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Abstract: The goal of this study was to predict the need for commercial thinning using airborne
lidar data (ALS) with random forest (RF) machine learning algorithm. Two test sites (with areas of
14,750 km2 and 12,630 km2) were used with a total of 1053 forest stands from southwestern Estonia
and 951 forest stands from southeastern Estonia. The thinnings were predicted based on the ALS
measurements in 2019 and 2017. The two most important ALS metrics for predicting the need
for thinning were the 95th height percentile and the canopy cover. The prediction accuracy based
on validation stands was 93.5% for southwestern Estonia and 85.7% for southeastern Estonia. For
comparison, the general linear model prediction accuracy was less for both test sites—92.1% for
southwest and 81.8% for southeast. The selected important predictive ALS metrics differed from
those used in the RF algorithm. The cross-validation of the thinning necessity models of southeastern
and southwestern Estonia showed a dependence on geographic regions.

Keywords: forest management planning; machine learning; airborne lidar; commercial thinning;
sparse lidar point clouds

1. Introduction

Forest management planning and decision making are mainly based on forest inven-
tory (FI) data. It is still common for FI data to be collected by specialized personnel via field
survey, but today these data are increasingly obtained via remote sensing [1–8]. In addition
to stereo- and orthophotos, airborne laser scanning (ALS; [9]) has gained a leading role as
an FI data source, as it is the main basis for describing forest structure in remote-sensing-
based inventories. However, with the large number of metrics and combinations of data
sources, the need for machine learning algorithms to extract significant information from
large datasets has increased [10,11]. There are many machine learning algorithms, among
which the most used are k-NN [12], k-MSN [13], various types of neural networks [14], and
random forests [15].

Forest management in Estonia is carried out at the stand level. A forest stand is
the elementary management unit of a forest area. A stand is defined as a small area
of homogeneous forest delineated on a map as a polygon, and is described by forest
mensuration parameters—age, site type, height, growing stock, basal area, etc. [16]. During
the fieldwork of an FI, expert suggestions for management (e.g., thinning, sanitary cutting)
can also be made; however, since large areas need to be covered, and the average revision
cycle of stands is 5–10 years, management decisions are made based on somewhat outdated
FI data. The management plan includes commercial thinnings, which are planned based
on stands’ relative density and age; clear-cuts are planned according to the combined rule
of forest age and mean tree diameter at breast height (DBH), and pre-commercial thinnings
are planned based on DBH and field inspections [17].

Forests 2022, 13, 206. https://doi.org/10.3390/f13020206 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f13020206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-1312-6940
https://doi.org/10.3390/f13020206
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f13020206?type=check_update&version=1


Forests 2022, 13, 206 2 of 10

Commercial and pre-commercial thinnings are carried out with the goal of providing
the best growing conditions for the remaining trees and maximizing their growth potential
and wood quality [18,19]. It has also been stated that the correct timing of the commercial
thinning has a positive effect on the growth potential and development of the stand [20].
Thinnings are said to improve the mechanical stability of the stands [21], and are foremost
a silvicultural practice carried out from an economic standpoint of improving the quality
of the timber at final felling [19].

Therefore, an up-to-date description of the forest stands is required for optimal and
timely management—especially in the young stands, when growth is rapid and changes in
structure are fast. Such timely information is best obtained using remote sensing data, but
decision making and interpretation of large amounts of data from different technologies is
time-consuming and complex. Machine learning has gained users along with traditional
statistical methods, as indicated by success in combining and studying large amounts of
data through supervised learning without the need to fulfil assumptions about distributions
of the data values. Machine learning in forestry is mainly used for monitoring forest
ecology, species distribution, carbon stock, natural hazard prediction, and estimation of
forest structure variables [22].

The goal of this study was to test and build a supervised machine learning model to
predict the need for commercial thinning of forest stands for practical forest management
planning. Descriptive stand metrics were calculated based on nationwide sparse ALS point
clouds and used with the random forest (RF) machine learning algorithm to predict the
need for commercial thinning. Results from RF were also compared with a general linear
model (GLM) predicting the same thinning need.

2. Materials and Methods
2.1. Forest Inventory and Management Data

Forest inventory (FI) data from the Estonian State Forest Management Centre (RMK)
database were used—specifically of 1053 forest stands from southwestern Estonia and 951
forest stands from southeastern Estonia (Figure 1). The terrain in southwestern Estonia is
mostly flat, with slightly more variation in southeastern Estonia. The average site index
(H100) in the southeast test site was 29.0 m, and the main dominant tree species were Scots
pine (Pinus sylvestris L., 346 stands), Norway spruce (Picea abies (L.) H. Karst, 326 stands),
and birch (Betula pendula Roth and Betula pubescens Ehrh., 212 stands). The main forest
site types according to the Estonian classification system [23] were Oxalis (235 stands) and
Oxalis-Myrtillus (164 stands). The average H100 for the southwest area was 27.9 m, and the
most common dominant tree species were similar to those in the southeast area—Scots pine
(356 stands), Norway spruce (332 stands), and birch (322 stands). The prevailing forest site
types were Filipendula (189 stands), Oxalis-Myrtillus (187 stands), Myrtillus (96 stands), and
Aegopodium (89 stands). The mixed-species forests usually have a second layer of Norway
spruce, which is more common in the fertile site types.

Commercial thinnings by the RMK are usually planned for stands with a relative
density above 75%, considering the dominant tree species, stand age, and expected time
remaining to the final felling. Decisions for the thinnings are then made based on the FI data
and confirmed via field visits. For our study, we took the thinning data for one year before
and one year after the ALS measurements, allowing us to construct a list of the following
training stands: (1) stands thinned after the flight of ALS, and assumed to have undisturbed
structure between the ALS measurements; and (2) stands that were thinned before the
flight of ALS. The first set of stands, which were thinned after the ALS measurements, were
labelled as “1”, representing stands where a thinning should be carried out according to
forest inventory experts. The second set of stands, which were thinned up to a year before
the ALS measurements, were labelled as “0”—training data of stands that do not need to be
thinned. Additional stands for the class “0” had to be randomly selected from the RMK’s
FI database because initial tests with RF predicted that thinning was necessary in bog areas,
young stands, stands growing on poor soil, and for the stands already reaching the age of
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clear-cutting. The additional stands were selected to be greater than 1 hectare and with a
relative density below 75%, or stands reaching the clear-cut stage and young stands (age
less than 30 years). The query resulted in 207 additional stands for the southwest area and
199 stands for the southeast area.
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2.2. Airborne Lidar Data

The Estonian Land Board carried out ALS measurements in southeastern Estonia in
2017 and in southwestern Estonia in 2019 after the final leaf unfolding [24], when the foliage
of deciduous trees was fully developed. A RIEGL VQ-1560i scanner [25] was used from a
flight altitude of 3100 m, which provided an average ALS data point density of 0.8 m−2.

ALS data were processed using FUSION/LDV [26]. Stand borders were flanked with
a buffer of 10 m to reduce border errors, and then the ALS data point clouds were extracted
for each stand. The ALS point clouds were normalized using the digital terrain model
constructed by the Estonian Land Board. A stand-based canopy cover proxy was calculated
using a threshold of 1.3 meters (CCALS_1.3; Equation (1)), similar to that used by Arumäe
and Lang [7]:

CCALS,z =
100·P

∣∣(hp > ζ)

P
, (1)

where hp is the pulse return height above ground, P is the number of echoes, and ζ is
the set threshold. Other metrics and height percentiles (Hpx) were calculated, with points
excluded below hp ≤ 1.3 m, and canopy cover was also calculated, with thresholds set at
mean height. The CCALS_1.3 was substantially higher for stands that needed to be thinned
(Table 1) for both test sites, and the difference was visually discernible on point clouds
(Figure 2). The forest height indication metric HP95 at both test sites was lower for stands
that needed to be thinned.
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Table 1. The average of the 95th height percentile (HP95) and canopy cover (CCALS_1.3) based on
thinning necessity and test site. Standard deviation is given in brackets.

Test Site
Thinning
Necessity

Number of
Stands

ALS Metrics
Canopy Cover (%) HP95 (m)

Southwestern
Estonia

Yes 637 85.1 (9.2) 18.2 (3.6)
No 416 71.9 (12.9) 20.1 (5.7)

Southeastern
Estonia

Yes 360 89.1 (7.8) 20.5 (3.5)
No 591 71.1 (27.1) 25.4 (6.3)
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2.3. Random-Forest-Based Model Construction

The RF machine learning package in R [27] was used for constructing the model
for thinning necessity. The main parameters for model optimization in the R package
randomForest are the number of feature variables at each split (RFmtry) and the number
of trees to grow (RFntree). With fixed values of RFmtry = 5 and RFntree = 500, the first stage
of machine learning was to select a suitably small set of the ALS metrics with significant
predictive value; this was done in order to reduce the time of further processing. We
excluded the ALS intensity metrics and the height metrics that were highly correlated with
one another before the metric selection, leaving 41 ALS metrics for the search of the most
significant metric. The final selection of ALS metrics was made based on the mean decrease
in accuracy (MDA; [28]) and mean decrease in Gini coefficient (MDG; [29]).

The southeast and southwest datasets were then randomly split into two subsets, leav-
ing the share of 70% and 30% for the model training and validation samples, respectively.
The training was run 10 times on 70% randomly selected stands and validated on the rest
of the stands. The final model parameter tuning was carried out using the R Caret pack-
age [27] to find the optimal values for RFmtry, RFntree, and the other two parameters—the
minimum number of observations to construct a separate terminal node (RFnodesize), and
the maximum number of terminal nodes (RFmaxnodes). The parameter values were varied,
and optimal values were chosen based on the accuracy (k-fold cross-validation; Caret
package method = “repeatedcv”). This procedure was repeated with the 5 pre-selected ALS
metrics for both the southwest and southeast areas 10 times, as the randomness of training
stands gives somewhat different accuracy each time.

For cross-validation of the area-based model, we selected all of the stands exclusively
from the southeast or southwest Estonia test sites, and fitted the models using the previously
estimated optimal values of the parameters (RFntree, RFmtry, RFmaxnodes, RFnodesize). These
models were then applied to the neighboring area stands—the southeast model to the
southwest stands and the southwest model to the southeast stands; this was done in order
to assess whether the models were area-specific, or whether a universal model could be
used. Additional tests were carried out by introducing errors to the training data, by
swapping the decision from one (thinning needed) to zero (no thinning required)—or vice
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versa—firstly on 30 stands, and then by increasing the falsely assigned stands to 30% of the
training stands.

2.4. General-Linear-Model-Based Prediction

For comparison with the RF model, we applied the general linear model (GLM)
method to the thinning data, as follows:

Y = β0 + β1·X1 + β2·X2 + . . . + βn·Xn + ε (2)

where β0 is the model intercept, β1 . . . n represents the slope coefficients, X1 . . . n represents
the variables (ALS metrics), ε is the model residual error, and Y is the dependent variable
(thinning necessity, with the similar coding values of 0 and 1). As with the RF model, the
most significant ALS metrics were selected according to p-value, excluding intercorrelated
metrics or the metrics with no logical meaning to thinning necessity (i.e., total number of
echoes). The GLM model (2) coefficients for both southeastern and southwestern Estonia
were fitted on 70% randomly selected stands, and then validated on the remaining 30% of
observations. For the validation, the predicted log-odds of the model were calculated as a
probability of thinning necessity. The probability was then classified as a Boolean decision
of need for thinning, with probability greater than or equal to 0.5 targeted for thinning, and
a probability less than 0.5 for the forest stands where no thinning was needed.

3. Results
3.1. ALS Metrics

Based on the random forest algorithm’s variable importance indicators MDG and
MDA, the five most significant ALS metrics were independently selected for both test areas.
The two most significant predictive feature variables in both test areas were CCALS_1.3 using
only the first echoes and the 95th percentile of point cloud height distribution (HP95), with
both showing substantially greater importance than the following three metrics. The fifth
ALS metric accounted for five times less of the importance compared to the top two metrics.
For both test sites—southwestern and southeastern Estonia—a lower percentile (HP20 and
HP25) and the median of the absolute deviations from the pulse return height mode value
(HMAD_mode; [26]) were among the five most significant metrics (Table 2).

Table 2. The ALS metrics with the greatest predictive power for assessing the need for thinning using
the random forests algorithm in southwestern and southeastern Estonia. MAD is the median of the
absolute value.

Test Site ALS Metrics Mean Decrease
in Accuracy

Mean Decrease
in Gini

Southwestern Estonia

Canopy cover 138.4 115.8
95th height percentile 56.1 65.4
Height MAD mode 42.6 29.1
Coefficient of height

variation 23.3 17.6

25th height percentile 19.6 15.6

Southeastern Estonia

Canopy cover 99.5 109.5
95th height percentile 79.8 111.4
Height MAD mode 36.8 34.3

Height skewness 26.4 30.3
20th height percentile 20.9 29.1

3.2. Random Forest Model Optimization

The crucial step in constructing the model was to select the best combination of RF
model parameters to potentially increase the accuracy of the prediction. We first used
the default values of RF (the RF algorithm in R uses RFntree = 500 and RFmtry value as
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the square root of the number of predictor variables rounded down), and then varied the
RFntree from 500 to 2500 with a 500 step and RFmtry from one to five. The highest accuracy
was found using RFmtry set at 2 and RFntree at 1000 (Figure 3) for southwestern Estonia,
but based on the validation stands, the accuracy values did not significantly differ for
other values of RFntree or RFmtry (91.4%–92.0%; Figure 3). The southeastern Estonia model
behaved similarly, although the overall accuracy was smaller (84.4%–85.0%) but, similarly
to the southwest test site, the influence of the model parameter RFntree and RFmtry values
was not proven to be significant with regards to model accuracy. The optimal values for
the southeast area were RFmtry of 2 and RFntree of 1500.
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With the RFmtry and RFntree optimal values fixed, the next parameters we varied were
RFmaxnodes (search from 2 to 50, by 1) and RFnodesize (search from 1 to 20, by 1). The accuracy
did not increase significantly compared to the given RF default values; the highest accuracy
of 92.2% for southwestern Estonia was shown using RFmaxnodes set at 46 and RFnodesize at 9.
Similar to the RFntree and RFmtry variation, no significant impact on model accuracy was
found (91.3%–92.2%). In southeastern Estonia, the accuracy was less than in southwestern
Estonia, but varying the RFmaxnodes and RFnodesize did not significantly affect the accuracy
(84.3–85.5%). The best accuracy was obtained with RFmaxnodes set at 43 and RFnodesize at 8.
When using the RF model with default values, the accuracy of the models was similar, but
slightly higher compared to our selected parameters.

3.3. Validation and Decision Error Sensitivity Test

The validation process was repeated 10 times at both test sites, randomly selecting
70% of the stands for training data, and validating the model on the other 30% of the stands
accordingly. The southwest model showed an average classification accuracy of 91.9%
(87.1%–94.0%) using our selected parameter values (RFmtry = 2, RFntree = 1000, RFmaxnodes
= 46, RFnodesize = 9), and 93.5% (91.2%–95.3%) when using the default parameter values
chosen by the RF algorithm. The southeast model’s average classification accuracy over
10 runs was 85.2% (81.8%–87.4%) using the parameter values we selected (RFmtry = 2,
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RFntree = 1500, RFmaxnodes = 43, RFnodesize = 8), and 85.7% (83.2%–89.2%) for the default
values of RF.

Cross-validating the southwest model and applying it to the southeast stands showed
an accuracy of 80.3%. Vice versa, the southeast model applied to southwest stands showed
a slightly higher accuracy of 83.1%. Considering the possible confidence intervals, the
prediction accuracy was no different; however, as might be expected, both test-area-specific
models performed worse on the other area than on the test site with the model empiri-
cal data.

In the forced estimation error test, in which field decisions of 30 randomly selected
stands from the training set in the southwest test site were altered, the final prediction
accuracy dropped by 10% on the validation set. Increasing the number of incorrect decisions
on 30% of the training set stands produced a model with prediction accuracy of only 21%.
The results in the southeast test site were similar when thinning necessity errors were
introduced into the training data.

3.4. General-Linear-Model-Based Predictions

The three most significant (p-value < 0.05) ALS metrics for the southwest area were the
coefficient of height variation (HVar), HP50, and the first echo-based canopy cover, calculated
above the mean height threshold (CCALS_mean). The prediction accuracy on the validation
set when run 10 times with the random set of training stands was 92.1% (89.9%–95.3%)
for the southwest area (Table 3). The most significant ALS metrics for the southeast area
were the ALS point cloud mean height (HPmean), the kurtosis of the point cloud (HKurt)
and, again, CCALS_mean. The prediction accuracy based on the validation stands in the
southeast area was on average 81.75% (77.3%–85.3%; Table 3). The excluded ALS metrics
were either correlated with the three already-selected metrics, or had p-values greater
than 0.05. When the significant ALS metrics from the southeast area were chosen for the
southwest—and vice versa—for model construction, the accuracy did not significantly
differ from the area-specific prediction accuracy (p-value > 0.05). Using the ALS metrics
selected with the RF algorithm (Table 2) and with the GLM, the prediction had a slight
decrease in prediction accuracy—3.5% in southeastern Estonia, but not significantly in the
southwestern Estonia test site.

Table 3. General linear models for thinning necessity prediction based on ALS metrics and their
estimated values of model parameters (p-values given in brackets) for the southwest and southeast
test sites.

Test Area Model Accuracy ALS Metric Parameter Value

Southwestern Estonia 92.1%

50th height percentile −0.04817 (0.004)
Coefficient of height variation −0.00209 (0.001)

Canopy cover above mean height
Intercept

0.02321 (0.001)
−0.28000 (0.045)

Southeastern Estonia 81.8%

Mean height −0.04887 (0.004)
Kurtosis of height 0.06119 (0.011)

Canopy cover above mean height
Intercept

0.01193 (0.001)
0.31203 (0.088)

4. Discussion

Forest management planning and decision making can be guided by several objectives—
maximizing ecological or economic values, concentrating on social needs and, in most cases,
the need to balance all of them. Decisions are usually made based on measurable parameters,
i.e., forest age, mean tree diameter at breast height, additional constraints arising from neigh-
boring stands, or standing wood volume; all of this requires analysis of large quantities of
data. In the Estonian State Forest Management Centre (RMK), for example, the total thinning
area in 2018 was around 10,000 ha, with an average stand being two hectares in size [30].
The total area of commercial thinnings for each year is limited by the annual allowable cut
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given to RMK, and is then divided for each management region separately based on the
regional forest inventory data. The final decision of which FI data-based pre-selected stands
are thinned is made during final field visits by the regional foresters. This study offers a novel
approach for planning commercial thinnings using a machine learning algorithm alongside
ALS-based structure metrics in order to most effectively utilize the information with the
highest acquisition cost—the decisions made in situ by forest inventory experts.

The two most descriptive ALS metrics using the RF model for thinning necessity were
the 95th height percentile and canopy cover, which can also be defined as stand height and
stand relative density; these are also the main criteria used by the RMK for indicating the
need for thinning. Additionally, forest height is a good indicator of stand age [31], which is
one of the criteria for thinning assignment. The skewness, variation in height, and other
metrics describing the point distribution can be related to the density of tree crowns and the
length of crowns [32], showing the competition for light and, thus, being another indication
of thinning necessity. The accuracy for both test sites was surprisingly high, and the effort
to further increase the accuracy by fine-tuning the random forest algorithm’s parameters
yielded no significant improvement in prediction accuracy. With small differences between
the linear model prediction accuracy and RF accuracy, the RF model outperformed the
linear model approach.

An indication that the prediction accuracy was approaching its maximum with a
risk of overfitting was addressed by inserting a small error into the model training data,
after which the accuracy dropped significantly by 10%. Overfitting could be addressed by
setting the RFnodesize to be at least three, which would result in a small decrease in model
training accuracy but would yield more reliable results for later application to the target
area. Another issue is the assumption of homogeneity in tree cover within the forest stands.
Although, by definition, forest stands should be homogeneous, in Estonian semi-natural
forests we find large variation in canopy cover, tree height, soil properties, terrain, etc.,
within a single stand. However, the stands still are different from neighboring stands, and
a somewhat subjective delineation is made in the forest. An option to better target the areas
where thinning is needed would be to use a smaller unit than a stand and to apply the RF
model to the new subunits. The solution would be a pixel-based approach with clustering
and segmenting the pixels first according to their ALS metrics, and the segments could
then be used as new possible silvicultural treatment polygons.

The later implementation of the stand-level RF model for nationwide application
showed a need to diversify the training data sample, as the model was still assigning
thinnings to stands belonging to the class ready for final felling, or to stands that had
not reached the age of commercial thinning. Indication of thinning necessity in younger
stands than those at commercial thinning age could be useful from the forest management
point of view; however, our input training dataset did not include enough young stands
and, therefore, the model predictions may have large uncertainties. In addition to training
data diversification, an even more practical solution would be to apply the stand-age-
dependent post-process filter in the prediction of thinning. Similarly to age restrictions,
the model predicts thinnings for stands with management restrictions, remote areas out of
management, stands already thinned after the ALS flight, etc., all of which could be filtered
using the forest management inventory data. According to our experience, it is not feasible
to predict such limitations using remote sensing data or add corresponding variables to the
model. During its application, the model should also be developed as a continuous project,
where field-expert-corrected predictions are added from time to time to the training data,
thus improving the new version of the predictions.

The average relative density was 82 in the stands with classification errors during
later model applications. Considering that the relative stand density for assigning thinning
in the RMK is 75, we can conclude that the falsely assigned thinnings in many cases are
borderline decisions. Some errors occurred in stands thinned, along with other thinnings
carried out in that region instands that do not necessarily need to be thinned at the time,
but would need to be in the upcoming years. Such an approach is common for optimizing
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the cost of silvicultural treatments for the purposes of not having to return to the same area
in upcoming years, saving expenses on logistic operations.

With fieldwork becoming more and more expensive, such pre-targeted areas are of
great assistance for time management and workflow planning. Another aspect is that
the forest inventories are carried out at a 5–10-year interval, compared to the Estonian
cycle of ALS data of four years. With the ALS data freely available, prediction of thinning
necessity using machine learning has great potential for becoming a new method of forest
management planning, and could be used for other silvicultural treatments such as tending
of seedling stands.

Our study showed that due to regional differences in management practices, subjective
decision making, forest growth, forest types, and species composition, the prediction
accuracy of random forest models was also region-specific. It must be noted that such
regional differences exist already in model input data, and may be an indicator of the
subjective decision making of the regional foresters. Therefore, the continuously updated
machine learning model could also homogenize the silvicultural practices between different
regions and foresters.

5. Conclusions

The random-forest-algorithm-based model showed sufficient accuracy for simulating
a forest manager, planning the commercial thinnings with an average of 85% accuracy in the
southeastern Estonian test site and an average of 91% accuracy in the southwestern Estonian
test site. The random-forest-based model outperformed the general linear model’s thinning
prediction by 4% in southeastern Estonia, but showed similar accuracy in southwestern
Estonia. Both thinning necessity predictions by the random forest and general linear models
showed some dependence on geographic region when cross-validated between the two
test sites in southwestern and southeastern Estonia.
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