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Abstract: Woody species are either trees or shrubs, with the exception of approximately 9.2% “trub”
species exhibiting both tree and shrub growth forms. Little is known thus far about the ecological
importance of plant growth-form plasticity under a drying climate. Quercus mongolica Fisch. ex
Ledeb., a dominant tree species of temperate forests in East Asia, typically shows tree-to-shrub
growth-form shifts at the xeric timberline and is suitable to test whether growth-form plasticity
can physiologically benefit plant drought acclimation. We quantified the tree architecture, drought
stress, physiological drought tolerance, and nonstructural carbohydrates of Q. mongolica trees and
shrubs on the opposite slope of the same mountain at the xeric timberline in July 2018. Compared
with Q. mongolica trees on shady slopes, the shrubs on sunny slopes had less available water to use
and were more severely threatened by drought. Moreover, the shrubs had stronger tolerance to
drought but still tended to have less nonstructural carbohydrate accumulation. The tree-to-shrub
shift effectively benefits the survival of Q. mongolica under a dry climate and may strongly contribute
to forest dynamics and even fire regimes under climate drying, especially for sensitive ecosystems
such as the xeric timberline, which will be vulnerable under future climate change scenarios.

Keywords: drought acclimation; hydraulic architecture; growth form plasticity; Quercus mongolica;
tree architecture; xeric timberline

1. Introduction

Woody plants commonly grow in either a tree form with a tall and single stem or a
shrub form with multiple short basal resprouts. However, it was reported that approx-
imately 9.2% of woody species have both forms, as recorded in the global plant trait
database [1]. Multiple potential growth forms should allow woody plants to have better
environmental acclimation and survive in more diverse environments than those with weak
morphological plasticity [2]. However, there have only been limited studies revealing how
growth-form plasticity helps plants acclimate to harsh environments, such as the shrubby
form that helps Acacia karroo Hayne in arid areas to prevent access to large herbivores [3]
and that helps trees at the upper timberline tolerate extremely cold and windy altitudinal
environments [4]. In regions with frequent fire disturbance, shrubby-form Quercus spp.
with rapid resprouting can be an adaptation strategy [5], as well as a potential combustion
booster [6]. Whether tree-to-shrub growth form transformation benefits drought acclima-
tion of woody plants remains an open question, which needs to be addressed through
combining studies from tree physiological, architectural, and environmental aspects [7,8].

Shrubs have been reported to live in generally drier environments, showing stronger
drought-threatened performance and stronger physiological drought tolerance than tree
species in interspecific comparisons [9,10]. However, interspecific comparisons cannot dis-
tinguish whether the performance differences were the result of physiological acclimation
or phylogenetic differences. Extracting the intraspecies comparison can directly answer
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whether the tree-to-shrub shift is a plant drought acclimation strategy physiologically
benefiting species survival under the climate-drying trend.

Previous work reported a clear tree-to-shrub shift of Quercus mongolica Fisch. ex
Ledeb. at the xeric timberline [11], where the forests were threatened by long-term water
limitation [12,13]. Surprisingly, in some places, we found that mature Q. mongolica trees and
shrubs coexisted in a very small region. Q. mongolica trees are often distributed on shady
slopes of mountains [14], while Q. mongolica shrubs usually form pure shrublands on sunny
slopes (Figures 1 and A1). Given the consistency between the growth form shifts and the
water balance differences between the shady and sunny slopes at the xeric timberline [8], it
is reasonable to believe that the shrub growth form benefits the survival of Q. mongolica
on sunny slopes so that they can live in more arid niches. Thus, the local Q. mongolica
tree-to-shrub shift is a suitable case to test the hypothesis that growth-form plasticity can
physiologically improve plant drought acclimation.
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plots according to the solar radiation amounts with formulas recorded in [8] and the 
ARCMAP 10.2.2 (ESRI, Redlands, CA, USA) command HILLSHADE. Furthermore, we 
estimated the potential available water of the plots as the difference between precipitation 
and potential evaporation. The obtained soil available water was only a coarse estimation 
for the water supply to vegetation. However, it could perfectly reveal the differences in 
local water balance between the two plots due to slope and aspect variances between 
them. Considering that the slope of the sampled plots was similar (Table 1), the impacts 

Figure 1. (a) The location of the investigated site and mean annual precipitation (MAP) pattern in the
semiarid region. (b) The green area shows the natural distribution of Quercus mongolica globally [15].
Yellow stars in Panels (a,b) show the locations where the investigated Q. mongolica tree and shrub
plots are located in the SH region. Yellow circles show the places where similar abrupt tree-to-shrub
shifts were discovered during previous investigation. (c,d) Quercus mongolica trees on shady slopes
and shrubs on sunny slopes in the SH region. Photos were taken by J. Dai in March 2021. (e,f) Quercus
mongolica trees and shrubs in HHT and XJ, respectively. Photos were taken by J. Dai in July 2016.
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2. Materials and Methods
2.1. Sampling Design

The study area is located in the Saihan Wula National Nature Reserve, a nature reserve
at the xeric timberline in Inner Mongolia, China (44◦12′ N, 118◦44′ E). Logging, grazing,
and fire disturbances have been strictly prevented in the reserve since 1997. Available
water differences are large between the sunny and shady slopes in this region because the
evaporation on sunny slopes can be several times higher than that on shady slopes with
the same precipitation amount [8].

Two 25 m × 25 m plots, the ‘shrub’ plot on the sunny slope and the ‘tree’ plot on the
shady slope, were set in the mature Q. mongolica forests in the reserve (Figure 1, Table 1).
The ‘shrub’ plot was in a pure Q. mongolica forest without any other woody plants, while
in the ‘tree’ plot, Q. mongolica occupied over 70% of the total woody plant coverage, and
Populus davidiana Dode and Betula platyphylla Sukaczev also existed in the forest. Tree
architecture measurements, hydraulic trait measurements, and leaf and fine root sampling
were executed for five trees per plot in July 2018 (see supplementary data). Soil bulk density
and field capacity were measured using the ring knife method for each plot in July 2019. No
obvious evidence of fire, grazing, logging, severe insect attack, or any other disturbances
was found within or around the two plots.

Table 1. Basic Information for the Quercus mongolica Tree and Shrub Plots.

Plot name Latitude (◦N) Longitude (◦E) Altitude (m a.s.l.) Slope (◦) Aspect Average tree age
(years)

Tree 44.22 118.74 1195 12 North 60
Shrub 44.22 118.75 1207 6 South 58

Plot name Bulk
density (g/cm3) Field capacity (%) Soil depth (m)

Tree 1.04 41.56 0.49
Shrub 1.19 32.69 0.24

2.2. Soil Available Water Calculation and Physical Property Measurement

We calculated the potential evaporation (from the open water surface) of sampled
plots according to the solar radiation amounts with formulas recorded in [8] and the
ARCMAP 10.2.2 (ESRI, Redlands, CA, USA) command HILLSHADE. Furthermore, we
estimated the potential available water of the plots as the difference between precipitation
and potential evaporation. The obtained soil available water was only a coarse estimation
for the water supply to vegetation. However, it could perfectly reveal the differences in
local water balance between the two plots due to slope and aspect variances between them.
Considering that the slope of the sampled plots was similar (Table 1), the impacts of slope
runoff and soil flow on the available water amount were neglected during comparison. The
mean annual precipitation of the study area was obtained from the WorldClim database
(https://www.worldclim.org, accessed on 24 November 2021), while the 30 m digital
elevation model of the study area was obtained from the ASTER GDEM (https://yceo.yale.
edu/aster-gdem-global-elevation-data, accessed on 24 November 2021).

Soil samples were collected using the ring knife method in July 2019. In each plot, we
dug a 1 m × 1 m soil profile to ensure that it reached the bedrock below the soil layer. We
collected three undisturbed soil samples with ring knifes in the profile at 5 cm, 15 cm, and
25 cm depths. Soil bulk density and field capacity were measured in the laboratory. The
soil bulk density and field capacity of the plots were determined as the mean value of the
nine samples in each plot.

2.3. Tree Age and Chromosome Ploidy Measurements

Tree age was measured for all sampled trees in July 2018 to ensure that the forests and
the sampled trees were mature (over 40 years) [16] and of the same age. Two orthogonal

https://www.worldclim.org
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cores were collected from each tree reaching the pith of the tree; the core with more tree
rings was regarded as the age of the tree.

To eliminate the possibility that there are intrinsic chromosome ploidy differences
between tree-shaped and shrubby-shaped Q. mongolica, we tested their chromosome ploidy.
Plant DNA extraction was executed with a plant DNA extraction kit (Beijing Feimo Bi-
ological Technology Co., Ltd., Beijing, China) following the manufacturer’s instructions.
The extracted plant DNA was used as the template for TaqMan fluorescence quantitative
polymerase chain reaction (PCR) [17]. The endogenous genes on different chromosomes
of Q. mongolica, NDH8 and RPL23, were used for DNA amplification, while qPCR ndh8-
F/R and qPCR rpl23-F/R were used as the primers during PCA (Table A1). Quantitative
standard curves were drawn to detect the copy number (Table A2) [17]. Finally, the ploidy
differences between the samples were quantified as the obtained random gene copy number
after fluorescence quantitative PCR.

2.4. Tree Architecture Measurement

Tree height, basal resprout number, and leaf area were measured for the sampled
trees. Tree height was measured accurately with a tower ruler. Basal resprout number was
counted at a height of 0.5 m. Mature and complete leaves were collected randomly from the
sampled trees and scanned within 8 hours after sampling, and the leaf area was measured
using MATLAB 9.10.0.1602886 (R2021a) (MathWorks, Natick, MA, USA). For each sampled
tree, we measured the average leaf area of five leaves. After scanning, the leaf samples
were dried at 65 ◦C for 48 h, ground into powder, and used for further carbon isotope and
nonstructural carbohydrate measurements.

2.5. Hydraulic Architecture Measurement

Midday leaf water potential (Ψmid), percent loss of stem hydraulic conductivity (PLC),
and leaf turgor loss point (Ψtlp) were measured for all sampled trees. Ψmid was measured
at midday to quantify the minimum water potential and thus the strongest water stress
that the individual tree reached under natural conditions [18]. PLC reflected the damage
drought caused to the plant hydraulic architecture [19], while Ψtlp was the leaf water
potential at which the leaf wilted and became physiologically dysfunctional, representing
the ability of leaves to tolerate drought [20,21]. Ψmid was measured using an HR 33T
dew point microvoltmeter (Wescor Inc. An Elitech Company, Puteaux, France). Ψtlp was
measured using a vapor pressure osmometer (Wescor Inc. An Elitech Company, Puteaux,
France) [22]. Actual (Kh) and maximum hydraulic conductivity (Kmax) were measured as
the flushing rate of ultrafiltered water passing through the stem segments under pressure
differences of approximately 0.05 MPa, in which Kmax was measured after the stem was
flushed with 20 mM KCl solution at 0.1 MPa for 30 min [23,24]. Then, PLC was calculated
with the following formula:

PLC = [(Kmax − Kh)]/Kmax (1)

2.6. Leaf Carbon Isotope Measurement

Leaf δ13C indicated leaf water use efficiency [25]. A lower value of δ13C indicated a
stronger limitation of stomatal conduction to the intensity of photosynthesis, caused by
reduced water potential [26]. The formula of δ13C isotope was:

δ13C = −{R(13C/12C)samples − R(13C/12C)standard}/R(13C/12C)standard (2)

where R(13C/12C)samples was the ratio of 13C/12C of samples, while R(13C/12C)standard
represented the ratio of international standard material Pee Dee Belemnite (PDB).

2.7. Nonstructural Carbohydrate Measurement

Leaf and fine root nonstructural carbohydrates were measured with the ground leaf
and fine root samples of each tree. The extraction process was executed following the
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anthrone-sulfuric acid method [27,28], while the measurement was conducted with colori-
metric methods [29]. Nonstructural carbohydrates in this study were defined as free, low-
molecular-weight sugars (fructose, glucose, and sucrose) and starch [29]. Total nonstruc-
tural carbohydrates (TNC) were calculated as the sum of the soluble sugars and starches.

2.8. Statistical Analysis

Due to the small sample size, part of the measurement data did not obey a normal
distribution; therefore, we used a nonparametric method, the Wilcoxon rank-sum test, to
quantify the physiological differences between the two growth forms. All statistical analyses
and figure graphing were performed in R version 4.1.0 (R Development Core Team).

3. Results
3.1. Chromosomeploidy of Q. mongolica Trees and Shrubs

There was no significant difference between the relative fluorescence expression of
Q. mongolica trees and shrubs, indicating that the chromosome ploidy of Q. mongolica trees
on shady slopes and shrubs on sunny slopes were the same.

3.2. Architecture of Q. mongolica Trees and Shrubs

The Q. mongolica trees and shrubs had large differences in their architecture, even
though their ages were similar (approximately 60 years) (Table 1). First, the basal resprout
number of Q. mongolica trees on shady slopes was significantly lower than that of shrubs on
sunny slopes (p = 0.01, Figure 2a), in which the median resprout number of the Q. mongolica
tree plot was 1.0, while that of the shrub plot was as high as 10.0. Furthermore, the
Q. mongolica trees were significantly taller than the shrubs (6.20 m vs. 4.30 m; p = 0.01,
Figure 2b). Moreover, the leaves of the Q. mongolica trees tended to be much larger than
those of the shrubs (p = 0.01, Figure 2c), with a median 13.65 cm2 leaf area for the trees and
a 6.85 cm2 leaf area for the shrub leaves.
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Figure 2. Box plots show the plant morphological differences between Quercus mongolica trees and
shrubs for (a) number of resprouts, (b) tree height, and (c) leaf area. The horizontal lines represent
the 25%, 50%, and 75% quantiles. The vertical lines show the 5% and 95% quantile. The stars show
the results of a Wilcoxon rank-sum test: ***, p < 0.01; **, p < 0.05.

3.3. Soil Available Water of Q. mongolica Trees and Shrubs

The soil available water of the Q. mongolica tree plot was much more than that of
the shrub plot, while water available for the shrub individuals on the sunny slope was
extremely limited according to the water balance calculation. The astronomical solar radia-
tion in the study area was 314.33 W/m2, and the direct solar radiation in this region was
approximately 115.64 W/m2. After correction and calculation, the potential evaporation
for the tree plot on the shady slope was 173 mm, while the evaporation for the shrub plot
on the sunny slope was 429 mm. Considering that the mean annual precipitation in the
study area was 426 mm for 1970–2000, the soil available water for the Q. mongolica tree plot
was approximately 253 mm per year, while the soil available water for the shrub plot was
approximately zero.
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The soil thickness of the Q. mongolica shrub plot was only 0.24 m on average, which
was much thinner than that of the tree plot (0.49 m on average) (Table 1). In addition, the
soil bulk density of the Q. mongolica shrub plot was significantly higher than that of the
tree plot (p < 0.001). Correspondingly, the field capacity of the shrub plot was significantly
lower than that of the tree plot (p = 0.001). In general, the soil water-holding capacity of
the shrub plot was much weaker than that of the tree plot, which further limited the water
amount available for growth of Q. mongolica.

3.4. Quantification of Drought Stress in Q. mongolica Trees and Shrubs

Quercus mongolica shrubs on sunny slopes experienced more severe water deficit,
and their hydraulic conductance system was more heavily damaged than the trees on
shady slopes, with significantly lower Ψmid (p = 0.06, Figure 3a) and higher PLC (p = 0.02,
Figure 3d). The median Ψmid of leaves from tree individuals on the shady slope was
−3.60 MPa, while Ψmid of leaves from shrub individuals on the sunny slope was−5.45 MPa.
Quercus mongolica shrubs experienced 80% stem hydraulic conductivity loss (median
PLC = 0.82), while the situation for the tree plot was much better, with a PLC = 0.36.
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Figure 3. Box plots show the difference between drought stress, tolerance, and nonstructural carbohy-
drate performance of Quercus mongolica trees and shrubs. We report (a) midday leaf water potential
(Ψmid) and (d) percentage loss of stem hydraulic conductivity (PLC) as the drought stress that plants
are bearing; (b) leaf turgor loss point (Ψtlp) and (e) leaf δ13C as plant drought tolerance ability; and
plant (c) leaf and (f) fine root total nonstructural carbohydrate (TNC) of Q. mongolica individuals. The
horizontal lines represent the 25%, 50%, and 75% quantiles. The vertical lines show the 5% and 95%
quantile. The stars show the results of a Wilcoxon rank-sum test: **, p < 0.05; *, p < 0.1.

3.5. Drought Tolerance of Q. mongolica Trees and Shrubs

Responding to less available water and stronger drought stress, Q. mongolica shrubs on
sunny slopes tended to have more powerful drought tolerance than trees on shady slopes.
The median leaf Ψtlp of the shrub individuals,−3.02 MPa, was lower than that of the tree
individuals,−2.39 MPa, although the difference was not significant (p = 0.16, Figure 3b),
indicating that the leaves of the shrub individuals tended to keep their physiological
function working with a more negative water potential. The median leaf δ13C of shrub
individuals was higher than that of Q. mongolica trees (−27.98 vs.−28.73; p = 0.03, Figure 3e),
indicating that shrub individuals had a higher water use efficiency than tree individuals.
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3.6. Nonstructural Carbohydrates of Q. mongolica Trees and Shrubs

Quercus mongolica shrubs on sunny slopes had significantly lower leaf TNC (p = 0.04,
Figure 3c) and fine root TNC (p = 0.02, Figure 3f) than trees on shady slopes, indicating that a
strong water deficit on sunny slopes reduced the nonstructural carbohydrate accumulation
of Q. mongolica shrubs. The median leaf TNC of the tree plot was 0.16 mg/g, while that
of the shrub plot was 0.13 mg/g. Similarly, the average fine root TNC of the tree plot was
0.12 mg/g, while that of the shrub plot was only 0.09 mg/g.

4. Discussion and Concluding Remarks
4.1. The Tree-to-Shrub Shift Physiologically Improves Plant Drought Tolerance

Compared with the tree growth form, the shrub form enables Q. mongolica on sunny
slopes to have stronger physiological tolerance to more intense drought stress at the xeric
timberline. For Q. mongolica shrubs, short heights can reduce the water potential differences
between roots and leaves [26,30], thus reducing the hydraulic failure risks to the stem [31].
Multiple basal resprouts can benefit plants with the redundancy effect, i.e., shrub-form
plants with multiple basal resprouts can reduce mortality risks by replacing the dead
segments with small metabolic cost and keep the individual alive [32]. Smaller leaves can
lower the transpiration water loss for plants, thus increasing plant water use efficiency [33].
Optimizing physiological performance through plant architecture, the shrub growth form
enables Q. mongolica to maintain hydraulic safety with long-term water deficit on sunny
slopes at the xeric timberline.

The strong growth form plasticity helps Q. mongolica expand its water niche without
chromosome ploidy variations, settling in the xeric environment where ordinary tree
species cannot survive. The more abundant solar radiation on sunny slopes causes greater
evaporation than on nearby shady slopes; thus, less soil water is available for vegetation
at the xeric timberline [8]. To survive on sunny slopes, Q. mongolica shifts from tree to
shrub form. Shrub individuals successfully establish and form pure Q. mongolica patches
on sunny slopes, although their nonstructural carbohydrate accumulation for drought
resistance cannot be as high as that of trees on shady slopes. Such a locally large hydraulic
enhancement has also been reported in Atriplex canescens (Pursh) Nutt. previously, which
was associated with the plant ploidy transition from diploid, tetraploid to hexaploid
cytotypes [23]. Instead of ploidy variations, Q. mongolica in the xeric timberline achieved
drought tolerance improvement with powerful tree architecture plasticity.

4.2. Implications for Fire Ecology

Quercus spp. have been proven to have an extremely strong resprout capacity [34,35],
thus being able to achieve a tree-to-shrub shift under threatened environments, and these
species include Q. pyrenaica Willd. [35], Q. ilex L. [36], and Q. coccifera L. [5]. Many studies
have been devoted to the vigor of Quercus resprouting after fire disturbance or heavy
browsing. In comparison, the effect of tree-to-shrub growth form variations on plant
drought tolerance has attracted less attention previously. However, when seeing these
ecological processes on a larger temporal and spatial scale, both the high frequency of
fire disturbance and the open environment being suitable for ungulate herbivory are the
products of climate drought. Thus, the advances of the shrubby Quercus under fire and
browsing disturbances can both be seen as parts of its drought tolerance strategy.

Nevertheless, the shrub-form Q. mongolica in xeric environments may serve as a
combustion booster that increases the regional fire risks because of its high aboveground
biomass and litter accumulation, short forest canopy, high resin content, low water content,
and high fuel continuity [6,37–39], which may further affect vegetation dynamics and
change the vegetation structure. It should be noted that fire disturbance has been strictly
prevented in our plots since the nature reserve was established in 1997, but we do not
have data on forest dynamics over a longer historical period. It may be possible that Q.
mongolica eliminated other native drought-tolerant species, such as Armeniaca sibirica (L.)
Lam., Ostryopsis davidiana Decne., and Spiraea salicifolia L., and formed pure forest patches
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on the sunny slope with the help of frequent fire disturbances. The tree-to-shrub growth
form shift has the potential to play an important role in regional vegetation dynamics and
even in the fire regime. Approximately 9.2% of tree species have the ability to transform to
shrubs [1]. Vegetation composed of species with high growth-form plasticity is more likely
to have a higher fire risk in the context of climate warming and drying, which urgently
needs to be identified and to receive more attention.

4.3. Further Considerations

Our results reveal that the tree-to-shrub growth form shift is an effective drought
acclimation strategy that can physiologically improve the drought tolerance of Q. mon-
golica, benefiting its survival under extreme drought at the xeric timberline. It remains
unclear whether the observed tree-to-shrub variation is the result of genetic differences
and reproductive isolation. Genetic differentiation and reproductive isolation may occur
via four processes: geographic isolation, isolation during flowering, isolation after polli-
nation, and selection intensity during their lifetime [40]. In this research, the Q. mongolica
trees and shrubs were distributed with small geographic distances, which can exclude the
possibility of geographic isolation. The dates of Q. mongolica tree and shrub flowering are
both early and mid-June, with shrubs flowering 3–4 days earlier than the trees. There is
an approximately 10-day overlap between the flowering dates of the two growth forms;
thus, flowering dates causing reproductive isolation are also unlikely to exist. For isolation
after pollination and selection intensity during their lifetime, however, we can only exclude
the possibility of ploidy-caused isolation but not pollination failure due to differences in
zygotic genotypes or the difference in ecological selective forces between plots. Common
garden tests may be required to verify these effects in future studies.

For most woody plants, the growth form is either tree or shrub, while there are still
some woody species with high growth-form plasticity, such as Quercus spp., that are able
to flexibly shift from trees to shrubs [1]. In the context of a warming and drying climate
that threatens the world’s forest vegetation [31,41], woody species with high growth-form
plasticity may have a larger advantage than we have expected, which may further influence
future regional vegetation dynamics and even the fire regime. It is urgently necessary to
quantify global woody plant growth-form plasticity, which may effectively improve the
accuracy of forest dynamic prediction and assist future forest management under climate
change, especially for sensitive ecosystems such as woody vegetation close to the xeric
timberline [42]. Object-oriented databases [37,39] combining global plant traits, such as the
TRY plant trait database, and forest survey databases, such as the sPlot global vegetation
database, are expected to provide us with a shortcut to fill this knowledge gap. Such an
integrated database can potentially become a powerful knowledge information system
providing scientists, managers, and the public with sufficient knowledge about the current
distribution, physiological plasticity, and potential future development of the species that
they are interested in [37,39].
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Appendix A

Table A1. Primer information for fluorescence quantitative polymerase chain reaction.

Gene Name Primer Product Length (bp) Primer Amplification Efficiency

NDH8
qPCR ndh8-F: TCATCACTGTCGGAATTGGGT

92 2.08qPCR ndh8-R: TTATCGAACGAACCGCACTC

RPL23
qPCR rpl23-F: ATCGGGATCAACTAGGACAGA

174 2.1qPCR rpl23-R: CCCATTCTTCTACCCTTTCCCG

Table A2. Primer amplification efficiency standard curve.

Gene Name NDH8 RPL23

Slope −3.15 −3.21
Efficiency 2.08 2.10

Error 0.18 0.12
R2 0.99 1.00

Y intercept 16.19 15.75
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