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Abstract: Urban ecosystem dysfunction, habitat fragmentation, and biodiversity loss caused by 
rapid urbanization have threatened sustainable urban development. Urban habitat quality is one of 
the important indicators for assessing the urban ecological environment. Therefore, it is of great 
practical significance to carry out a study on the driving mechanism of urban habitat quality and 
integrate the results into urban planning. In this study, taking Zhengzhou, China, as an example, 
the InVEST model was used to analyze the spatial differentiation characteristics of urban habitat 
quality and Geodetector software was adopted to explore the driving mechanism of habitat quality 
at different grid-scales. The results show the following: (1) LUCC, altitude, slope, surface roughness, 
relief amplitude, population, nighttime light, and NDVI are the dominant factors affecting the spa-
tial differentiation of habitat quality. Among them, the impacts of slope, surface roughness, popu-
lation, nighttime light, and NDVI on habitat quality are highly sensitive to varying grid-scales. At 
the grid-scale of 1000 to 1250 m, the impacts of the dominant factors on habitat quality is closer to 
the mean level of multiple scales. (2) The impact of each factor on the spatial distribution of habitat 
quality is different, and the difference between most factors has always been significant regardless 
of the variation of grid-scales. The superimposed impact of two factors on the spatial distribution 
of habitat quality is greater than the impact of the single factor. (3) Combined with the research 
results and the local conditions of Zhengzhou, we put forward some directions of habitat protection 
around adjusting urban land use structure, applying nature-based solutions and establishing a sys-
tematic thinking model for multi-level urban habitat sustainability. 

Keywords: urban habitat quality; biodiversity; grid-scales; driving mechanism; InVEST model; Ge-
odetector; Zhengzhou 
 

1. Introduction 
With the accelerating process of globalization and urbanization, economic-oriented 

urban construction often ignores the protection of the urban ecological environment, and 
urban construction land gradually erodes natural habitats such as forests and wetlands, 
resulting in a sharp decrease in the diversity of biotope habitats [1–3]. Many wild animals 
and plants are facing increasing threats, which has brought great pressure to urban eco-
systems, with an urgent need for scientific planning to balance the contradiction between 
human and nature’s spatial development [4,5]. The unique climate, soil, hydrology, light, 
and other conditions of the urban areas have created diversified habitats at different 
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spatial scales. In order to meet the normal habitation, migration, and reproduction of ur-
ban organisms, it is of great practical significance to integrate the concept and theory of 
habitat into urban planning and sustainable utilization. 

Habitat is the resources and conditions existing in an area, which can meet the sur-
vival and reproduction of organisms. Urban habitat, in this study, refers to the collection 
of all habitats within the scope of urban space, which directly affects urban spatial form, 
structure, function, and development direction. Urban habitat quality—a measure of the 
ability of the urban environment to provide suitable conditions for biological survival and 
sustainable development—has been recognized in recent years [6,7]. It reflects the level of 
urban biodiversity and determines the sustainable and harmonious development of hu-
man beings and other organisms. A series of multi-scale urban habitat mapping and hab-
itat quality assessment studies were carried out abroad, led by Germany, including Swe-
den, the Netherlands, Greece, Turkey, Spain, and other European countries, as well as 
cities in Asia, such as Japan and South Korea, with relatively mature results, which had 
even become a basic tool for nature protection and urban planning in some countries. 
Meanwhile, in China, the relevant research is still in the scope of philosophical speculation 
and has not gone deep into the level of specific operational theories and methods. We 
hope that our relevant research can make up for the shortcomings in this regard. There-
fore, the purpose of this paper is to explore the driving mechanism of habitat quality and 
provide a basis for formulating multi-scale urban habitat protection strategies [8–11]. 

Since the 20th century, the spatial scale of habitat quality assessment research has 
experienced a development process from micro-scale to meso-scale and then to the macro-
scale. Early scholars focused on the habitat conditions of single species or special commu-
nities. With the emergence of urban ecological problems, relevant research expanded to 
the overall quality of the entire urban ecosystem. However, traditional field investigation 
and evaluation were no longer suitable for efficiently expressing the characteristics of hab-
itat quality at urban or larger spatial scales, which has been the bottleneck in this field. 
With the development of electronic information science and technology, the mathematical 
methods of CA-Markov [12], MAXENT [13], SolVES [14], InVEST [15], and other models 
can be easily realize the quantitative analysis of the ecological environment at the meso-
scale or macro-scale. Among them, the InVEST model was tested by many scholars to 
assess the habitat quality of wetlands, forests, or other specific natural ecosystems because 
of its easy data acquisition, stronger visualization, higher accuracy, and simple operation 
[15–19]. However, so far, no systematic reviews exist on the InVEST model for calculating 
habitat quality in urban ecosystems, especially in metropolitan areas, which needs to be 
further explored. 

Geodetector, i.e. Geographical Detector, was a statistical tool developed by Jinfeng 
Wang of the Institute of Geographical Sciences and Natural Resources Research at the 
Chinese Academy of Sciences which is used to measure spatial stratified heterogeneity 
[20]. The core idea assumes that if an independent variable has an important impact on a 
dependent variable, the spatial distribution of the independent and dependent variables 
should be similar. Geodetector had been widely used in LUCC [21], public health [22], 
regional economy [23], regional planning [24], tourism [25,26], geology [27,28], meteorol-
ogy [29,30], animal life [31,32], ecology [33], pollution [34], remote sensing [35,36], etc. 
However, there were few experimental studies using Geodetector on the driving mecha-
nisms of habitat quality, especially in complex metropolitan areas. In this case, we used it 
as an innovative tool for exploring the driving factors of urban habitat quality in this 
study. 

One can not neglect the fact that the choice of spatial scale is essential to understand-
ing the patterns and processes of urban ecosystems. Existing studies have also shown that 
species will inevitably respond differently to environments and resources at different spa-
tial scales when making habitat choices [37–40]. Moreover, the overall habitat quality is 
usually determined by the interaction of multiple spatial processes at different scales [41–
45]. However, existing research still lacks robust theories and methods for establishing 
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mathematical models with “cross-scale” description and interpretation ability. We found 
that the multi-scale grid method is an effective method to realize the transformation of 
spatial data attributes, which refers to dividing the specified range into grids of different 
sizes through the fishing net tool in ArcGIS to realize the multi-level cognition of the 
whole region and fully reflect the law of spatial attribute differentiation, so we tentatively 
adopt it to reveal the scale effect on the driving mechanism of urban habitat quality [46]. 

Zhengzhou is one of the representative cities of China’s rapid urbanization develop-
ment. It is facing severe challenges in the balanced development of urban construction 
and urban habitat protection. In this study, taking Zhengzhou as the research object, the 
InVEST model and ArcGIS fishing net tools were used to analyze the urban habitat quality 
distribution characteristics at seven grid-scales: 500 m, 750 m, 1000 m, 1250 m, 1500 m, 
1750 m, and 2000 m. Further, combined with multiple factors such as land use, topograph-
ical features, meteorology, socio-economic conditions, and vegetation, Geodetector was 
used to explore the evolution of law and driving mechanism of habitat quality at different 
grid-scales. Eventually, our study results were designed to provide data support for the 
refined management of urban habitats. 

2. Study Area 
Zhengzhou (34°16′–34°58′ N, 112°42′–114°14′ E) is the capital city of Henan Province 

in central China with an area of 7567 km2 (Figure 1). It is close to the Yellow River in the 
north, Song Mountain in the south, Kaifeng city in the east, and Luoyang city in the west. 
The terrain is high in the southwest and low in the northeast, descending in a ladder 
shape. 

With the improvement in the comprehensive strength of Zhengzhou, its gross do-
mestic product (GDP) has exceeded CNY 1.2 trillion in 2020, which leads to sustained 
population agglomeration and large consumption of land resources. According to the re-
port of China’s seventh population census, as of November 1, 2020, the permanent resi-
dent population of Zhengzhou is approximately 12.6 million, and the urbanization rate is 
78.4%. According to the notice on the scale of urban built-up areas in Zhengzhou in 2020 
issued by Zhengzhou Municipal People’s Government, the central metropolitan area of 
Zhengzhou reached 709.69 km2, and the urban built-up land reached 1284.89 km2, an in-
crease of 60.19% and 72.52%, respectively, compared with 2016. Therefore, Zhengzhou is 
a veritable, rapidly urbanizing metropolis. 

Zhengzhou has a north temperate continental monsoon climate, with an annual 
mean temperature of 15.6 °C, a mean rainfall of 542.15 mm, and a frost-free period of 209 
days. The main habitats of this metropolis are cultivated land, construction land, and for-
est land. Cultivated land accounts for the highest proportion of the total area and consti-
tutes the leading matrix landscape of Zhengzhou, reflecting the critical position of agri-
culture in Zhengzhou. Built-up land is mainly distributed at the central core of the munic-
ipal jurisdiction, accounting for one-sixth of the total area. Forest land is mainly distrib-
uted in the western and southwestern mountains, including Mang Mountains, Song 
Mountains, and Fuxi Mountains, which constitute Zhengzhou’s main ecological barrier. 
These main types of habitats contain the resources and environments required for the sur-
vival and reproduction of organisms and ensure the food security and ecological security 
of the local residents. 

With the continuous expansion of human economic activities, many farmlands and 
natural habitats in the suburbs of Zhengzhou have been gradually occupied, seriously 
damaging the stability of the urban ecosystem. Therefore, protecting urban habitats and 
promoting the social, economic, and ecological development of urban ecosystems have 
become the primary issues facing the government of this metropolis. Due to the variety of 
urban habitats and their hierarchical characteristics, it is complex and expensive to ana-
lyze all habitats at a comprehensive scale. In this case, the urban size, data availability, 
and planning operability are considered in our study. We finally chose the research scale 
range of 500 m to 2000 m to explore the key driving factors of urban habitat quality, which 
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can also provide a foundation for further research in related fields of continuous subdivi-
sion of habitat scale and habitat planning. 

 
Figure 1. Geographic location (a), administrative boundaries (b), and topography (c) of Zhengzhou 
city. 

3. Data Sources and Methods 
3.1. Data Used 

The workflow steps in our analysis are shown in Figure 2. The land use/cover change 
(LUCC) data needed to calculate the urban habitat quality are from Data Center for Re-
sources and Environmental Sciences, Chinese Academy of Sciences (RESDC) [47]. We se-
lected the LUCC data of Zhengzhou with a spatial resolution of 30 m in 2020 (Figure 3). It 
is worth noting that this data is based on the 2020 U.S. Landsat 8 remote sensing image 
data as the main information source and processed by human-computer interaction and 
visual interpretation technology. The interpretation process also involves the establish-
ment of the LUCC classification system, the formulation of remote sensing interpretation 
marks and interpretation principles, and the quality inspection of interpretation results 
that can meet the requirements of scientific research.  

The first classification is mainly divided into 6 categories of cultivated land, forest, 
grassland, water, construction land, and unused land according to the land resources and 
their utilization attributes; the second classification is mainly divided into 16 subcatego-
ries according to the natural attributes of land resources (Table A1). It should be added 
that the interpretation of results are multiple tests through random sampling of field 
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survey points, random sampling of inspection lines and Kappa coefficient tests to ensure 
that the overall accuracy is not less than 90%, which has important practical significance 
in terms of applicability [48]. 

 
Figure 2. Workflow steps in our analysis. 

Before conducting studies on the driving mechanism of urban habitat quality, pre-
liminary selection of suitable variables is necessary. It has been previously shown that 
land use, topographic feature, meteorology, socio-economic condition, and vegetation are 
widely considered to be five important aspects that affect ecological processes and pat-
terns. Furthermore, according to the principles of availability and representativeness of 
ecological indicators, combined with the natural and socio-economic background of 
Zhengzhou, we selected 18 specific variables with independent ecological significance to 
analyze their impact mechanism on habitat quality at different spatial scales (Table 1). 
This process is in line with the exploratory and practical characteristics of scientific re-
search. 

Basic data of these variables in this study are derived from the following resources. 
We used the same LUCC data source mentioned earlier for calculating habitat quality. 
The topographic feature variable data were obtained by ArcGIS terrain analysis based on 
the digital elevation model (DEM) from the advanced land observing satellite project of 
the Japan Aerospace Research Institute with a spatial resolution of 12.5 m 
(http://www.jaxa.jp, accessed on 16 April 2021). The data of meteorology variables ob-
tained by ArcGIS data conversion and ordinary Kriging interpolation are based on the 
hourly data of 7 national basic meteorological stations in Zhengzhou, which are from 
China National Meteorological Data Center. The population data are from world pop with 
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a spatial resolution of 100 m (http://www.worldpop.org, accessed on 15 September 2020); 
GDP, industrial output values, and agricultural output values were retrieved from the 
statistical yearbook of Zhengzhou in 2020. The nighttime light data were from the Earth 
Observation Group’s annual VNL 2019 v.2 product, with a spatial resolution of 500 m 
(https://payneinstitute.mines.edu, accessed on 25 February 2021). The normalized differ-
ence vegetation index (NDVI) data was obtained through remote sensing image band op-
erations from the Landsat-8 OLI/TIRS of the US Geological Survey with a spatial resolu-
tion of 30 m (https://earthexplorer.usgs.gov, accessed on 5 May 2021). The data of net pri-
mary productivity (NPP) were from the mod17a3 product of NASA EOS/MODIS with a 
spatial resolution of 500 m (https://e4ftl01.cr.usgs.gov, accessed on 24 April 2021). 

It should be noted that due to different data acquisition methods and accessibility, 
meteorology and socio-economic condition data sources were annual data; the LUCC and 
vegetation data sources were obtained from the interpretation of remote sensing data in 
the near time; and the topographic feature data was regarded as unchanged in the short 
term. We default that they are in the same period and further focused our research on 
their impact on habitat quality on the different spatial scales. 

 
Figure 3. Spatial distribution of LUCC in Zhengzhou in 2020. 

Table 1. List of variables selection. 

Category Variable Data Acquisition Time 
Land use LUCC (X1) 2020 

Topographic feature 
Altitude (X2), slope (X3), aspect (X4), surface roughness (X5), and re-

lief amplitude (X6) 2008 

Meteorology 
Daily mean temperature (X7), daily mean humidity (X8), daily 

mean wind speed (X9), daily mean wind direction (X10), and annual 
rainfall (X11) 

2019 
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Socio-economic condition 
Population (X12), GDP (X13), industrial output value (X14), agricul-

tural output value (X15), and nighttime light (X16) 2019 

Vegetation NDVI (X17) and NPP (X18) 2019 

3.2. Habitat Quality Calculation 
InVEST is an ecosystem service assessment tool. Its habitat quality module is mainly 

based on LUCC data, stress factors, sensitivity to stress factors, and other parameters to 
assess habitat quality quantitatively (Tables A2 and A3). The value range was 0–1, with 
values close to 1 meaning higher habitat quality, and those closer to 0, meaning lower 
habitat quality. We followed the recommended values in the InVEST model manual and 
relevant literature and set the model parameters in combination with the actual situation 
of the study area [11,49–51]. The main calculation formulas are as follows: ܳ௫௝ = ௝ܪ ൤1 − ൬ ஽ೣೕ೥஽ೣೕ೥ ା௞೥൰൨  (1)

where Qxj is the habitat quality of the grid cell x in LUCC type j; k is the half-saturation 
constant; Hj is the habitat suitability of the land use type j; we hard code z = 2.5. The total 
threat level in grid cell x with LUCC type j is given by Dxj and it satisfies the following 
formula: ܦ௫௝ = ∑ ∑ ቀ ௪ೝ∑ ௪ೝೃೝసభ ቁ௒ೝ௬ୀଵோ௥ୀଵ ௫ߚ௬݅௥௫௬ݎ ௝ܵ௥  (2)

where R represents the total threat sources (r=1, 2, …, R); y indexes all grid cells on ’s raster 
map and Yr indicates the set of grid cells on ’s raster map; a degradation source’s weight, 
wr, indicates the relative destructiveness of a degradation source to all habitats; βx repre-
sents the protection of society, law, etc., which is not taken into consideration in this study. 
The impact of threat r that originates in grid cell y, ry, on habitat in grid cell x is given by 
irxy. Generally, we assume that the spatial attenuation of the impact of threat sources on 
the habitat quality is exponential and its variation with distance satisfies the following 
formula: ݅௥௫௬ = ݌ݔ݁ ൤− ൬ 2.99݀௥ ௠௔௫൰ ݀௫௬൨ (3)

where dxy is the linear distance between grid cell x and grid cell y, and dr max is the maximum 
impact distance of threat source r. 

3.3. Geodetector 
Geodetector is used to measure the spatial differentiation of a certain attribute and 

explore its driving mechanism. Compared with traditional models, we can use it to ana-
lyze the relationship between variables without the assumption of linearity or the collin-
earity of variables, including four components: factor detection, interactive detection, eco-
logical detection, and risk area detection; the first three are mainly used in our study 
(http://www.geodetector.cn, accessed on 27 May 2021). 

Factor detection can measure the determinant power of an explanatory variable X of 
dependent variable Y which is used to compute the contribution of driving factor to the 
spatial differentiation of urban habitat quality by q statistic. The formula is as follows: ݍ = 1 − ∑ ௛ܰ ߪ௛ଶ௅௛ୀଵܰߪଶ  (4)

where L is the strata number of X or Y (h = 1, 2, …, L). Nh and N are the unit number of 
stratum h and the whole region, respectively; ߪ௛ଶand ߪଶ are the variances of the Y values 
of stratum h and the whole region, respectively; the range of q-value is (0, 1). The larger 
the q-value, the more obvious the spatial differentiation of Y; If the stratification is gener-
ated by X, the larger the q-value, the stronger the explanatory power of X to Y. 
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Ecological detection is used to compare whether there is a significant difference be-
tween Xa and Xb on the spatial distribution of Y by F statistics. The formula is as follows: ܨ = ௔ܰ( ௕ܰ − 1)ܵܵ ௔ܹ௕ܰ( ௔ܰ − 1)ܵܵ ௕ܹ (5)

ܵܵ ௔ܹ = ෍ ௛ܰ ௅ೌ
௛ୀଵ ௛ଶ (6)ߪ

ܵܵ ௕ܹ = ෍ ௛ܰ ௅್
௛ୀଵ ௛ଶ (7)ߪ

where Na and Nb represent the sample size of factor Xa and factor Xb, respectively; SSWa 
and SSWb represent sum of variances for each stratum of Xa and Xb, respectively; and La 
and Lb represent the strata number of Xa and Xb, respectively. The null hypothesis is H0: 
SSWa = SSWb. If the H0 is rejected to a significant level, it indicates that there are significant 
differences in the impact of Xa and Xb on the spatial distribution of Y. 

Interaction detection is used to judge whether the combination of factors Xa and Xb 
increase or decrease the explanatory power of the dependent variable Y or whether the 
impacts of these two factors on Y are independent. The assessment method is to first cal-
culate the q-values of Y for two factors, Xa and Xb, respectively: q(Xa) and q(Xb), and to 
calculate the q-values when they interact: q(Xa∩Xb). Further compare q(Xa), q(Xb) and 
q(Xa∩Xb) to conclude whether there is an interaction between these two factors, the 
strength of their interaction, positive or negative effect, linearity or nonlinearity, etc. The 
corresponding interaction relationship and judgment basis are shown in Table 2 below. 

Table 2. Judgment basis of interaction type. 

Interaction Judgment Basis 
Nonlinear weakening q(Xa∩Xb) < Min[q(Xa), q(Xb)] 

Single-factor nonlinear weakening Min[q(Xa), q(Xb)] < q(Xa∩Xb) < Max[q(Xa), q(Xb)] 
Double-factor enhanced q(Xa∩Xb) > Max[q(Xa), q(Xb)] 

Independence q(Xa∩Xb) = q(Xa) + q(Xb) 
Nonlinear enhanced q(Xa∩Xb) > q(Xa) + q(Xb) 

It should be noted that type variables are better than continuous variables in the Ge-
odetector software settings. Therefore, the impact factor index we selected is divided into 
ten levels using the geometric interval method to divide the continuous index data at dif-
ferent grid-scales. 

4. Results 
4.1. Distribution Characteristics of Habitat Quality at Different Grid-Scales 

With the increase of grid-scales, the mean habitat quality of Zhengzhou fluctuated 
between 0.293 and 0.295; the habitat quality of the urban–rural transition zone close to the 
central urban area decreased significantly, while the habitat quality of vast wilderness far 
away from the central urban area continued to rise (Figure 4). Notably, grid-scale had little 
impact on the overall value of habitat quality but had a greater impact on the spatial at-
tributes of habitat quality. That is, the distribution of urban habitat quality showed obvi-
ous spatial heterogeneity at different grid-scales. 
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Figure 4. Spatial distribution of the habitat quality in Zhengzhou city at different grid-scales. 

4.2. Analysis of the Impact Intensity of Factors 
Factor detection is used to reveal the impact intensity of each factor on habitat quality 

(Table 3). The mean q-value ranking of 18 factors on habitat quality at 7 grid-scales from 
500 m to 2000 m: X1 (0.832) > X17 (0.544) > X3 (0.494) > X5 (0.483) > X6 (0.476) > X16 (0.468) > 
X12 (0.399) > X2 (0.361) > X15 (0.152) > X13 (0.126) > X4 (0.120) > X9 (0.102) > X7 (0.101) > X10 

(0.0921) > X14 (0.0917) > X18 (0.088) > X8 (0.067) > X11 (0.047). LUCC and NDVI were the 
dominant factors affecting habitat quality; their q-values were 0.832 and 0.544, respec-
tively. Altitude, slope, aspect, relief amplitude, population, and nighttime light were the 
secondary factors affecting habitat quality, and their q-values all exceeded 0.3. With the 
increase of grid-scale, the impact of LUCC on the habitat quality decreased, while the 
other factors increased. 

The impact intensity of factors on habitat quality at different grid-scales shows sig-
nificant differences. Slope, surface roughness, population, nighttime light, and NDVI had 
higher mean q-values, while they were more sensitive to scale variations, and the q-value 
change interval was greater than 0.1. When the grid-scale was 1000 m, the q-values of the 
slope, surface roughness, and NDVI were closer to their mean q-value, respectively; when 
the grid-scale was 1250 m, the q-values of population and nighttime light were closer to 
their mean q-value, respectively. Therefore, at the grid-scale of 1000 to 1250 m, the impacts 
of the dominant factors on habitat quality were closer to their mean level of multiple 
scales. We further speculate that this scale range should be used to efficiently carry out 
follow-up research on the driving mechanism of habitat quality in Zhengzhou which can 
fully consider the scale effect of spatial error. 

Table 3. q-value of factors at different grid-scales. 

Factor 
Grid-Scale Mean  

q-Value 
Standard 
Deviation 500 m 750 m 1000 m 1250 m 1500 m 1750 m 2000 m 

X1 0.877  0.851  0.839  0.832  0.823  0.808  0.795  0.832  0.027  
X2 0.312  0.333  0.352  0.367  0.380  0.379  0.401  0.361  0.030  
X3 0.423  0.457  0.495  0.515  0.521  0.528  0.516  0.494  0.039  
X4 0.082  0.097  0.108  0.119  0.134  0.149  0.153  0.120  0.027  
X5 0.414  0.445  0.478  0.497  0.501  0.525  0.522  0.483  0.041  
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X6 0.415  0.446  0.470  0.489  0.495  0.502  0.513  0.476  0.035  
X7 0.084  0.092  0.099  0.101  0.107  0.104  0.118  0.101  0.011  
X8 0.056  0.061  0.067  0.068  0.068  0.074  0.079  0.067  0.008  
X9 0.085  0.093  0.098  0.104  0.106  0.113  0.115  0.102  0.011  
X10 0.077  0.084  0.089  0.095  0.097  0.099  0.104  0.092  0.009  
X11 0.039  0.043  0.044  0.046  0.049  0.053  0.055  0.047  0.006  
X12 0.317  0.358  0.381  0.405  0.428  0.444  0.460  0.399  0.051  
X13 0.122  0.122  0.122  0.127  0.129  0.133  0.127  0.126  0.004  
X14 0.079  0.084  0.082  0.088  0.099  0.099  0.111  0.092  0.011  
X15 0.128  0.138  0.144  0.152  0.161  0.170  0.171  0.152  0.016  
X16 0.403  0.428  0.452  0.476  0.487  0.507  0.522  0.468  0.043  
X17 0.481  0.522  0.548  0.536  0.561  0.569  0.592  0.544  0.036  
X18 0.080  0.080  0.084  0.085  0.098  0.088  0.100  0.088  0.008  

4.3. Analysis on the Difference in the Impact of Factors 
Ecological detection is used to explore whether there is a significant difference be-

tween the respective impact of two factors on habitat quality at different grid-scales (p < 
0.05). We define the following three types of representations: with the variation of grid-
scales, the respective impact of two factors varies between significant difference and no 
significant difference, represented by Z; there has always been no significant difference 
between the respective impact of the two factors, represented by N; There has always been 
a significant difference between the respective impact of two factors, represented by Y. 

Eighteen factors constitute a total of 153 comparison pairs (Table 4). With the varia-
tion of grid-scales, there were a total of 22 Z-type, of which the comparison pairs involved 
by daily mean humidity, annual rainfall, or GDP account for 68.2%; there were a total of 
16 N-type, of which the comparison pairs involved by daily mean temperature, daily 
mean wind speed, or daily mean wind direction account for 75%; there were a total of 115 
Y-type, of which the comparison pairs involved by LUCC or NDVI all belong to this type. 
This result indicated that there has always been a significant difference between the re-
spective impact of two factors. In summary, the impact of each factor on the spatial distri-
bution of habitat quality was different, and the difference between most factors was al-
ways significant regardless of the variation of grid-scales. 

Table 4. Significance test of the impact on habitat quality of factors. 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 
X2 Y                 

X3 Y Y                

X4 Y Y Y               

X5 Y Y Z Y              

X6 Y Y Z Y N             

X7 Y Y Y N Y Y            

X8 Y Y Y Y Y Y Z           

X9 Y Y Y N Y Y N Z          

X10 Y Y Y N Y Y N Z N         

X11 Y Y Y Y Y Y Y Z Y Z        

X12 Y Z Y Y Y Y Y Y Y Y Y       

X13 Y Y Y Z Y Y Z Z Z Y Y Y      

X14 Y Y Y N Y Y N Z N N Z Y Z     

X15 Y Y Y Y Y Y Y Y Y Y Y Y N Y    

X16 Y Y Z Y Z Z Y Y Y Y Y Y Y Y Y   

X17 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y  
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X18 Y Y Y Z Y Y N Z N N Z Y Z N Y Y Y 

4.4. Analysis of the Interaction of Factors 
Interaction detection was used to calculate superimposed q-values of 153 interaction 

pairs composed of 18 factors on the habitat quality. Coefficient of variation (CV) was used 
to quantitatively analyze whether there was a significant difference in the superimposed 
q-value at different grid-scales. Generally, a CV ≤ 0.1 indicates that the superimposed q-
value has weak variation; 0.1 < CV < 1 has a moderate variation; and CV ≥ 1 has a strong 
variation. The results are shown in Table 5. All interaction pairs are characterized as dou-
ble-factor enhanced type or nonlinear enhanced type at seven grid-scales from 500 m to 
2000 m, indicating that the interaction effect of two factors was greater than the independ-
ent effects of either one on habitat quality. The mean q-values of the 17 interaction pairs 
involving LUCC were greater than 0.8. The mean q-values of the 91 interaction pairs in-
volving altitude, slope, surface roughness, relief amplitude, population, nighttime light, 
and NDVI were greater than 0.4. 

According to the CV results, the superimposed q-values of the interaction pairs com-
posed of LUCC, slope, relief amplitude, and NDVI showed weak variation at seven grid-
scales. The superimposed q-values of more than a third of the interaction pairs showed 
moderate variation at seven grid-scales, and these interaction pairs were mainly involved 
with daily mean temperature, daily mean humidity, daily mean wind speed, daily mean 
wind direction, population, industrial output value, and agricultural output value in-
volved. Additionally, at different grid-scales, the types of most of the interaction pairs 
remain the same, that is, either double-factor enhanced type or nonlinear enhanced type, 
which accounted for 56.9% and 32.0% of the total. There were also a few interaction pairs 
that varied between double-factor enhanced type and nonlinear enhanced type with the 
variation of grid-scales, accounting for 11.1%. Taken overall, the superimposed impact of 
two factors on the spatial distribution of habitat quality was greater than the impact of the 
single factor. 

Table 5. Mean superimposed q-value and interaction type between 18 factors at 7 grid-scales from 
500 m to 2000 m. * indicates 0.1 < CV < 1, and no * indicates CV < 0.1; Δ: double-factor enhanced; □: 
nonlinear enhanced; ●: double-factor enhanced or nonlinear enhanced. 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 
X1 - Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
X2 0.855 - Δ Δ Δ Δ □ □ Δ □  Δ ● □ ● Δ Δ Δ 
X3 0.861 0.555 - Δ Δ Δ Δ ● Δ Δ □ Δ Δ ● Δ Δ Δ ● 
X4 0.844 0.434 * 0.519 - Δ Δ Δ □ Δ Δ □ Δ Δ ● Δ Δ Δ □ 
X5 0.864 0.547 0.551 0.527 - Δ Δ □ Δ Δ □ Δ Δ Δ Δ Δ Δ ● 
X6 0.862 0.527 0.538 0.517 0.521 - Δ □ Δ Δ ● Δ Δ Δ Δ Δ Δ ● 
X7 0.850 0.494 0.558 0.197 * 0.552 0.540 - □ □ □ □ Δ □ □ ● Δ □ ● 
X8 0.853 0.479 0.564 0.203 * 0.562 0.554 0.318 * - □ □ □ □ □ □ ● □ □ □ 
X9 0.847 0.449 0.573 0.211 * 0.563 * 0.548 0.224 * 0.335 * - □ □ Δ □ □ ● ● Δ □ 
X10 0.850 0.530 0.564 0.204 * 0.556 0.551 0.249 * 0.294 * 0.327 * - □ Δ □ □ □ □ ● □ 
X11 0.850 0.514 0.570 0.181 * 0.563 0.550 0.257 * 0.266 * 0.343 0.313 * - □ □ □ □ Δ □ □ 
X12 0.863 0.561 * 0.628 0.470 * 0.621 0.612 0.483 * 0.477 * 0.464 * 0.471 * 0.468 * - Δ Δ Δ Δ Δ Δ 
X13 0.847 0.495 0.585 0.237 * 0.576 0.556 0.268 * 0.308 0.300 0.276 0.252 0.482 - Δ Δ Δ ● □ 
X14 0.846 0.463 0.573 0.217 * 0.558 0.541 0.261 * 0.263 * 0.263 * 0.260 * 0.254 * 0.479 * 0.188 * - Δ Δ ● □ 
X15 0.847 0.506 * 0.589 0.261 * 0.585 0.566 0.269 * 0.312 * 0.251 * 0.272 * 0.308 * 0.443 * 0.228 * 0.227 * - Δ Δ □ 
X16 0.868 0.589 0.665 0.506 * 0.663 0.654 0.555 0.540 0.564 0.575 0.499 0.563 0.524 0.525 0.519 - Δ □ 
X17 0.875 0.607 0.660 0.613 0.652 0.645 0.642 0.654 0.583 0.639 0.667 0.671 0.657 0.635 0.635 0.700 - Δ 
X18 0.848 0.470 * 0.585 0.291 0.565 0.556 * 0.333 * 0.242 * 0.304 * 0.290 * 0.270 * 0.476 * 0.313 * 0.251 0.276 0.585 0.605 - 
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5. Discussion 
Urban habitat quality and its driving mechanisms are characterized by spatial non-

stationarity, spatial heterogeneity, and spatial dependence. In this study, the impact of 
LUCC on habitat quality in Zhengzhou was the most prominent at different grid-scales, 
indicating that human activities are increasingly interfering with urban habitat. Some 
studies have shown that urban land spatial layout had a great impact on the quality of the 
ecological environment, which is consistent with our results [52–54]. This study shows 
that cultivated land and woodland in the periphery of Zhengzhou’s central urban area are 
occupied by construction land to varying degrees; the large-scale loss and fragmentation 
of the original habitat have significantly reduced the quality of the habitat. Meanwhile, in 
order to deal with these problems, the government continued to advance the adjustment 
of the industrial and energy structures, accelerate the construction of a natural reserve 
system with national parks as the main body, and expand the area of the natural reserve. 
Hence, the habitat quality of woodland in western Zhengzhou, including the Dengfeng 
district, Xinmi district, and Gongyi district, were improved to some extent. Briefly, urban 
habitat quality is closely related to urban land utilization layout. Urban land utilization 
layout can directly change the structure, composition, and function of urban habitats 
[55,56]. 

Topographic features are the second most prominent driving factor leading to the 
spatial differentiation of habitat quality in Zhengzhou. This specifically includes the eco-
logical factors of altitude, slope, aspect, relief, and amplitude. Habitats with complex topo-
graphic features, such as forests, rivers, etc., can provide favorable space for animals and 
plants rather than humans. Usually, these habitats are less disturbed by humans and have 
higher habitat quality [57]. In contrast, habitats with gentle topographic features, such as 
cultivated and construction land, are greatly disturbed by human activities and have 
lower habitat quality. This is the result of only considering the construction cost in the 
process of urban expansion. If no further control measures are taken, it will inevitably lead 
to the continuous occupation of farmland, grassland, woodland, and other habitats on the 
eastern plain areas, which will pose a great threat to the ecological security of Zhengzhou. 

Next to land use and topographic features, nighttime light and NDVI are also driving 
factors of urban habitat quality that cannot be ignored. Nighttime light can intuitively 
reflect the intensity of human interference with nature. Excessive nighttime light will in-
evitably disrupt the circadian rhythm of urban plants and the rules of animal foraging and 
hiding. Therefore, we must pay attention to the habitat degradation and habitat quality 
degradation caused by nighttime light pollution and carry out follow-up quantitative re-
search. NDVI is an important indicator to measure the quality of urban vegetation. More-
over, urban vegetation directly participates in the material cycle and energy flow of the 
ecosystem. Protecting and restoring urban vegetation is of great significance for improv-
ing habitat quality. Based on the results of these prominent ecological factors affecting 
urban habitat quality and some laws among them, we put forward the key research direc-
tions of Zhengzhou habitat protection according to the following local conditions. 

(1) Adjusting urban land use structure based on the functional orientation and eco-
logical carrying capacity of Zhengzhou. We should strictly adhere to the delineated red 
line of ecological protection, make rational spatial layouts based on this premise, and di-
vide Zhengzhou’s ecological space, production space, and living space. According to ar-
eas with low habitat quality, we should strictly control the scale of new construction land, 
the amount of cultivated land, and the scope of the prohibition of reclamation, and strive 
to improve the level of economic and intensive utilization of construction land to ensure 
the sustainable development of urban habitat. For example, from the perspective of effi-
cient utilization and ecological control of land use, Zhengzhou is divided into six ecolog-
ical function zones: the central urban construction area, the northern soil and water con-
servation area, the western mountain ecological protection area, the southwestern natural 
reserve area, the southern farmland protection area, and the eastern new urban area. 
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(2) Applying nature-based solutions to restore native biodiversity and damaged nat-
ural habitats in Zhengzhou. We can explore the optimal grid of the urban habitat network 
and its quantitative graded management theory to promote the construction of near-nat-
ural urban habitats. In addition, it is necessary to strengthen the rejuvenation and reintro-
duction of local biological populations, control the invasion of alien species, and guide the 
behavior of residents in multiple ways to reduce the impact of human activities on urban 
biodiversity. For example, native botanical gardens should be planned around the coun-
tryside, bird sanctuaries should be established along the Yellow River wetland, targeted 
sanctuaries should be established for local unique or national protected plants and ani-
mals that are concentrated in Song Mountains and Mang Mountains. 

(3) Establish a systematic thinking model for multi-level urban habitat sustainability. 
We should integrate multi-scale urban habitat mapping and assessment into the whole 
process of urban planning and design to balance the needs of human society development 
and nature protection at different spatial scales. For example, at the block scale, we should 
strengthen the three-dimensional greening of hard facilities such as overpasses, viaducts, 
and retaining walls, and make full use of the potential valuable habitats around the struc-
tures; at the metropolitan scale, we should protect important habitat patches and ecolog-
ical corridors, such as western Song Mountains, northern Yellow River wetland, south-
western Baisha reservoir and eastern Yanming Lake wetland, etc. 

Notably, we found some dominant factors affecting the quality of urban habitat and 
some of their interrelationship characteristics, which can only use as a reference for the 
planning of Zhengzhou City in this specific period. The quantitative research on the driv-
ing mechanism of urban habitat quality at different spatial scales is a very complex task, 
which requires longer-term exploration and accumulation of rich data for verification. 
Some imperfections in this experiment are worth mentioning. For example, urban habitat 
quality may be affected by social policies, physical and chemical properties of soil, micro-
organisms, air quality, etc., which were not considered due to the limitations of data ac-
quisition in this study [58,59]. Additionally, we only selected the grid-scales from 500 m 
to 2000 m to analyze the driving factors of habitat quality because the accuracy of vector 
data will decrease with wider grid-scales. 

A follow-up study should focus on how to consider more potential driving factors 
and techniques for reducing the accuracy loss of vector data in the process of wider grid-
scale transformations to provide support for the multi-scale regulation of urban habitat 
and biodiversity. With regards to this, the construction of more fixed sample plots to mon-
itor various factors will provide the basic feasibility for establishing a conversion model 
between remote sensing data and field survey data [60]. Furthermore, using indicator spe-
cies and some environmental characteristic variables (species diversity, niche, etc.) to 
measure habitat quality, which will make the experimental results more visible and con-
vincing. 

6. Conclusions 
In this paper, the driving mechanism of spatial differentiation of habitat quality in 

Zhengzhou is explored by InVEST model and Geodetector software. Further, the impact 
differences and interactions of various factors on urban habitat quality at different grid-
scales were analyzed. Our conclusions are as follows: 

(1) The overall habitat quality in the study area fluctuated slightly between 0.293 and 
0.295 with the variation of grid-scales. LUCC, altitude, slope, surface roughness, relief 
amplitude, population, nighttime light, and NDVI were the dominant factors affecting the 
spatial differentiation of habitat quality. With the variation of grid-scales, these mean q 
statistics were more than 0.3. 

(2) The impacts of slope, surface roughness, population, nighttime light, and NDVI 
on habitat quality are highly sensitive to grid-scale variations. Fully considering the errors 
caused by the spatial data of these factors, it is a suitable choice to efficiently analyze the 
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impacts of the dominant ecological factors on urban habitat quality at the spatial scale of 
1000 to 1250 m, and the results are closest to the mean level of multiple spatial scales. 

(3) The impact of each factor on the spatial distribution of habitat quality is different, 
and the difference between most factors has always been significant regardless of the var-
iation of grid-scales. The superimposed impact of two factors on the spatial distribution 
of habitat quality is greater than the impact of the single factor. 

(4) Our study innovatively explored the spatial differentiation characteristics of ur-
ban habitat quality and the driving characteristics of 18 ecological factors on habitat qual-
ity at different spatial scales, which will be an effective and repeatable analytical idea for 
planning industry workers. In the future, more factors and a wider range of grid-scales 
will be considered to quantitatively analyze the internal mechanism of habitat quality dif-
ferentiation in Zhengzhou to provide data support for multi-scale urban habitats ecolog-
ical protection and restoration in similar cities. 
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Appendix A 

Table A1. Classification system of remote sensing monitoring data of LUCC in Zhengzhou. 

Category Subcategory Meaning 

Cultivated land 
Paddy field With water source guarantee and irrigation facilities for planting lotus roots and 

other aquatic crops 

Dry land Cultivated land that mainly relies on natural precipitation to grow crops for veg-
etable cultivation 

Forest 

Woodland 
Natural forests and plantations with a canopy closure > 30%; includes timber for-
ests, economic forests, shelter forests, and other forest lands 

Shrubland Low woodland and shrubland with canopy closure > 40% and height below 2 m 
Sparse woodland Forest land with tree canopy closure of 10%–30% 
Other woodland Unformed forest afforestation land, nursery, and various garden plots, etc. 
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Grassland 

High-coverage 
grassland 

Natural and improved grasslands and mowing grass with a coverage > 50%; 
such grasslands generally have good water conditions, and the grass is grown 
densely 

Medium-cover-
age grassland 

Natural and improved grasslands with a coverage of 20%–50%; such grasslands 
generally lack water, and the grass cover is relatively sparse 

Low-coverage 
grassland 

Natural grassland with a coverage of 5%–20%; lacks water, is sparse, and animal 
husbandry utilization conditions are poor 

Water 

River and canal 
Naturally formed or artificially excavated rivers and main trunk land below the 
water level throughout the year 

Reservoir and 
pond 

Land below the perennial water level in the artificially constructed water storage 
area 

Bottomland The land between the water level of rivers and lakes during the normal period 
and the water level of the flood period 

Construction land 

Built-up land 
Built-up area mainly includes the central urban area and its direct jurisdictional 
cities and towns 

Rural residential 
area Independent of rural settlements outside of cities and towns 

Other construc-
tion land 

Mining, large industries, oil fields, salt works, quarries, traffic roads, airports, 
and other artificial lands 

Unused land Marshland The terrain is flat and low-lying, with poor drainage, long-term humidity, sea-
sonal ponding, or perennial ponding 

Table A2. Habitat types and sensitivity of habitat types to each threat. 

Habitat Type 
Habitat 

Suitability 

Threat Source 

Main Category Subcategory 
Paddy 
Field 

Dry 
Land 

Urban 
Land 

Rural Residen-
tial Land 

Other Con-
struction Land 

Cultivated land 
Paddy field 0.4 0 1 0.5 0.3 0.4 

Dry land 0.3 1 0 0.5 0.3 0.4 

Forest 

Woodland 1 0.8 0.9 0.9 0.8 0.8 
Shrubland 0.7 0.4 0.5 0.6 0.4 0.5 

Sparse woodland 0.6 0.8 0.9 0.5 0.7 0.8 
Other woodland 0.5 0.9 1 0.5 0.7 0.8 

Grassland 
High-coverage grassland 0.7 0.4 0.5 0.8 0.45 0.7 

Medium-coverage grassland 0.5 0.5 0.6 0.7 0.5 0.6 
Low-coverage grassland 0.3 0.7 0.9 0.6 0.55 0.5 

Water 
River and canal 1 0.7 0.5 0.7 0.6 0.6 

Reservoir and pond 0.8 0.8 0.4 0.8 0.7 0.7 
Bottomland 0.6 0 0 0.9 0.8 0.7 

Construction 
land 

Built-up land 0 0 0 0 0 0 
Rural residential land 0 0 0 0 0 0 

Other construction land 0 0 0 0 0 0 
Unused land Marshland 0.6 0.5 0.6 0.8 0.6 0.5 

Table A3. Threats and their weight and the maximum distance of influence. 

Threat Source Relative Weight Maximum Influence Distance (km) Spatial Attenuation Function 
Paddy field 0.4 4 Exponential 

Dry land 0.3 4 Exponential 
Built-up land 1 8 Exponential 

Rural residential land 0.6 6 Exponential 
Other construction land 0.8 5 Exponential 
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