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Abstract: In forestry, aerial photogrammetry by means of Unmanned Aerial Systems (UAS) could
bridge the gap between detailed fieldwork and broad-range satellite imagery-based analysis. How-
ever, optical sensors are only poorly capable of penetrating the tree canopy, causing raw image-based
point clouds unable to reliably collect and classify ground points in woodlands, which is essential
for further data processing. In this work, we propose a novel method to overcome this issue and
generate accurate a Digital Terrain Model (DTM) in forested environments by processing the point
cloud. We also developed a highly realistic custom simulator that allows controlled experimentation
with repeatability guaranteed. With this tool, we performed an exhaustive evaluation of the survey
and sensor settings and their impact on the 3D reconstruction. Overall, we found that a high frontal
overlap (95%), a nadir camera angle (90◦), and low flight altitudes (less than 100 m) results in the best
configuration for forest environments. We validated the presented method for DTM generation in a
simulated and real-world survey missions with both fixed-wing and multicopter UAS, showing how
the problem of structural forest parameters estimation can be better addressed. Finally, we applied
our method for automatic detection of selective logging.

Keywords: aerial photogrammetry; digital terrain model; structural forest parameters; unmanned
aerial systems

1. Introduction

The use of Unmanned Aerial Systems (UAS) as remote sensing for environmental
monitoring and precision forestry has grown considerably during the last years and has
spread worldwide [1–3]. It has emerged as a promising complement to satellite imagery
and fieldwork. Satellite imagery and vegetation indices obtained from these are useful
for land and forest monitoring at the regional level, but not at a predial scale. Fieldwork
provides highly detailed information, but it is not scalable in terms of cost-area ratio
and carries tedious work for the personnel involved. Contrariwise, UAS present several
advantages such as the possibility of performing precise full-coverage forest maps in a
short time, arbitrary revisit lapse, high spatial resolution, cloudiness independence, low
cost, and easy operation compared with its counterparts [4].

Regarding the sensory system, it can be differentiated between two types of UAS
depending on whether they use a laser scanner or imaging camera as the main sensor.
At present, airborne laser scanning (ALS) is considered the most accurate method for
estimating forest structure due to the detection of both the canopy and the ground. Despite
that, ALS systems have considerable power requirements, and they are expensive compared
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to camera-based systems and only cost-effective in large scale applications [5,6]. On the
other hand, aerial photogrammetry using standard cameras has a better trade-off between
cost and performance with respect to forest structure analysis, and it is lightweight and
energy efficient [6]. Aerial photogrammetry is attractive for forestry due its ability to use
uncalibrated cameras paired with unstable or handheld platforms, enabling the use of low-
cost and off-the-shelf equipment, as mentioned in [7]. Aerial photogrammetry by means of
UAS has been employed for tree health monitoring [8–10], 3D model reconstruction [11],
species classification [12], and biodiversity assessments [13]. A review of recent advances in
forest applications using UAS can be found in [14]. For comparison between laser scanners
methods and aerial photogrammetry, refer to [15–17].

The photogrammetry workflow can be roughly divided in five main steps: (1) imagery
acquisition; (2) keypoint identification between images; (3) camera parameters estimation
and sparse point cloud generation using Structure from Motion (SfM); (4) creation of a
dense 3D point cloud using multi view stereo (MVS) matching algorithms; and finally
(5) post-processing of the 3D cloud.

For step (1), a survey mission needs to be prepared, that involves the generation of a
flight plan covering the area of interest where airborne images will be acquired. Depending
on the chosen platform type and the expected reconstruction precision, mission settings
are chosen. This is usually a manual process which ultimately falls into the hands of expert
UAS pilots since there are no standardized protocols yet.

Steps (2)–(4) are generally solved using dedicated software, such as the open source
system OpenDroneMap (ODM) (https://www.opendronemap.org, accessed on 19 July
2021) or the commercial software Agisoft Metashape (https://www.agisoft.com, accessed
on 19 July 2021). ODM used together with WebODM (a web-based interface to ODM)
allows to perform automatic reconstructions on a server where it is hosted. It can be used
by non-expert users. In contrast, Agisoft Metashape processes images in a semi-automatic
sequential approach. This scheme has the advantage that it can easily detect the source of
reconstruction errors, but it requires technical knowledge to obtain the expected results.

Subsequent post-processing steps of the 3D cloud typically involve the estimation
of a Digital Surface Model (DSM) and an orthomosaic. In forestry, it is also required to
generate a Canopy Height Model (CHM), normalizing the DSM, by means of translating
from height above sea level to height above ground, based on a generated or preexisting
Digital Terrain Model (DTM). When the DSM is correctly normalized, structural forest
parameters such as tree height, coverage percentage, timber volume or biomass can be
accurately estimated. Tree height is obtained directly from the CHM, whereas coverage
percentage can be obtained by image classification of canopy versus ground areas and
measuring relative area occupied by the former.

When there is no preexisting DTM, it is necessary to realize a ground segmentation,
by classifying reconstructed 3D points as belonging to ground or to the canopy. For
this purpose, techniques typically employed for LiDAR point clouds can be used [18].
ODM performs this segmentation as part of its 3D cloud generation process using the
Simple Morphological Filter (SMRF) [19]. On the other hand, Agisoft PhotoScan uses a
progressive densification filter algorithm based on triangulation of fewer points. However,
since both approaches assume that there are detectable ground points throughout the
surveyed area (and this cannot be granted when employing photogrammetry), canopy
points are commonly misclassified as ground points. This drawback limits their use in
forest environments.

In [7], a review of the state of-the-art in aerial photogrammetry in forest applications
is presented. Authors conclude that it presents a highly accessible and versatile solution to
the acquisition of very high-resolution 3D data and mention four of the main challenges for
forest applications: (i) Reproducibility, (ii) Availability of accurate Digital Terrain Models
(DTMs), (iii) Lack of acquisition and processing protocols, and finally (iv) Image match-
ing issues. Reproducibility is challenging due to variation in illumination, atmospheric,
and seasonal conditions, so it does not guarantee the same results on different survey
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missions. This is also related to the lack of acquisition and processing protocols, since
these variations that make it hard to find the best sensor and flight settings, currently
undertaken based on the surveyor’s experience. The generation of accurate DTM is crucial
to obtain good results in structural forest parameters estimation. One challenge of low-cost
UAS application is the need for a bare-earth surface. Photogrammetry has limitations
related to the cameras’ poor capability of penetrating the tree canopy and the minimum
number of images observing the same ground points, which is not always possible in dense
forest environments. Because of this, some works propose to use highly accurate DTMs
generated by ALS-based systems to normalize the photogrammetry data [20], but this
makes the survey process longer and tedious. Recent lightweight LiDAR products have
been available for UAS payloads. However, these products often have costs in the range of
USD 50–100 k, and are therefore too expensive for most operational UAS deployments [21].

Finally, the matching process results particularly challenging in forested areas due
to the uniform texture of the canopy, self-repeating patterns, and potential trees move-
ments. This may cause incomplete or noisy 3D point clouds as a result. To overcome
these issues, it has been suggested to increase the overlap between images and to use a
higher flight altitude, since this increases the number of features per image and reduces
distortions [22,23]. However, this approach either imposes the use of a faster camera or
slower flight speed (if the overlap is increased) or reduced effective resolution (due to the
higher flight altitude).

There are some works that study the impact of flight and camera settings on the 3D
reconstruction quality. The relationship between overlap and the ground area represented
by an image pixel, which is meant as Ground Sample Distance (GSD) is studied in [22].
Nevertheless, the generated point cloud density is used as a metric of quality without
evaluating the cloud precision. Similarly, [24] analyze the influence of flight altitude, image
overlap, and sensor resolution on forest reconstructions. The number of detectable features
in several images or tie points is used as a metric for this analysis, resulting in an incomplete
evaluation method since this is not really a guarantee for a high reconstruction quality.
Moreover, in both works, the error in the reconstructed 3D point cloud is not measured
and ground control points are not included.

Another key parameter affecting reconstruction is the camera angle. This factor is of
particular importance when observing irregular 3D surfaces such as trees. In this line, [25]
study reconstruction quality when the camera angle is at 45◦, using a terrestrial laser to
generate point clouds to compare results obtained from images. The authors also tested
different flight patterns in order to improve reconstruction precision and successfully esti-
mate some of the tree’s radius. Nevertheless, authors mention that further work is needed
to complete the study of relevant mission settings and their impact on the reconstruction.

A deeper study on the use of oblique images for 3D canopy reconstruction is presented
in [26]. Authors also demonstrate an improvement in accuracy on crown cover estimation
percentage and maximum canopy height. To analyze their results, the authors built ground
truth data from a terrestrial laser scanner. Similar work with oblique images in high-relief
landscapes is addressed in [27]. There does not seem to be a consensus in the state-of-the-
art regarding which camera angle produces the best result. In fact, from the various related
articles, angles in the range from 10◦ to 60◦ are recommended [27].

In order to face the aforementioned challenges and perform controlled experimen-
tation of flight and camera settings, an alternative is to use forest simulators. There are
some examples of simulator based analysis of photogrammetry in the literature. One such
example is the SyB3R benchmark where a 3D synthetic scenario is generated [28]. This
tool post-processes the captured images to make them more realistic, adding distortion
and simulated camera noise. However, this simulator is not flexible and permits only
predefined scenarios not including forestry. Another simulator that is widely used in
robotics is Gazebo [29], but this tool is designed to simulate the physics of a robot motion
and is not really focused on realistic world scenarios, even less on forests.

The main contributions of this paper are:
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1. The development of a highly realistic simulator based on Unity [30] video engine,
which allows to generate synthetic forest images during a simulated UAS flight and
perform controlled experimentation with repeatability guaranteed. Using this tool,
a detailed and extensive evaluation of the impact of the flight and camera settings on
forest 3D reconstruction is presented;

2. A novel method to generate accurate DTM in forest environments using only the
UAS point cloud obtained from SfM, highly reducing the cost compared with the
LiDAR oriented approaches. In contrast to them, it considers the gaps typically
found in image-based point clouds during points classification. Based on this method,
the estimation of structural forest parameters and the automatic detection of selective
logging are proposed.

2. Materials and Methods
2.1. Forest Simulator

We develop a high realistic forest simulator to enable controlled experimentation of
survey missions. It is based on the Unity graphics engine [30], which is a multi-platform
framework and includes a terrain generation module based on a user-supplied height
map, including ground textures and objects such as trees (either manually or randomly
placed). Figure 1 shows the three different tree models included in Unity. Each tree can
be customized by changing its size, color, and orientation. Including custom tree models,
modifying the scene lighting as well as setting the camera parameters are also possible.

Figure 1. Three different types of tree used in the simulation, from left to right: palm trees, planifolia,
and conifers.

A series of image acquisition poses are generated to simulate a survey mission, fol-
lowing a predefined flight path, which involves setting the camera altitude, and angle.
The poses are generated using the desired frontal and lateral overlap parameters, just as
during a real survey planning. For each position, a simulated camera is placed in the
appropriate location and an image is acquired.

For the simulation of a GPS sensor, the center of the environment is geo-referenced by
a given coordinate system (typically UTM). In this way, the pose of all acquired images
will be in reference to the scene coordinate system. Finally, these poses are perturbed using
random white noise. The simulator also supports ground control points, by manually
placing markers on the ground as done in real-world survey missions.

After acquisition is complete, the simulator generates an image sequence where the
GPS poses are recorded in the EXIF label. This allows the same reconstruction process to be
followed as would be done for images acquired with a real camera on a real survey mission.

As ground-truth information, the simulator also generates the terrain mesh (as a point
cloud), the CHM and a segmentation of ground and non-ground points in this map (see
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Figure 2). The simulator can also be used to report the crown size and highest point of
individual trees.

Figure 2. Exported information from the simulator. The left image shows the height maps and the
right image shows a segmentation of trees and floor for the Simple Trees Scenario.

Two different scenarios were considered: Simple Trees (Figure 3, left) and Yosemite
(Figure 3, right). The first scenario contains just nine trees of three different types spread
over a square shaped region with flat terrain (see Figure 2). The second scenario aims to be
a realistic representation of Yosemite National Park [31] by means of a real DTM obtained
from LiDAR. Different tree types were randomly placed, followed by manual filling in
some areas. Thus, the scenario results in a mix of both dense and sparsely forested areas.

Figure 3. Both synthetic scenarios used in this work: Simple Trees on the (left) and Yosemite on
the (right).

In this way, we are able to simulate survey missions with different settings over
synthetic scenarios in which the position of each tree (and each leaf) is perfectly known.

2.2. Survey Mission Settings

We characterize two different types of survey mission settings regarding sensor and
flight, and consider four metrics to evaluate the resulting reconstruction: flight time, image
processing time, point cloud precision and ground-sample distance (GSD).

Since these variables are related in non-trivial ways, we present an analysis of these
relations. Figure 4 outlines the relations between camera parameters and the rest of the
survey settings and reconstruction metrics: arrows represent one parameter impacting in
the value of another one, round nodes represent the four mentioned metrics.



Forests 2022, 13, 173 6 of 27

Figure 4. This simplified scheme shows the relations between the settable (rectangles) and the
control (rounded nodes) parameters for the aerial photogrammetry in forests. Square nodes de-
note user settable parameters (simple rectangles represent flight-related parameters while double
border rectangles correspond to sensor related parameter), round nodes denote evaluation metrics,
rhombuses denote inferred parameters, and slanted rectangles denote non-controllable parameters.
The continuous arrows denote that the node affects the final value, while the dash arrows represent a
minor limit.

We can further distinguish between user settings (those that must be explicitly chosen
before the mission) and inferred settings (those indirectly affected by user settings). Flight-
related user settings are image overlap (%), flight altitude (m), flight speed (m/s), flight pattern
(single or double grid) and camera angle (◦). Sensor related settings are: image resolution
(Mpx), focal length (mm), sensor sensitivity (ISO speed), shutter speed (ms), and aperture
(f number). The inferred parameters in our model are: image acquisition rate (Hz), image
density (1/m2), and trajectory length (m). From these two groups is possible to estimate
the value of the control parameters group: precision (m), image processing time (h), ground
sample distance (cm/px), and flight time (s). These last groups will be used to evaluate the
reconstruction process. Finally, we can also identify some variables that are not under user
control whatsoever: scene luminance and maximum acquisition rate.

In general, there is no single configuration that guarantees a good reconstruction.
To find the optimal parameter configuration, it is necessary to understand and quantify
their effects. In the following sections we describe these variables and metrics in greater
detail, discuss how they are related between each other, and give some hints towards good
starting points for configuring values.

To evaluate the impact of the survey mission settings described below we used the
simulated scenario Simple Trees and processed the resulting images using ODM. For each
configuration we repeated the cloud generation process three times and then we estimated
the mean of three relevant parameters: (1) distance between centers of bounding box (BB)
of the original and generated cloud, (2) points number, and (3) BB size. We also used these
parameters to detect wrong reconstruction when some thresholds are reached. In particular,
if the BB was bigger than 100 m in any direction, or the BB was 150% bigger or 50% smaller
than expected, the reconstruction was rejected.

2.2.1. Overlap

One of the most important mission settings is the image overlap: the percentage of the
image that intersects with its neighbor image. The importance of this parameter lays in
the fact that in order to create 3D geometry from images, at least two views of a portion
of the surface are needed. Thus, the higher the image overlap, the greater the chance of
establishing correspondences. Furthermore, correspondences are used to set restrictions
to the underlying SfM optimization and thus a large number of these usually results in
increased reconstruction accuracy.

Image overlap is directly proportional to the number of images per area: to achieve
high overlap, more images are needed over the same distance, resulting in a denser
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distribution. This also implies that the image processing time will be higher. In other words,
this parameter is a direct trade-off between reconstruction precision and efficiency. We can
further distinguish frontal (o f ) and lateral overlap (ol):

o f = (1−
d f f
H w

) 100 (1)

ol = (1− dl f
H h

) 100 (2)

where d f is the (longitudinal) distance between consecutive pictures (m), dl is the (lateral)
distance between flight lines (m) (see Figure 5), f is the focal length (mm), H is the
distance from the camera sensor to the ground (m), w and h are the sensor width and
height (mm), respectively.

Figure 5. Two flight mission plans, in the left a simple grid and in the right a double grid plan. Blue
dots represent the places were pictures are planned to be captured. Frontal and lateral overlap are
also shown.

Frontal overlap depends on the image acquisition rate, since higher o f implies that
a greater number of images are acquired during the same time interval (assuming the
flight speed remains constant). Thus, the combination of sensor capabilities and minimum
flight speed will usually impose a higher bound on o f . Increasing lateral overlap will
reduce dl . This means that a larger number of passes will be needed to achieve a tighter
grid. The longer flight trajectory will result in higher flight time required (again, assuming
constant flight speed). In conclusion, increasing ol will bear the same benefits of larger o f
value but at the expense of longer survey missions, which will usually be limited by the
flight autonomy of the UAS.

An alternative approach to increase o f , which does not impose a higher acquisition rate
is to modify the flight pattern from a simple to a double grid (see Figure 5). This, of course,
also negatively impacts flight time. For very irregular surfaces, such as the case of forest
canopy, a high image overlap of at least 80% is usually recommended. As a rule of thumb,
each point should be visible in at least 4 to 5 images [7]. In this work, we tested values
between 75% and 95% of both lateral and frontal overlap.

2.2.2. Flight Altitude

Flight altitude is also a trade-off between flight time and the reconstruction precision.
If the image overlap is fixed, flying at a higher altitude will allow higher d f and dl . In other
words, images will be taken further apart in time and space. Furthermore, as dl is in-
creased, the flight trajectory will be shorter (less passes are needed) and flight time will
be reduced. However, this all comes at the expense of reduced GSD (each pixel will repre-
sent a larger ground area) and point-cloud precision (image correspondences will be less
accurately established).
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Again, for the case of forestry applications, a relatively low altitude (relative to canopy)
is recommended to maintain sufficient reconstruction detail. If this is not possible for the
complete area, surveys performed at different flight altitudes may be combined in a
single reconstruction. In this work, we evaluated different flight altitudes between 50 m
and 200 m.

2.2.3. Flight Pattern

The flight pattern determines the path that the UAV will follow. For forestry applica-
tions the most used are simple or double grid in a squared or rectangular area (see Figure 5).
Simple grid is less time consuming, but double grid is more accurate since it has more
images and from different sides. Thus, depending on the application it will be adequate to
use one or the other. When generation of 2D maps is the main interest, the terrain is mostly
flat or the area to be surveyed is large, the simple grid is usually used. For 3D models
or when the terrain has height variations (buildings, rugged terrains such as precipices)
and the area to be surveyed is small the double grid will give better results. In general,
in order to improve the 3D models generation the flight pattern includes a combination of
different camera angles (in general nadir and another value) and sometimes even different
flight altitudes. In this work, we tested both single and double grid patterns combining with
different altitudes and camera angles.

2.2.4. Camera Angle

Camera angle is the tilt angle of the camera with respect to the ground, for example
a camera pointing down corresponds to 90◦, while a camera pointing forward to 0◦.
Camera angle is an important parameter in the mission setting as adding oblique images
allows observing new parts of the environment, such as the side of trees, generating richer
reconstructions. However, if the angle is too low, it may be difficult to match the images,
as the area shared between them could be reduced due to occlusion. In addition, if the
horizon is observed, it will give a wrong reconstruction or directly an error in the SfM
process, as the system will try to include this faraway areas in the reconstruction. In this
work, we tested four angle values between 60◦ and 90◦, using both a simple and double
grid flight pattern.

2.3. Ground Sample Distance

The ground sample distance (GSD) is related to the detail obtained during the recon-
struction in terms of the area represented by each image pixel:

GSD =
wH
f Iw

cos(θ)−1 (3)

where w is the sensor width (mm), H is the flight height, f the focal length (mm), Iw is the
image width (pixels), and θ is the angle between the nadir direction and the sensor line-of-
sight. The factor cos(θ)−1 only has an effect when the camera direction is not nadir [32].

2.4. Reconstruction Error

To measure the reconstruction error we compare the obtained reconstructed surface
with a reference mesh. Since we use a simulator to generate reference meshes in our
reconstruction experiments, the ground-truth mesh is readily available. For real-world
missions, this could also be performed if a terrestrial laser scan is available (this is not
usually the case) or by means of a surface reconstructions process, such as Poisson Surface
Reconstruction [33], which is prone to smooth out details and extrapolation errors. For this
reason, in real-world survey missions reconstruction error is typically measured by means
of comparing expected to estimated coordinates of hand-placed ground-control points.
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Point Cloud Comparison

To evaluate the precision of a given simulated reconstruction we compare it with
the ground truth mesh (densely sampled into a point cloud) exported from the simulator.
To estimate the distance between two surfaces, we follow the definition of root mean square
error (RMSE) from METRO [34]. First, we define the point-to-surface distance e(p, M) for a
given point p and a surface mesh M, as the euclidean distance to the closest point in the
sampled mesh M.

e(p, M) = min
p̃∈M

d(p, p̃) (4)

where d is the euclidean distance between two points.
We can now define the root mean square error (RMSE) between two surfaces M1 and

M2 as:

RMSE(M1, M2) =

√
1
|M1| ∑

p∈M1

e(p, M2)2 (5)

We should note that, the number of points |M1| in the ground truth mesh are always
the same in each experiment and the surfaces to compare with are aligned, allowing us to
use the RMSE as a metric to evaluate the 3D reconstruction quality w.r.t. M1.

It is worth mentioning that RMSE(M1, M2) is not always equal to RMSE(M2, M1)
since the closest point in M2 may have a different closest point in M1. In the following, we
will note RMSE12 and RMSE21 for RMSE(M1, M2) and RMSE(M2, M1), respectively.

In particular, RMSE21 is typically used in the literature [35,36] where the reference
mesh M1 corresponds to another reconstruction of the same area. Instead, in this work,
M1 is a very detailed ground-truth surface mesh exported by our simulator while M2
is a point cloud obtained by our reconstruction method. This means that M2 will be a
subset of M1, since M2 may have holes and missing data (such as tree trunks, in forest
mapping) due to occlusion. As a result, RMSE12 will usually be higher when there is data
missing in the reference mesh, while RMSE21 will not be affected by this issue. On the other
hand, this means that RMSE21 itself is not enough as an indicator for the reconstruction
quality, since we not only care about the precision of the obtained surface but also about
the approximation of the ground truth surface.

Thus, in this work we choose to present both RMSE12 and RMSE21 , since the latter
will give a measure of the precision of the points in M2 while the former will indicate how
well the whole reference surface M1 was approximated.

2.5. Digital Terrain Model Generation

The DTM describing all ground points in the environment is a key input to estimate
canopy height and other forest structural parameters. In this section we propose a novel
method to generate accurate DTM using only the point cloud. The workflow for this
computation is outlined in Figure 6. First, we perform an initial classification based
on the Simple Morphological Filter (implemented in the ODM tool) [19], which assigns
each point to either ground or non-ground class. To improve on this initial result, we
then compute the best-fitting plane for all ground points and then reclassify all points by
considering their distance to the plane. Finally, to close gaps in the ground point cloud, we
also estimate a plane for each gap and generate points uniformly over this surface. The
SMRF [19] algorithm used by ODM to classify the cloud points utilize four parameters: slope
(slope rise over run), window (max window size), elevation threshold, and scalar (elevation
constants used to classified the cloud points as ground or not ground). ODM by default
uses parameter settings which are not ideally suitable for forest reconstructions. In [19],
an optimized parameter set is proposed for an area with low altitude and dense vegetation.
Thus, for these experiments we tried both the default and optimized parameters, as well as
up to 80 random combinations. To evaluate the results, we compared the final ground map
to the ground truth, obtained from the simulator.
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Figure 6. Workflow scheme for the digital terrain model generation using the proposed method.

The DTM is then constructed with the PDAL Library [37] using as input all ground
points. After this, the CHM can finally be obtained by subtracting the height of the ground
at each location to the z coordinate of every non-ground point in the DSM. The DSM is
calculated similarly to the DTM, but by using all the cloud points.

In the following sections, we describe the point-cloud re-classification and gap closing
in more detail because they are the key steps of the method to obtain accurate DTM.

2.5.1. Points Reclassification

From the already classified ground cloud, we first partition the points using only their
X and Y coordinates (see below). Then, for each partition, we estimate the best-fitting
plane using a RANSAC (Random sample consensus) scheme for robustness to outliers.
Finally, we reclassify all points above the plane by some distance threshold as not ground
and all points closer as ground. The pseudo-code for this step is presented in Algorithm 1.

Algorithm 1 Reclassification of Ground Points

1: procedure GROUNDRECLASSIFICATION(GroundCloud)
2: partitions = PARTITION(GroundCloud)
3: for i=1:#partitions do
4: plane = RANSAC(partitions[i])
5: for j=1:(#point ∈ partitions[i]) do
6: if HEIGHT(point[j])>HEIGHT(plane)+threshold then
7: GroundCloud = GroundCloud - point[j]

To partition the cloud points, we considered four alternatives: (i) Plane, which
considers the entire cloud as a single partition and use only one plane to adjust it; (ii)
Uniform Division, an iterative method that divides the cloud in four uniform sections,
and continues recursively until either the area covered by each subdivision or the number
of points contained in it are below a given threshold; (iii) Median Division, similar to the
uniform division, but considering the median of the points number in each area instead.
The main idea is to have partitions with the same points number, and (iv) Surrounded,
which attempts to find good planes in the areas without points (generally corresponding
to dense tree areas), using the border of them to estimate the best plane. The first step is
to find all the areas without points, and create a partition for each one containing all the
surrounded points. After this, all the remaining points of the cloud are assigned to the
same partition.

2.5.2. Gap Closing

To fill all gaps remaining in the point cloud of ground points, we apply a gap closing
algorithm. We follow a similar approach as for reclassification by closing each gap by means
of a plane. From the ground points of the reclassified cloud, and using the surrounded
method we separate the cloud in several partitions. Each gap has associated one partition,
and using RANSAC we estimate the best plane for each one. After this, equidistant points
are generated over the plane and added to the ground cloud. Algorithm 2 describes this
step of the method.



Forests 2022, 13, 173 11 of 27

Algorithm 2 Ground Extension

1: procedure GROUNDEXTENSION(GroundCloud)
2: partitions = PARTITION(GroundCloud)
3: for i=1:#partitions do
4: plane = RANSAC(partition[i])
5: points = CREATENEWPOINTS(plane)
6: GroundCloud = GroundCloud + points

2.6. Structural Parameter Estimation from SfM

In this work we focus on two main forest structural parameters than can be obtained
using SfM techniques: tree coverage and height. While computing tree height can be
generalized to obtaining the CHM, tree coverage can be estimated by the ratio of forested
to total area:

coverage =
(#TreePixels)

(#GroundPixels) + (#TreePixels)
∗ 100, (6)

where (#TreePixels) is obtained directly from regions of the CHM with non-zero height
(considering a threshold). While the CHM could be used to obtain individual tree height,
it is generally more useful to a height based segmentation of the CHM, considering that
forested areas usually show sectors with markedly distinct height (due to different succes-
sional stage, dominant species, soil condition, or management).

2.7. Selective Logging Detection

Selective logging detection results from comparing reconstruction of the same sur-
veyed area at different times. First, the CHM corresponding to each survey is computed
as explained in previous sections. The ground-referenced point clouds are then aligned
and the difference is computed, using the oldest as a reference. Algorithm 3 describes
the procedure.

Algorithm 3 Changes Detection

1: procedure CHANGESDETECTION(Clouda, Cloudb)
2: (cgeClouda,cgeCloudb) = CORRECTGROUNDEST(Clouda, Cloudb)
3: (alCgeClouda) = ALIGNCLOUDS(cgeClouda,cgeCloudb)
4: (CHM1,CHM2) = CHM(alCgeClouda,cgeCloudb)
5: diffMap = DIFF(CHM1,CHM2)
6: binDiff = BINCLASCHANGE(diffMap)
7: binDiff = MORPHFILTER (binDiff)
8: binDiffContourns = CONTOURS(binDiff)
9: binDiffContourns = MINAREAFILTER(binDiffContourns)

The first step is to use the correction in the ground estimation described previously
with the function CORRECTGROUNDEST for both clouds, to then align them using ALIGN-
CLOUDS. After this, both CHM maps are generated with the CHM function, to then
calculate the difference between them. The function BINCLASCHANGE uses a threshold to
classify every point as changed or not. This threshold is defined as a third of the altitude of
the highest point since this value exceeds the noise and at the same time detects changes in
the trees; however, the user can change it manually. The function MORPHFILTER applies
two morphological filters (first erosion and then dilatation) in order to eliminate noise,
and the same filters in the inverse order, to eliminate little holds in the big forested areas.
Finally, the contours are calculated with CONTOURS and then a minimal area filter is used
to eliminate small areas with MINAREAFILTER.

2.8. Fieldwork

Finally, we performed a series of real-world experiments both for the ground segmen-
tation step and structural parameters estimation. These experiments where carried out in
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forested environments located in different protected areas in Argentina and using different
UAVs. In Nahuel Huapi National Park (Neuquén Province) an area of 200 × 200 m was
surveyed using an DJI Mavic 2 Pro UAV. In Ciudad Universitaria-Costanera Norte Eco-
logical Reserve in Buenos Aires City, we used a DJI Phantom III Standard to make a 3D
model in an area of around 20 hectares. In Ciervo de los Pantanos National Park (Buenos
Aires Province) we used a custom built fixed-wing aerial platform based on the commercial
Skywalker 1900 fuselage.

3. Results and Discussion

The first set of experiments are focused on establishing certain aspects regarding the
survey mission setup with a simulator as described in Section 3.1. The second set of
experiments are aimed towards experimental validation of the DTM generation method,
presented in Section 3.2. Third, forest structural parameters estimation is presented in
Section 3.3. Finally, selective logging detection process using the proposed DTM generation
method is also validated Section 3.4.

3.1. Survey Mission Settings Analysis

In this section we evaluated the impact of some of the main survey mission settings
over the SfM reconstruction process. For this experiment we used the simulated scenario
Simple Trees and processed the resulting images using ODM. In all the cases we set: image
resolution 4000 × 3000 px, focal distance 3.61 mm, sensor width 6.24 mm, and sensor
height 4.68 mm. The default values were: flight altitude 100 m, camera angle of 90◦, and a
GSD of 4.32 cm/px (this value will change with flight altitude and camera angle according
to (3), unless another value is specified.

3.1.1. Overlap

As previously mentioned, image overlap is strongly related to reconstruction quality
since it mostly determines the number of correspondences that can be established between
adjacent images (the higher the overlap, the higher the matches). We initially tested values
between 75% and 95% of both lateral and frontal overlap to determine a usable range of
values. We then focused on overlap values in the range between between 85% and 95%,
considering also that values are usually recommended for SfM reconstruction of forests.
Results of these experiments are presented in Table 1.

When analyzing the results of these experiments we can see a direct relation between
image overlap and the number of images and, thus, the number of generated 3D points.
Moreover, lateral overlap has greater impact over these variables since it results in a tighter
flight path with more passes over the survey area.

Is interesting to note that RMSE12 and RMSE21 estimations have contradictory
behaviors. For RMSE21 case, the error is in the order of the centimeters and it slowly
grows with the overlap. On the other hand, RMSE12 abruptly decreases when increasing
the overlap. To clarify this behavior, Figure 7 shows the reconstruction of two cases:
F75%L75% and F95%L95%. For the case F75%L75% we have the lowest value of RMSE21 ,
but the reconstruction is lacking a large number of points, in particular in the trees. On the
other hand, for this case RMSE12 has the highest value since there are several areas
without points, and this increases the estimated error. The case F95%L95% shows a dense
reconstruction as expected. It additionally represents one of the lowest values of RMSE12 ,
but a higher value of RMSE21 . As a conclusion, RMSE21 represents a valid metric to
check that the estimated error of the reconstructed points is within the expected parameters,
but it results are insufficient to evaluate the quality of the reconstruction. We will prioritize
the RMSE12 value in order to evaluate the reconstruction parameters.
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Table 1. Quality metrics for different overlaps: N Img (number of images), N Points (number of
points), FD (flight distance), RMSE21 (Root Mean Square Error) using the ground truth mesh as
reference and RMSE12 using the reconstructed cloud as reference in the estimation of RMSE. In blue,
is shown the best five results for each metric, and in dark gray a good option for the trade-off between
precision and overlap is remark.

Param N Img N Points FD (m) RMSE12 (m) RMSE21 (cm)

F 75% L 75% 12 0.6 M 378.12 8.32 1.62
F 85% L 85% 24 1.2 M 466.70 4.37 2.60
F 85% L 88% 30 1.5 M 569.12 3.58 2.57
F 85% L 92% 48 2.4 M 874.64 4.10 2.42
F 85% L 95% 72 3.7 M 1261.83 2.62 2.47
F 88% L 85% 28 1.4 M 451.15 2.19 2.97
F 88% L 88% 35 1.8 M 549.67 2.30 2.61
F 88% L 92% 56 2.9 M 843.52 2.59 2.82
F 88% L 95% 84 3.6 M 1215.16 2.47 3.02
F 92% L 85% 40 1.5 M 451.15 2.02 2.88
F 92% L 88% 50 1.9 M 549.67 1.85 3.03
F 92% L 92% 80 2.9 M 843.52 1.68 3.31
F 92% L 95% 120 4.1 M 1215.16 1.61 3.14
F 95% L 85% 64 3.3 M 466.70 1.29 3.21
F 95% L 88% 80 3.7 M 569.12 1.95 2.53
F 95% L 92% 128 5.8 M 874.64 1.77 2.62
F 95% L 95% 192 9.4 M 1261.83 1.32 3.12

(a) (b)

Figure 7. Comparison between two reconstructions belonging to two different overlap flights
(highest and lowest values of Table 1). Although in Table 1 the lowest value of RMSE21 is for the
case F75%L75%, the reconstruction is lacking a large number of point in the trees. This example
shows that RMSE21 is a good indicator of the points precision but is not good to evaluate the quality
of the reconstructed cloud. (a) Reconstrution: F75% L75%. (b) Reconstrution: F95% L95%.

Following the value of RMSE12 , we found that as expected values of overlap lower
than 85% do not give usable results. We can also analyze the effect of varying either frontal
or lateral overlap leaving the other parameter fixed (see Figure 8). We can see that when
lateral overlap is increased and frontal overlap is left fixed, flight distance increases as
previously mentioned. Conversely, when frontal overlap is increased and lateral overlap is
left fixed, flight distance remains mostly constant. Finally, we can observe that precision
mostly increases depending on frontal overlap, whereas increasing lateral overlap does not
have a big impact of precision.

From all of these combinations we found that using 85% lateral overlap gives good
results overall. In particular, combining this value with 95% frontal overlap gives the
best trade off in terms of accuracy and number of points/images and flight distance.
These results are in line with previous analysis, in particular with those obtained in [24],
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where the authors also analyzed separately the effects of both forward and lateral overlap,
although using a video footage.

(a) (b)

Figure 8. Flight distance versus the RMSE12 error, for different values of frontal and lateral overlap.
(a) Lateral overlap variation. (b) Frontal overlap variation.

3.1.2. Camera Angle and Flight Pattern

In this experiment we analyzed the effect of different camera angles on the reconstruc-
tion. We tested four angle values between 60º and 90º, using both a simple (see Table 2)
and double grid (see Table 3), with a flight altitude of 100 m with a frontal and lateral
overlap of 95% and 85%, respectively. We did not consider angles lower than 60º since in
general too much sky would be visible in the pictures and this brings problems for the
image processing pipeline.

When comparing single grid flights with different camera angles, the first thing to note
is the increment of points in the clouds for bigger angles. This can be attributed to the fact
that although for small angles the observed surface is greater, the overlap between images
is reduced. Nevertheless, regarding reconstruction precision, we did not find significant
differences when the camera angle changed.

Table 2. Quality metrics for different camera angles: N Img (number of images), N Points (number
of points) and RMSE (Root Mean Square Error). Blue values represent the best result.

Angle N Img N Points RMSE12 (m) RMSE21 (cm)

α = 60º 64 2.1M 1.91 4.77
α = 70º 64 2.7M 1.90 3.63
α = 80º 64 3.1M 1.97 3.24
α = 90º 64 3.3M 1.51 3.37

For the double grid case (see Table 3) we repeated the experiment, considering that
now the angle may change between either orientation of flight lines (thus we will name
each angle α1 and α2). In general we can see a similar behavior than for a simple grid:
higher angles lead to higher precision and more 3D points. Regarding reconstruction
precision, for both overlap cases, the configuration α1 = 90◦ and α2 = 60◦ show the best
results, especially for the lower image overlap case, where the number of 3D points is
smaller. This result reinforces that obtained by [26,27], showing the relevance of incorporate
oblique images to make 3D reconstructions in forest landscapes.
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Table 3. Quality metrics for different camera angles in a double grid setup. Blue values represent the
best result for each configuration.

Angles N Img N Points RMSE12 (m) RMSE21 (cm)

DG F95% L85%
a1 = 60º ∧ a2 = 60º 128 4.4M 1.75 2.07
a1 = 70º ∧ a2 = 70º 128 5.6M 1.45 2.27
a1 = 80º ∧ a2 = 80º 128 6.3M 1.83 2.23
a1 = 90º ∧ a2 = 60º 128 5.6M 0.91 2.79
a1 = 90º ∧ a2 = 70º 128 6.2M 0.99 2.36
a1 = 90º ∧ a2 = 80º 128 6.6M 0.93 2.60
a1 = 90º ∧ a2 = 90º 128 6.7M 0.94 2.68

DG F90% L80%
a1 = 60º ∧ a2 = 60º 48 1.7M 2.10 2.17
a1 = 70º ∧ a2 = 70º 48 2.1M 2.67 2.06
a1 = 80º ∧ a2 = 80º 48 2.4M 2.57 2.14
a1 = 90º ∧ a2 = 60º 48 2.1M 1.27 2.89
a1 = 90º ∧ a2 = 70º 48 2.3M 2.32 2.00
a1 = 90º ∧ a2 = 80º 48 2.3M 2.58 2.15
a1 = 90º ∧ a2 = 90º 48 2.5M 2.63 2.73

3.1.3. Flight Altitude

For the single grid case (Table 4), as expected, higher altitudes result in a smaller num-
ber of images and 3D points. This in turn shortens the flight distance but also reduces the
precision.

For the double grid case, we tested combinations of different altitudes for flight lines
in each orientation (Table 5). In this case, while there is also a decrease in the number of
images, 3D points, and flight distance as altitude increases, we can see that the precision
not always decreases. In particular, the configuration corresponding to the best precision
for this experiment was h1 = 50 m and h2 = 150 m.

Table 4. Quality metrics for different altitudes for simple and double grid options with a frontal and
lateral overlap of 90% and 80%, respectively. Blue values represent the best result for each configura-
tion.

Param N Img N Points FD (m) RMSE12 (m) RMSE21 (cm)

h1 = 50 96 3.3M 669.81 2.13 2.35
h1 = 100 24 1.2M 341.39 2.20 3.34
h1 = 150 12 0.3M 246.32 3.07 4.17

Table 5. Quality metrics for different altitudes for simple and double grid options with a frontal and
lateral overlap of 90% and 80%, respectively.

Param N Img N Points FD (m) RMSE12 (m) RMSE21 (cm)

h1 = 50 ∧ h2 = 50 192 18.5M 1440.53 1.79 1.97
h1 = 50 ∧ h2 = 100 121 5.8M 1123.82 1.98 2.24
h1 = 50 ∧ h2 = 150 109 5.4M 1058.19 1.42 2.12
h1 = 50 ∧ h2 = 200 105 5.3M 1075.30 2.02 2.29

h1 = 100 ∧ h2 = 100 49 2.2M 714.99 2.14 2.73
h1 = 100 ∧ h2 = 150 37 1.5M 647.18 2.20 3.05
h1 = 100 ∧ h2 = 200 33 1.3M 671.16 2.00 3.04
h1 = 150 ∧ h2 = 150 25 0.5M 603.62 2.73 4.02
h1 = 150 ∧ h2 = 200 21 0.4M 592.75 2.66 4.03
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3.2. DTM Generation and Ground Segmentation

We conducted a series of experiments to evaluate our DTM generation method and
the ground segmentation required to ultimately obtain a CHM. To establish a baseline, we
first performed a segmentation using ODM over the ground-truth point-cloud obtained
from the simulator. We then attempted to improve this result by considering the different
segmentation strategies.

3.2.1. ODM Classification

In the first instance, we compared different parameter settings in the ODM algorithm.
Table 6 shows the results of default, optimized [19], and the best option among the 80
random combinations evaluated. We used the RMSE12 since, as we showed before, it
gives better results, especially when the cloud that has to be compared has gaps.

Table 6. RMSE error for different settings of the ODM ground segmentation. The optimized corre-
sponds to the values recommended in [19]. Win stands for window and Th for threshold.

Ranking Slope Win Th Scalar Mean RMSE12

Best 0.18 17 0.5 1.5 1.257 2.653
Default 0.15 18 0.5 1.25 1.328 2.705

Optimized 0.05 11 0.15 2.3 1.648 2.965

In Figure 9 we also compare the ground-truth DTM to the one obtained by the afore-
mentioned ground classification method (with the best set of parameters). When observing
the difference (Figure 9c) between ground-truth (Figure 9a) and estimated (Figure 9b), we
can identify three areas with large errors, which correspond to an open ditch on the left,
a large group of trees in the middle, and a small slope and a tree in the top right part.

(a) (b) (c)

Figure 9. The left and the middle show the DTM ground truth and the one obtained with the best
set of parameters of Table 6, respectively. The right shows the error (calculated as the difference
between the other two maps) in the DTM estimation. (a) Ground-truth DTM. (b) Estimated DTM. (c)
Difference.

3.2.2. Point Reclassification

In this section we evaluate the improvement of our point reclassification method
over the initial result obtained directly from ODM. We tested the four cloud segmentation
strategies, described in Section 2.5.1. In Figure 10 we show the partitions generated as
a result of applying each strategy. The reclassification process is then performed in each
partition and the final DTM is generated.

The median method present the best results since it eliminates the wrong classified area
corresponding to the dense trees, without affecting the rest of the scenario. Nevertheless,
none of the methods show improvement related with the other two areas of error (the
open ditch on the left and the slope on the right). The method of one plane also removed
these points, but since only one plane was used and the terrain was not flat, the corners
were wrongly classified as not ground, because the difference with the plane was too big.
Something similar happened with the surrounded method, since it also uses one plane
for all the terrain. Finally, the uniform method was not able to remove the point of the
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dense tree area, since this area was too large and different partitions were set, making it
impossible to estimate a good plane.

From each DTM we measure the error as in the previous section (Figure 11). White
areas correspond to zones that were reclassified as not ground, and the interpolation of
ODM cannot fulfill those areas. It is desired to have them in the wrong classified areas in
the original DTM, but not in well classified zones. This areas will be fulfilled again in the
ground extension process.

Figure 10. Partition used in ground points reclassification: (top left) One Plane, (top right) Uniform,
(bottom left) Median and (bottom right) Surrounding.

Figure 11. DTMs errors after reclassified as not ground some points (white areas) using the pro-
posed methods: (top left) One Plane, (top right) Uniform, (bottom left) Median and (bottom right)
Surrounding.
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Using Metro we compared these DTM estimation with the ground truth, and the
results are shown in Table 7. Again, median partitioning method has the best performance.

Table 7. Comparison, using METRO, between the different partitioning methods and the original
mesh. Cov % is the coverage percentage of the original model. The Median method shows the better
performance in all the metrics.

Method Mean Error RMSE12 Max Error Cov %

One Plane 1.289 3.292 20.755 87.51
Uniform 1.273 3.803 29.670 99.83
Median 0.746 1.701 17.454 98.79

Surrounded 0.986 2.629 23.345 97.67

3.2.3. Ground Extension

For each of the reclassification results obtained in the previous section, we then applied
the ground extension method proposed in Section 2.5.2. As an example, in Figure 12 we
show how points are added in gaps for one of these cases.

Figure 12. Added points (red) in the cloud for a distance of 5 m.

In Table 8 we show the new results after applying the ground extension step. Observ-
ing these results, we realize that the Surrounded method shows the best performance.

Table 8. Comparison, using METRO, between the different partitioning methods and the original
mesh. The Surrounded method shows the better performance in all the metrics, and shows a bigger
improvement in comparison with the default method used by ODM.

Method Mean Error RMSE12 Max Error Cov %

One Plane 0.921 2.074 26.885 100
Uniform 0.828 1.868 21.661 100
Median 0.812 1.865 23.694 100

Surrounded 0.789 1.843 29.159 100
ODM 1.458 4.287 30.012 99.84

Finally, in Figure 13 we compare the final DTM obtained via ODM and the improved
one after applying the reclassification and ground extension methods with the surrounded
strategy. We can here see that our approach considerably improves the result, which
corresponds to an RMSE improvement from 4.287 to 1.843.
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Figure 13. Differences within the original method used for ODM (left), and our proposed method
(right) to estimate the ground.

3.2.4. DTM in Real-World Cases

For the study area in Nahuel Huapi National Park, the resulting orthomosaic is
presented in Figure 14a and the DTM obtained via ODM with the default configuration
is presented in Figure 14b. We can observe that on the right of the image there are some
trees (red areas) that were classified as ground and that there are also gaps (white areas) in
the map. These issues occur since most of the surface is covered by trees and the default
classification method is unable to correctly detect the ground. Both of these problems are
solved when using the Algorithm 2 (see Figure 14c), were a mostly flat terrain is detected.

(a) (b) (c)

Figure 14. Original orthomosaic of the relevated area (left), DTM with the Default algorithm of ODM
(middle) and DTM corrected with our method. (a) Orthomosaic. (b) Default. (c) Proposed Method.

Figure 15 shows the results obtained for Ciudad Universitaria-Costanera Norte Eco-
logical Reserve. The orthomosaic is on the left side, where it is possible to observe this
area. The middle image correspond to the default DTM, where again some of the trees are
wrongly classified as ground and also there are some gaps. When running Algorithm 2
(right) with the same parameters as in the other reconstructions, the gaps are well estimated
and disappear. Nevertheless, some areas are wrongly fulfilled, assuming a flat terrain
during the ground extension. This can be easily corrected by delimiting the border of
the reconstruction.
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Figure 15. Original orthomosaic of the relevated area (left), DTM estimated with the Default algorithm
of ODM (middle) and DTM corrected with our method (right).

3.3. Structural Parameters

In this section we present our results when estimating the structural parameters of
interest: tree coverage and canopy height.

3.3.1. Coverage

Once ground segmentation is performed, estimating tree coverage is trivial since
it reduces computing the percentage of pixels classified as ground with respect to the
total area in question. We can use the Yosemite simulated scenario again to compare tree
coverage results to ground-truth information. When using ODM, the resulting coverage is
36.56%. With our approach, coverage is 40.86%. Compared to the ground-truth value of
46.80% we can indeed observe our method results in an improvement. This measurement
shows the importance of precise ground segmentation as it directly impacts coverage
computation. Figure 16 shows the tree segmentations obtained for each method and the
difference to ground truth segmentation.

Figure 16. (Top left): Expected segmentation from the real mesh. (Top middle): segmentation using
the ground estimation correction. (Top right): segmentation with the default ground estimation.
(Bottom): difference between the expected segmentation and, at (left), the one with the ground
estimation correction and at (right), with the default estimation.

On the other hand, we also computed tree coverage for real-world experiments. Since
in this case we do not have ground-truth information, only qualitative analysis is performed.
In Figure 17 we overlay the segmentation result over the orthomosaics of Villa La Angostura
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and Reserva Ecológica Costanera Norte (RECN) experiments. In general we can observe that
most of the forested areas are correctly classified as not ground. The coverage percentage
for Villa La Angostura is estimated as 45.53% and 17.60% for RECN.

(a) (b)

Figure 17. Overlay between orthomosaci and the areas covered by trees (fluor green) for the Villa La
Angostura and RECN experiments. (a) VLA. (b) RECN.

3.3.2. Tree Height

A second result we can obtain from the CHM is tree height. As previously mentioned,
as detecting individual trees is not really feasible for very densily forested areas, we can
resort to obtain a height segmentation from the CHM for the purpose of isolating potentially
different forest types.

In Figure 18 we show the regions with similar tree height for a reconstruction of the
Ciervo de los Pantanos national park. To build this segmentation map we extended ODM
software to allow specifying different height intervals to be mapped to a class (based on
knowledge of available forest types in the area).

Figure 18. National Park Ciervo de los Pantanos. (Left): Orthomosaic generated, where yellow
marks represents the CGPs. (Medium): corresponding height map. (Right): segmentation stratified
by heights.

3.4. Selective Logging Detection

In this section we evaluate the ability of our system to detect changes between two
survey missions of the same area at different times. In the context of forestry, this feature
has multiple applications such as selective logging detection. We performed two sets of
experiments: first in the Yosemite simulated environment and then on a real-world scenario
of a construction site inside a forested area.
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3.4.1. Simulation

In this experiment we generated an initial tree population in the Yosemite simulated
environment and then a second one with some of these trees removed from three different
areas of the map. We performed two simulated survey missions and then attempted to
detect the differences.

Figure 19 shows the change detection process step by step: Figure 19a,b show the
resulting CHM for each mission. This covers a variety of different situations common
in forests. The difference between both CHMs is computed and a binary map is gener-
ated based on a user-defined threshold. Finally, a morphological filter and contours are
computed (selecting only those of a given minimum size), which gives the final result of
detected changes. In this case we can observe that the three groups of removed trees are
correctly detected. This can be confirmed by overlapping these contours over the scenarios
with and without trees (see Figure 19c,d).

(a) (b)

(c) (d)

Figure 19. Change detection process for Yosemite. (a) CHM with trees. (b) CHM without trees. (c)
Scenario with trees. (d) Scenario without trees.

3.4.2. Real Word Experiments

To study the performance of our selective logging detection method in real-world
conditions, a second set of experiments were performed on an area where selective logging
was authorized. Due to the size of the area and safety constraints within the construction
site, these experiments were carried out with the DJI Mavic 2 Pro commercial multi-rotor.

Three flights were performed at different times over two separate areas (of approxi-
mately 150 × 200 m each) in Nahuel Huapi National Park, near Villa La Angostura. Due
to technical difficulties it was not possible to use GCPs for all the flights. This issue had
the effect of higher drift in the absolute position of the clouds. Nevertheless, since we
perform point cloud alignment this issue is easily overcome. Of course, for larger areas,
GCPs would be necessary to avoid warping of the point cloud.
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The main idea was to test the selective logging detection described in the previous
section, for both cases: using the standard DTM constructed by ODM and in second place
the DTM obtained using the proposed method. Figure 20a shows the original orthomosaic
of the surveyed area, where some trees were cut down. Figure 20b,c show a zoom of
Figure 20a (white rectangle), corresponding to the orthomosaics before and after three
trees were cut down. The white lines delimit the area changed between both. To estimate
this area we use the algorithm described in Section 2.7 and tested two options: (1) using
the default DTM generated with ODM, or (2) using the DTM produced by the proposed
method in this work.

Figure 20d shows the DTM generated using the standard configuration of ODM.
Comparing this image with the original orthomosaic it is possible to observe areas corre-
sponding to trees wrongly marked as ground (yellow and red areas mostly), also the DTM
presents gaps in the left and bottom parts. Using this DTM we applied the selective logging
detection algorithm, and the results are shown using white lines. We observed that the
method detected six areas although only the one in the center is correctly detected. On the
other hand, we applied the proposed method to generate an improved DTM, the obtained
result is shown in Figure 20e. The resulting DTM presents a smoother surface where most
of the wrongly detected areas are now correctly classified. There is still an area on the right
part showing errors, but this is because it is too close to the border of the surveyed area. We
then use the selective logging detection algorithm and the results are marked in white lines.
Using the corrected DTM the algorithm finds the right areas were trees were cut down.

(a) (b) (c)

(d) (e)

Figure 20. Selective logging detection algorithm applied over an area where some trees were cut
down. (Top left) figure is the orthomosaic of the original area, while (middle) and (right) represent a
zoom of the affected area, before and after the trees were cut down, respectively. In the (bottom) both
DTM estimation are shown, whit the results of the selective logging detection algorithm highlighted
in white. (a) Orthomosaic. (b) Zoom before cutting down. (c) Zoom after cutting down. (d) Original
DTM. (e) Corrected DTM.
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We repeated this procedure for six total survey missions in two different places, these
results are shown in Figure 21. For the first area (Figure 21a–c), after the initial flight, three
trees of approximately 30 m in height were cut down and, before the final flight a quite
large area of trees was removed. The changes detected in the canopy structure after the
second and third flight were correctly identified (marked in blue), as seen in Figure 21b,c.

For the second area (Figure 21d–f), the section of trees removed is smaller and thus
allows to see the performance on a more challenging case. In Figure 21e,f we show the
detection results which again reflect the areas where selective logging was performed. This
example also demonstrates that recognizing these changes could be quite difficult for a
human, but an automated approach can be successful.

(a) (b) (c)

(d) (e) (f)

Figure 21. Orthomosaics obtained from two flights (first flight, top row, second flight, bottom row).
Leftmost image is the reference orthomosaic and the middle and the rightmost ones are from the
two following flights over the same areas, after different trees were cut down. Areas detected by
our detection system are highlighted in blue. (a) First survey. (b) Second survey. (c) Third survey.
(d) First survey. (e) Second survey. (f) Third survey.
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4. Conclusions

In this work we approached the problem of forest structural parameters estimation
using aerial photogrammetry. We analyzed two relevant issues: the selection of survey
mission and sensor settings and the generation of DTM using a camera sensor in forests.
For the first issue, an exhaustive analysis is presented using a custom-built highly realistic
simulator that allows experimental repeatability. For the second issue we proposed a new
method to generate the DTM in forested environments using only the point cloud from
SfM. Finally, we tested our method in real-world cases using different UAVs in natural
forest areas.

In first place we studied the impact of flight settings in the final 3D reconstruction
quality. We tested different configurations of image overlap, camera angle, flight pattern
and altitude. The use of a simulator allowed us to carry out hundreds of experiments and
to count with a ground-truth to compare the obtained results. For the overlap we found
that it is beneficial to use the highest possible value of frontal overlap, taking into account
hardware capabilities (image rate acquisition) and the required processing time. Moreover
a lower value of lateral overlap is also preferred as it results in a lower number of images
but with similar precision in the reconstruction. Frontal and lateral overlap of 95% and
85% respectively have shown to give the best results for forests. For the camera angle in
single grid configuration a nadir angle shows better results than when using smaller angles,
as the number of points is increased while RMSE is improved. In the double grid case,
a combination of 90◦ and 60◦ angles for each flight allowed us to achieve the best results
for two different overlap configurations. In relation to altitude in the simple grid case,
we found that higher altitudes result in a smaller number of points and images, but also
reduced precision. In the double grid case we found that the most precise reconstruction
corresponds to the uses of two specific flight altitudes of h1 = 50 m and h2 = 150 m.

We also tested the proposed ground segmentation method for forested areas and we
were able to reduce the RMSE considerably. This improvement was also reflected in the
coverage percentage estimation, where the error has halved. We also performed qualitative
analysis using real-world experiments with good results for both tree coverage and height.

The capability to generate the DTM in forested environments using only the point
cloud from SfM is the key for UAS-based photogrammetry in cases where there is no other
source available, or it is not possible to use LiDAR due to their high cost or operational
difficulty. Therefore, the presented method can make UAS-based photogrammetry an
available tool to a larger set of stakeholders, such as local forest management agencies,
citizen science, and research projects with limited resources.

To summarize, we can conclude that UAS-based photogrammetry in forest environ-
ments is challenging but still possible and allows to obtain useful results if proper settings
for mission and sensor are considered and an accurate DTM is generated. As demonstrated
in this work, it can be used for structural forest parameters estimation and selective logging
detection, becoming in a powerful tool for forest inventory and management. In this way,
we save ourselves from tedious fieldwork, low-resolution results from satellite imagery,
and expensive alternatives such as airborne LiDAR systems.
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