factors Influencing the Distribution of PWD-Damaged Forests
3.2.1. MaxEnt Model with Short-Term Environmental Factors

The MaxEnt model was used to assess the relative importance of short-term environ-
mental factors in the distribution of PWD-damaged forests on a year-by-year basis (i.e., one
model for each year). After the removal of highly correlated variables (Pearson’s r > 0.8),
the candidate environmental factors were used as the input for the MaxEnt model. A null
value (shown as a white space in Figure 4) indicates that the environmental factor was
not included in the MaxEnt model of the current year because of its high multicollinear-
ity with other environmental factors. In all models, the selected environmental factors
were allowed to vary from year to year because the correlations among the short-term
environmental factors varied annually. The number of effective PWD-damaged forests
observed before 1985 was <5, so the MaxEnt models between 1985 and 2020 were con-
structed to explore the relative importance of environmental factors to the distribution of
PWD-damaged forests. The selected environmental factors in the MaxEnt models generally
fell into five categories: species abundance-related, human-activity-related, temperature-
related, precipitation-related, and terrain-related environmental factors. For all models
between 1985 and 2020, the AUC values were high for the training data (ranging from 0.87
to 0.99) and test data (ranging from 0.85 to 0.97), indicating that the performance of the
MaxEnt models was good.

Figure 4. Permutation importance values of annual environmental factors in the MaxEnt models
between 1985 and 2020 (white stars denote the years with significant changes in the PWD distribution).
Null values (white spaces in the figure) indicate that the environmental variables were not selected
using the Pearson’s correlation coefficients test for that year.

Figure 4 shows the permutation importance values for all selected environmental
factors in each MaxEnt model between 1985 and 2020, which were used to assess the
importance of each factor to the distribution of the PWD-damaged forests. The most
important factor influencing PWD spread during the period 1985–2020 was temporal
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dependence (the PWD distribution in the previous year), which made large contributions
(ranging from 37.8% to 99.9%) to the distribution of PWD-damaged forests in the next
year. It is noteworthy that the contribution of the PWD distribution in the previous
year was relatively small (<85%) in the years 1988, 1995, 2001, 2008, and 2018, when the
geographic distribution of PWD-damaged forests changed significantly. This was observed
in the spatiotemporal dynamics of the PWD-damaged forests (Figures 2 and 3). However,
the annual change in the distribution of PWD-damaged forests in these years cannot be
fully explained by the PWD in the previous year, suggesting that other external factors
affected the PWD outbreaks in 1988, 1995, 2001, 2008, and 2018. Based on the MaxEnt’s
permutation importance values, DEM was the second most important factor influencing
PWD spread, contributing 9.7%, 8.0%, and 8.1% of the changes in the distribution of PWD
damaged forests in 1988, 1995, and 2001, respectively. Bio14 (Pmin), which measures the
total precipitation during the driest month, was the most important meteorological factor
affecting the distribution of the PWD-damaged forests in 2008 and 2018. The spatiotemporal
dynamics of PWD-damaged forest recorded between 1982 and 2020 show significant spatial
expansion of PWD-damaged forest areas in 2008 and 2018. The permutation importance
values of the environmental factors in these years provide evidence that these expansions
were associated with changes in precipitation in the driest month.

3.2.2. MaxEnt Model with Long-Term Environmental Factors

Our results were also compared with previous studies that used the long-term climatic
variables (i.e., the WorldClim dataset, which measures the BIO variables with long-term
averaged meteorological observations) as the important predictors in the MaxEnt models.
We removed those variables with correlation coefficients >0.8 and selected DEM, NTL
data, Bio7 (Tmaxmin, annual temperature range), Bio12 (P, annual precipitation), and Bio19
(Pcold, precipitation in the coldest quarter) as the environmental factors in the MaxEnt
models (Figure 5).

Figure 5. Permutation importance values for long-term environmental factors in the MaxEnt models
between 1985 and 2020.

The results of the MaxEnt models indicated that the long-term BIO variables provided
relatively lower accuracy when modeling the PWD distribution than annual environmental
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factors, especially for those years with significant changes in the PWD distribution (AUC
values of 0.83–0.88). The permutation importance values of the environmental factors for
each model also varied, with Pcold the most important factor influencing the spread of
PWD. However, the permutation importance values of the environmental factors changed
very significantly between 1985 and 2020, so it is difficult to postulate a relatively uniform
rule to explain the species distribution (Figure 5).

3.3. Risk Assessment of PWD-Damaged Forests

The MaxEnt models developed to predict the probability of PWD occurrence were
also used to assess the potential risk of PWD damage to forests in China. The modeled
probability of PWD risk is denoted Prisk in the following section. The risk of PWD-damaged
forests was divided into five categories using the natural breakpoint method according
to the Prisk values in 2020, with <0.027 indicating very low-risk, 0.028–0.065 low-risk
areas, 0.065–0.32 medium-risk areas, 0.33–0.65 high-risk areas, and >0.65 very high-risk
areas. The very high-risk areas were concentrated mainly in southeast China, with wide
areas distributed in Zhejiang, Anhui, Guangdong, Hunan, Hubei, Jiangxi, and Chongqing
(Figure 6). The high-risk area also expanded northward to Liaoning Province in northern
China (Figure 6).

Figure 6. Risk assessment of PWD-damaged forests in 2020.

We also analyzed the temporal variations in the Prisk values based on our annual
MaxEnt models. Prisk showed an increasing trend in all county districts, and a linear
regression model was used to fit the annual changes in the Prisk values. The slope of
the regression model represented the growth rate of Prisk. Prisk showed fast or very fast
growth trends (slope > 0.12/10 years) in 255 county districts, and a medium growth trend
(slope 0.06–0.12/10 years) in 412 county districts (Figure 7). Most of the areas with medium-
high levels of Prisk growth were located in Zhejiang, Anhui, Guangdong, Guangxi, Fujian,
Hunan, Hubei, Jiangxi, Liaoning, and Chongqing (Figure 7).
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Figure 7. Changes in PWD risk measured by the slope of the Prisk regression model in 1985–2020.

4. Discussion

We analyzed the distribution of PWD-damaged forests in China using district-level
occurrence data from 1982 to 2020. This differed from the method of previous studies,
which used species occurrence points (latitude and longitude) for the current year or
at limited locations (monitoring stations) over long time series [19,30]. Although PWD
occurrence point data at high temporal resolution are unavailable at the national or regional
scale, publicly released district-level occurrence data allowed us to determine the species
occurrence points using the centroids of districts, which has been the most commonly used
solution in similar research [32,40]. Environmental variables at a spatial resolution of 1 km
were used to investigate their relationships with the PWD distribution in this study and
showed minor variations at the district level. Therefore, the geographic bias of the PWD
occurrence data had little effect on the performance of the model [31,41].

MaxEnt is a widely used algorithm for simulating the potential distribution of species.
In this study, the environmental factors that control the spatiotemporal dynamics of PWD
were detected with this algorithm using the permutation importance of the predictors. Our
results indicate that the MaxEnt model performed well in annual comparisons of the envi-
ronmental factors that contributed to the distribution of PWD-damaged forests, especially
during outbreaks of the disease. The temporal dependency term for the presence/absence
of PWD in neighboring cells was included in our MaxEnt models, which was the best
predictor of the PWD distribution, with the highest contribution (>85%) to the models in
1985–2020 (except for those years with significant changes in the PWD distribution). The
good performance of this temporal term in our MaxEnt models is attributed to the temporal
dependency of the distribution of PWD-damaged forests, which means that the presence
of outbreaking populations is related to the number of PWNs over time. The temporal
term of species distribution factors has also been used in many other species distribution
predictions [25], but it has been less effective in PWD prediction because most PWD studies
have been conducted in a specific year [2,42,43], in contrast to our long-term time series
predictions over 1982–2020. Our spatial autocorrelation analysis also indicates that spatial
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dependency is actually essential for modeling PWD distribution, and future work will
further examine the spatial effects of neighboring PWD on the outbreaks using spatial
autoregressive models. However, recent studies have also noted that spatial autocorrelation
does not realistically improve the model quality and typically leads to overfitting [44,45].
Therefore, the effects of spatial autocorrelation on our MaxEnt models must be further
examined using independent evaluation data in future research.

Short-term environmental factors also contributed significantly to the PWD outbreaks
in 2008 and 2018. Temperature-related environmental factors are known to be important
indicators of PWD outbreaks, with low temperatures inhibiting the transmission of PWD
and delaying the PWN life cycle [16–18]. However, our results did not show a good rela-
tionship between temperature and PWD outbreaks. Several temperature-related variables,
including Bio7 (annual temperature range), Bio5 (maximum temperature in the warmest
month), Bio8 (mean temperature in the wettest quarter), and Bio11 (mean temperature in
the coldest quarter), were used to develop the MaxEnt models in this study, but did not
make significant contributions to PWD outbreaks (Figure 3). Our results indicate that Bio14
(precipitation in the driest month) had a major impact on PWD outbreaks in China. It has
been suggested that the risk of PWD increases with water loss, which is related to the indi-
rect effects of precipitation on the susceptibility of the host plant to PWD outbreaks [20,21].
Water stress tends to increase the susceptibility and/or reduce the resistance of pines to
PWN [20,21].

Several studies have pointed out that human activities can be used as an indica-
tor of PWD distribution and may be useful in explaining the long-distance dispersal of
PWD [19,46]. In the present study, the role of human activities was small, making only a
small contribution in our all models. This may be because human activities not only have a
positive effect on PWD spread through human-mediated dispersal [12,19] but also involve
pest control and forest management strategies. Additionally, the nighttime light data may
suffer from saturation problems in urban areas, which can cause an underestimation of
human activities. Some correction methods, such as linear and cubic regression models,
the human settlement index, and the vegetation adjusted urban index, are effective for
reducing saturation effects [47], which can further improve the accuracy of nighttime light
in our future work. Topographic factors were only meaningful factors in PWD outbreaks
before 2002. This may be because they are not associated with annual climatic variations,
although they are useful in characterizing variations in elevation, which have a direct
effect on long-term average climatic variables [48]. The contribution of DEM to the PWD
outbreaks declined between 2008 and 2018, suggesting that the effects of long-term climatic
variations on the distribution of PWD are weakening.

The strength of this study is that it evaluated the influences of annual environmental
factors on the distribution of PWD-damaged forests since the first occurrence of PWD in
1982. Our results indicate that the contributions of environmental factors to PWD outbreaks
varied during different periods of this PWD spread. This may bring some uncertainty to
predictions of the potential distribution of PWD under future climate scenarios because
they only consider variations in climatic conditions [41].

There is also some uncertainty in the modeling of the species distribution, primarily
because some biotic and abiotic factors (such as biotic interactions and competitors, their
species dispersal modes and abilities, and pest management factors) were not as readily
available for each year within our study period as were climatic variables, and were,
therefore, not included in our MaxEnt models [49,50]. However, future work should focus
on gathering such data over those years with significant changes in the distribution of
PWD-damaged forests and analyzing the impact of these factors on the PWD distribution.

5. Conclusions

We analyzed the spatiotemporal dynamics and factors driving the distribution of the
PWD-damaged forests in China since the first incidence in 1982. There was an almost
exponential increase in the cumulative areas of PWD-damaged forests from 1982 to 2020,
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which corresponded to the six key stages in the spatial spread of recorded PWD. The
MaxEnt species distribution model was used to assess the relative importance of various
environmental factors to the PWD distribution, which revealed that the PWD distribution
in the previous year was the most important factor affecting the PWD distribution, and that
the significant changes in PWD distribution in 1988, 1995, 2001, 2008, and 2018 were related
to the environmental factors DEM and Bio14 (Pmin, precipitation in the driest month). The
findings of this study should contribute to a better understanding of the factors affecting
the distribution of PWD and will be important in investigating areas of potential risk, thus
guiding future forest management and pest control practices.
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