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Abstract: Forest trees exhibit a large variation in the basal area increment (BAI), and the variation is
attributed to the stand density, biodiversity, and stand spatial structure. Studying and quantifying
the effect of these above variables on tree growth is vital for future forest management. However, the
stand spatial structure based on neighboring trees has rarely been considered, especially in the mixed
forests. This study adopted the random-forest (RF) algorithm to model and interpret BAI based on
stand density, biodiversity, and spatial structure. Fourteen independent variables, including two
stand density predictors, four biodiversity predictors, and eight spatial structure predictors, were
evaluated. The RF model was trained for the whole stand, three tree species groups (gap, neutral, and
shade_tolerant), and two tree species (spruce and fir). A 10-fold blocked cross-validation was then
used to optimize the hyper-parameters and evaluate the models. The squared correlation coefficients
(R2) for the six groups were 0.233 for the whole stand, 0.575 for fir, 0.609 for shade_tolerant, 0.622 for
neutral, 0.722 for gap, and 0.730 for spruce. The Stand Density Index (SDI) was the most-important
predictor, suggesting that BAI is primarily restricted by competition. BAI and species biodiversity
were positively correlated for the whole stand. The stands were expected to be randomly distributed
based on the relationship between the uniform angle index (W) and growth. The relationship between
dominance (U) and BAI indicated that small trees should be planted around the light-demanding
tree species and vice versa. Of note, these findings emphasize the need to consider the three types
of variables in mixed forests, especially the spatial structure factors. This study may help make
significant advances in species composition, spatial arrangement, and the sustainable development
of mixed forests.

Keywords: spatial structure parameters; stand density; biodiversity; random forests; BAI model

1. Introduction

Understanding forest growth is crucial for forest management and the estimations
of net primary production and carbon sequestration [1]. Forests with mixed species have
higher productivity, higher temporal stability, a lower risk of biotic and abiotic disturbances,
and a more diverse ecosystem. However, it is challenging to model their growth because
of complex communities [2]. Basal area growth increment (BAI) is particularly suitable
for modelling tree growth among the other measurements because it is directly related
to the diameter at breast height (DBH), thus making it more reliable [3,4]. Machine-
learning algorithms have already been used in forest management, providing more accurate
predictions than the traditional linear regressions in dendroclimatology [5–9]. Notably,
Martin Jung used BAI modelling of spruce and fir in random forests [10].
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The role of stand biodiversity for ecosystem processes, such as biomass production,
nutrient storage as well as energy and material flow, is currently the most demanding
ecological research topic, especially in the context of climate change [11]. Numerous
indicators have been developed to measure species and structural diversity to enable local
and temporal comparisons [12]. Studies of the relationship between forest diversity and
productivity in various forest ecosystems have revealed positive, neutral, and negative
correlations [13]. Moreover, the impact of species diversity on productivity is controversial,
especially in forest communities with complicated spatial structures and long life spans of
dominant organisms [14]. The scale and stand development stage evaluated must therefore
be considered when discussing diversity [15,16]. Density is also a foundational component
of forest growth models. Density measurements combining the use of growing areas
with the size of the trees are required when comparing stands of different forest ages or
different locations [17]. Strikingly, the Stand Density Index (SDI) proposed by Reineke
(1933) is the most commonly used measurement method. It accounts for the number and
average diameter of trees based on the allometric relationship between these two variables
to express the tree number as a reference quadratic mean diameter [18]. The SDI has been
used in a great deal of forest growth models for its simplicity [19–21]. However, there are
very limited studies available regarding SDI on BAI, and additional research is needed.

The forest structure is a dominant feature of forests, reflecting the connection among
individual trees, their regeneration patterns, and their competition. It thus plays a crucial
role in the natural dynamics of ecosystem [22–24]. There are various methods available
for measuring forest structure. Among them, a quantization method based on a basic unit
(a reference tree with its four nearest trees) is accepted and widely used in quantifying
forest structure [25–27], which is defined as spatial structural unit. The uniform angle
index (W) [28], dominance (U) [29], mingling (M) [30], and crowding (C) [31] can be
calculated based on the spatial structural unit. The four structural parameters accurately
express the relative size of individuals, the spatial pattern of neighbor trees, tree species
mingling, and whether they have horizontal competition [32]. The optimal stand spatial
state is a significant factor to the development of forest growth [33]. Some cross-sectional
studies found that individual density of neighboring trees or the same species, the size
distribution, and the number of relative species significantly associate with the growth of
target trees [34,35]. However, there have been surprisingly few historical studies on the
relationship between growth and spatial structure through the model.

This study aimed to (1) explore and evaluate a machine-learning model for BAI
predictions for the whole stand, tree species. and tree species groups in the north-eastern
area of China; (2) identify the main predictor variables; and (3) interpret the effect of key
predictors of forest structure on BAI and provide guidance for forest management.

2. Materials and Methods
2.1. Study Area and Experimental Design

The study area was located in the Jingouling Forest Farm in the northeast of Wangqing
County, Jilin Province, in the low hilly area of the Changbai Mountains. The altitude of the
study area is 300–1200 m, with its slope is mainly concentrated at 5◦–25◦. The region has
a temperate continental monsoon climate with four distinct seasons, with temperatures
ranging from −32 ◦C to 32 ◦C and annual average rainfall from 600 mm to 700 mm. The
early frost starts in mid-September, and the late frost extends to the end of May of the
following year. The growth period is 120 days, and the average snow cover is 50 cm
thick. The coniferous gray-brown loamy soil is dominant, with a thickness of about 45 cm
harboring high natural fertility. The parent rock is basalt, with a moist and loose granular
structure and an acidic pH. This study adopted spruce-fir natural forest as an example,
with the study area being a typical representative of over-deforestation.

One-hectare sampling plots (100 m × 100 m) were established in a spruce-fir-broadleaf
mixed forest in 2013 (Figure 1 and Table 1). All live trees with diameters at breast height
(DBH) ≥ 1 cm in each plot were recorded. Their locations were then mapped, their species
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identified, and their DBH, height (H), crown diameter, and clear bole height were measured.
Remeasurements were done in 2018, five years after the study began. Three control plots
were then selected and divided into 75 small plots, measuring 20 × 20 m. The translation
method is used for edge-correction [36]. Tree samples with ≥5 cm diameter at breast
height (DBH) were then used to calculate the stand basal area, spatial-structure parameters,
species-diversity indices, and stand-structure indices. The remaining records were finally
obtained for analysis, excluding the plots where the stand basal area was inverted. Tree
data collected from 2013 to 2018 were used for stand basal area prediction.
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Figure 1. Location of study area: Wangqing Forest Bureau in northeast China and spatial distribution
of 3 sample plots (bottom).

Table 1. Stand characteristic of 3 plots.

Plot
Code

Stem
Number

/ha

Mean
DBH/

cm

Basal Area/
(m2/ha)

Stock
Volume/
(m3/ha)

Canopy
Density

Ba Growth
in 5 Years/

(m2/ha)

1 996 17.63 24.30 199.97 0.85 1.85
2 1024 18.23 26.72 216.00 0.86 2.12
3 1018 17.38 24.15 182.75 0.63 2.55

2.2. Predictor Variables

The predictor variables were consolidated into three groups: (1) spatial-structure
parameters, (2) biodiversity indices, and (3) forest stand characteristics. Four forest spatial-
structure parameters based on the spatial structural unit were used as the spatial-structure
parameters. They included the uniform angle index (W), describing the degree of tree dis-
tribution uniformity; dominance (U), reflecting the degree of DBH differentiation; mingling
(M), expressing the degree of tree species segregation; and crowding (C), reflecting the de-
gree of tree crowding. Tree species diversity, tree size diversity, and the integrated diversity
index of tree species and size were used as the biodiversity indices, whilst Reineke’s stand
density index (SDI) was used to measure the stand characteristics. Table 2 highlights the
final set of independent variables with descriptive statistics.
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Table 2. List of independent variables and description.

Variable Name Formula Description

Biodiversity

Tree species diversity Div_SP =−∑
Ni
N

(
ln

Ni
N

)
Ni is the number of trees in the i-th tree species; N is the total number of trees.

Tree size diversity Div_Size =−∑
Nj

N

(
ln

Nj

N

) Nj is the number of trees in the j-th diameter class; N is the same as above. When
Nj and N are the number of trees in j-th diameter class and the total of a tree

species group or a tree species, respectively, the index is going to be Div_Size_Part.

Integrated diversity index of tree
species and size Div_SPSize =−∑

Nij

N

(
ln

Nij

N

)
Nij is the number of trees of the j-th diameter class in the i-th tree species; N is

same as above.

Stand density Reineke’s stand density index SDI = N
(

D
D0

)b

N is same as above; D is the actual average diameter of the stand; D0 is the
standard average diameter of 20 cm; b is the natural thinning slope coefficient of
1.605. When D and N are the actual average diameter and the number of trees of a
tree species group or a tree species, respectively, the index is going to be SDI_Part.

Spatial-structure indices

Uniform angle index
Wm =

1
M ∑M

i=1
1
4 ∑4

j=1 zij

zij =

{
1 , if αj < α0

0 , otherwise

M is the number of target trees; i is the i-th target tree; j is the j-th adjacent tree of
the i-th target tree; zij is the judgment result of angles with standard angle; αj is

the j-th angle formed by the j-th adjacent tree and the previous one; α0 is the
standard angle of 72◦. When M is the number of target trees of a tree species

group or a tree species, the index is going to be Wm_Part.

Dominance

Um =
1
M ∑M

i=1
1
4 ∑4

j=1 kij

kij =

{
1 , if DBHj ≥ DBHi

0 , otherwise

M, i, and j are same as above; kij represents the judgment result of diameters;
DBHj is the DBH of the j-th adjacent tree; DBHi is the DBH of the i-th object tree.
When M is the number of target trees of a tree species group or a tree species, the

index is going to be Um_Part.

Mingling

Mm =
1
M ∑M

i=1
1
4 ∑4

j=1 vij

vij =

{
1 , if spj 6= spi

0 , otherwise

M, i, and j are same as above; vij is the judgment result of tree species codes; spj is
the tree species code of the j-th adjacent tree; spi is the tree species code of the i-th
object tree. When M is the number of target trees of a tree species group or a tree

species, the index is going to be Mm_Part.

Crowding
Cm =

1
M ∑M

i=1
1
4 ∑4

j=1 yij

yij =

{
1 , if cj+ci > distij

0 , otherwise

M, i, and j are same as above; yij is the judgment result of two crown radii with
distance; cj is the crown radius of the j-th adjacent tree; ci is the crown radius of
the i-th object tree; distij is the distance between the j-th adjacent tree and the i-th
object tree. When M is the number of target trees of a tree species group or a tree

species, the index is going to be Cm_Part.



Forests 2022, 13, 162 5 of 13

2.3. Random-Forest Algorithm for Predicting Stand Basal Area Increment (BAI)

The random forest (RF), a nonparametric, data-driven method based on an ensemble
of bootstrapped classification or regression trees, was the primary modelling tool used
in this study. The excellent predictive power of the random-forest algorithm is based on
the construction of a random regression tree for each bootstrapping sample. At each tree
node, only a subset of all nodes is divided, taking into account the available independent
variables. This subset is defined with the parameter mtry. The mtry specifies the number of
variables to randomly selected and tested at each node of each tree. The tool employs three
steps to implement the regression: (1) Bootstrap is used to sample the original training set
(n × p) to get k training sets (n × p); (2) a regression tree model for k training sets is then
built separately to get k regression results; (3) finally, the average of k regression results is
taken as the final prediction result [37]. RF improves prediction accuracy by integrating
multiple regression trees; it has the ability to fit nonlinear functions; and it can improve
the interpretability of the model by measuring the relative importance of independent
variables [38]. We used the R RandomForest package to implement the RF algorithm for
modelling BAI [39].

Predictive BAI models were developed for six groups: whole stand, gap, neutral,
shade_tolerant, spruce (Picea jezoensis), and fir (Abies nephrolepis), with gap stands for light-
demanding tree species, neutral stands for neutral tree species, and shade_tolerant stands
for shade-tolerant tree species (Table 3).

Table 3. List of tree species group classification.

Species Group Tree Species

Gap
Asian white birch (Betula platyphylla), Korean pine (Pinus
koraiensis), Changbai larch (Larix olgensis), Ussuri popular

(Populus ussuriensis), elm (Ulmus japonica).

Neutral Linden (Tilia amurensis), ribbed birch (Betula costata), maple
(Acer mono), ash (Fraxinus mandschurica).

Shade_tolerant Corktree (Phellodendron amurense), fir (Abies nephrolepis),
spruce (Picea jezoensis).

The forest stand density, biodiversity, and spatial-structure factors were used as input
variables of RF to establish the BAI regression model. The variance inflation factor was
first used to determine the collinearity and to remove the variables from the final model
accordingly (variance inflation factor >10) to exclude strongly related variables and to avoid
introducing unnecessary parameters [40]. All predictor variables were used to train the RF
model for each group independently based on the value of mtry parameters between 2 and
14. A 10-fold blocked cross-validation was then used to optimize hyper-parameters and
to evaluate the BAI models. The squared correlation coefficient (R2) and the mean square
error (RMSE) were averaged across the 10 validation folds. For each group, the highest R2

was selected and used for further analysis.

3. Results
3.1. Random Forest Model Evaluation

Spruce had the highest performance (R2: 0.730), while the whole stand had the lowest
performance (R2: 0.223) (Table 4). In general, the tree species group (gap with mtry = 8,
neutral with mtry = 10, and shade_tolerant with mtry = 14) and the tree species (spruce
with mtry = 11 and fir with mtry = 14) had higher fitting accuracy than the whole stand.
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Table 4. Ten-fold blocked cross-validation results for the six groups.

Groups mtry R2 ± std RMSE ± std (m2/ha)

Whole stand 8 0.223 ± 0.468 0.534 ± 0.132
Gap 8 0.722 ± 0.207 0.236 ± 0.063

Neutral 10 0.622 ± 0.306 0.231 ± 0.066
Shade_tolerant 14 0.609 ± 0.295 0.167 ± 0.074

Spruce 11 0.730 ± 0.214 0.061 ± 0.038
Fir 14 0.575 ± 0.282 0.157 ± 0.070

Footer: mtry stands for optimized random forest parameter; R2 denotes the squared correlation coefficient; RMSE
denotes the root mean square error; and std stands for the standard deviation.

3.2. The Relative Importance (%) of Predictors

The most-important predictors of each variable were determined based on perfor-
mance during prediction (Table 5). SDI ranked as the top discriminative predictor for
the whole stand, demonstrating its effectiveness for BAI. Four spatial-structure predictors
explained 51.86% of all in total. Um had the largest proportion (21.18%), explaining almost
the same amount of SDI. SDI explained 50.69%, while biodiversity explained 22.41% of
all in the gap. As regards spatial-structure predictors, Mm_part had the largest proportion
(7.97%) among the spatial-structure predictors. In the same line, SDI explained 38.28%,
53.27%, and 52.58% for neutral, shade_tolerant, and spruce, respectively. Compared with
gap, Um_part (8.56%) accounted for the largest proportion ahead of Mm_part (8.04%) in
shade_tolerant. However, SDI (24.98%) had the largest contribution than Mm_part (15.37%)
in fir.

Table 5. The relative importance (%) of predictors for the six groups.

Predictors Whole Stand Gap Neutral Shade_Tolerant Spruce Fir

Wm 11.61 2.27 3.01 2.29 2.19 4.74
Um 21.18 2.91 3.33 4.61 2.21 2.90
Mm 8.76 3.96 4.17 3.10 3.80 8.36
Cm 10.30 / / 1.62 1.12 3.44
SDI 21.83 2.45 5.74 2.44 1.53 8.43

Div_SP 6.66 7.51 3.65 2.33 3.08 6.21
Div_SPSize 10.63 4.76 5.84 1.95 / 3.27

Div_Size 9.02 2.17 3.60 2.92 2.86 1.84
SDI_part / 50.69 38.28 53.27 52.58 24.98

Div_Size_part / 7.97 7.83 3.07 11.50 6.34
Wm_part / 3.02 5.80 2.85 0.94 1.34
Um_part / 2.40 5.29 8.56 4.49 8.18
Mm_part / 6.84 5.03 8.04 12.73 15.37
Cm_part / 3.07 8.42 2.97 0.97 4.61

3.3. The Effects of Predictors on BAI

SDI was the most-important variable for BAI for whole stand, gap, neutral, shade_tole-
rant, fir, and spruce. It had a strong positive effect on BAI, but when SDI in whole stand
(Figure 2) and SDI_part in tree species groups (Figure 3) or tree species (Figure 4) reached
the threshold, BAI stopped increasing and became a constant. For whole stand, gap,
neutral, and shade_tolerant, the inflection points were approximately 1000, 500, 500, and
300, respectively. For fir and spruce, this point was reached relatively early (Figures 2–4).
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Figure 3. Basal area increment (BAI) of tree-species-groups simulations in relation to the most-
important predictor variables.

For whole stand (Figure 2), Um was the most-important predictor of the stand spatial
structure. BAI first increased and surpassed a maximum and then decreased as Um
increased. BAI increased with the increase in Mm and surpassed a maximum and then
decreased. BAI increased slowly with the increase in Wm and then became constant at a
maximum value of 0.517. However, BAI increased sharply when Cm took a value between
0.5 and 0.6. When it came to Div_SPSize, there was a clear trend of decreasing at the late of
the curve. In contrast, Div_Size had little discernible influence on BAI. When Div_SP was
between 1.75 to 2.25, BAI increased gradually with a slight fluctuation.
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When considering Wm_part, neutral had a greater impact on BAI than gap and
shade_tolerant. The BAI of gap decreased first and then gradually stabilized with the
increase in Um_Part in gap, while the BAI of shade_tolerant increased first (after a pe-
riod of quiescent stability) and then tended to be stable with the increase in Um_Part
in shade_tolerant (Figure 3). Cm_Part of neutral with values predominantly distributed
among 0.6 and 1.0, which was positively correlated with the BAI of neutral. By comparison,
Cm_Part of gap and Cm_Part of shade_tolerant had less influence on BAI. When it came
to Mm_Part, the relationship between BAI and neutral was relatively weak; however, BAI
was negatively correlated with gap and shade_tolerant. The effects of the four diversity
indicators on shade_tolerant were negligible. For Div_Size_Part, the effects of gap and
neutral were inconsistent.

The BAI of fir and spruce first stayed constant and then increased and finally stabilized
with the increase in Um_part (Figure 4). Although fir and spruce of Mm_Part were negatively
correlated with BAI, the influence of fir was more significant. The BAI of fir did not change
with Div_SP at the beginning, and when the value of Div_SP reached 1.75, BAI dropped.
However, the effect of Div_SP on the BAI of spruce could be negligible. The response of fir
BAI and spruce BAI to Div_Size_Part were inconsistent. Consistent with Wm_part, Cm_part
also promoted a very weak response to the BAI in fir and spruce.

4. Discussion
4.1. Evaluation of Random-Forest Model

The explained variance is usually lower in mixed-species unevenly aged forests than
that in even-aged pure stands [2]. This result is attributed to the significant differences
in the growth of various tree species in the mixed forest, which causes difficulties in
prediction. In our study, tree species (spruce and fir) and tree species group (gap, neutral,
and shade_tolerant) had better results than the whole stand in BAI modelling. This finding
was attributed to the varying responses of different tree species to spatial structure, stand
structure, and density [41]. A better simulation effect was further achieved by dividing
the forest stand into tree-species groups. This view was supported by Ni et al. [42], who
also found that the division is necessary for analyzing the mixed species stand by grouping
species.
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4.2. The Effects of STAND Density and Biodiversity on BAI

Stand BAI tends to increase with an increase in stand density and then stabilizes after
the tree crown has peaked [43]. SDI (Figure 2) or SDI_part (Figures 3 and 4) follows the
same trend in the nature mixed forests. The reason for this and the possible underlying
mechanism were investigated. Tree growth is rarely restricted by competition during
early stand development because the resources are sufficient. Increasing dominance near
canopy closure reduces the efficiency of resource use by non-dominant trees, lowering
overall stand growth. The hierarchical structure of the tree during late stand development
creates a spatial heterogeneity of the light resources, causing several species to coexist by
compromising their demographic parameters.

Tree species diversity, tree size diversity, and the integrated diversity index of tree
species and size were used in our study. The positive correlation observed between the
BAI and species diversity (Figure 2) was consistent with the findings of several previous
studies [44]. This effect was related to full utilization of natural resources in stands with
higher tree species diversity. The trends of tree species diversity and integrated diversity
index of tree species and size were opposite at the whole stand level (Figure 2). Moreover,
the relationship between the BAI and the integrated diversity index of tree species and size
was less clear, whereas the BAI was weakly correlated with tree size diversity (Figure 2),
essentially because the largest trees do not counterbalance the lesser growth of the smaller
trees in uneven-aged forests compared with even-aged forests.

4.3. Simulated Effect of Forest Spatial Structure Variables on BAI Prediction

The growth and production of mixed forest stands have become a popular research
topic as these types of forests have functional and service advantages [17]. Spatial structures
are of paramount importance in community research because their existence suggests their
formation process [45]. The importance of structure on forest processes highlights the
value of understanding the relationship between stand structure and growth and how
this relationship is influenced by tree crowding and relative tree size, species mixing,
and spatial distribution. Analyzing the growth of mixed stands requires a modelling
approach that relates the growth of individual trees to their resource availability and
provides output values per species [46]. In recent years, a group of neighborhood-based
structural parameters with strong functionality that can fully express the spatial-structural
features of tree populations and forest communities, and that can guide forestry practices,
has attracted widespread attention [47]. Previous studies have mainly focused on the
univariate distribution and mean value of the structural parameters to analyze the structural
properties of stands. Several studies have further analyzed the influence of a horizontal
spatial distribution and species mingling on stand growth in mixed forest using individual
tree models [48,49]. However, only a few empirical-based studies have been conducted
to assess these effects at the stand level. Neighboring trees may be able to improve the
predictions of the model. Models with spatially explicit structural indices perform better
than those with non-spatial indices due to the complexity of the stand structure [50].
Furthermore, relationships between stand growth and a given structural variable can vary
widely depending on the forest types and species [38].

Spatial-distribution patterns reflect the way individuals gather or disperse on the
horizon and determine the distribution of microclimatic conditions, the availability of
resources, and the formation of habitat niches; thus, they significantly influence the bio-
logical diversity, tree growth, and timber production [51]. Generally, the spatial structures
of natural forests always follow random distributions in horizontal space. Such a spatial
distribution may be quantified using an area-independent nearest-neighborhood uniform-
angle index (W) proposed by Gadow and Hui (1999), and if the W-mean belongs to the
confidence interval (0.475, 0.517), the distribution pattern is random; otherwise, the pattern
is classified as clumped (W-mean > 0.517) or regular (W-mean < 0.475) [25]. Our results
suggest that the maximum value of Wm is 0.517 at the whole stand level, and this value is
in the range of a random distribution (0.475, 0.517). It confirms that a random distribution
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is beneficial to the accumulation of forest stand area. Additionally, Zhang (2018) showed
that random-structure units provide the majority of the BAI, whereas uniform and cluster
structure units account only for a small part of the basal area [21].

Dominance (U) between trees plays a significant role within a stand and affects the
fate of each plant. The spatial heterogeneity of light resources created by a tree hierarchy
allows multiple species to coexist by means of trade-offs between demographic param-
eters [52]. Stand growth may increase, decrease, or remain unchanged with U, which
has the advantage of quantifying plant growth among trees of different sizes within the
stand [38]. U can be simply described as the number of large trees around the subject tree.
One interesting finding is the BAI of gap decreases first and then gradually stabilizes at
0.5 with the increases in Um_Part in gap, and the BAI of shade_tolerant increases first and
then tends to be stable at 0.75 with the increases in Um_Part in shade_tolerant. This means
that if a light-demanding tree species is used as a target tree, its BAI becomes lager when
its neighboring tree is a small tree. However, the shade-tolerant tree species expects the
number of large trees around it to be greater than that of small trees. The growth of the
light-demanding tree species needs light, so the small trees surrounding it that do not block
it are more suitable for its growth, while the surrounding large trees can provide a canopy
environment for shade-tolerant tree species, which is more conducive to its growth. Our
study proves that the light-demanding tree species has a large BAI in the open, and the
shade-tolerant tree species has a large BAI when the canopy is covered from the perspective
of spatial-structure parameters.

Species mingling refers to the segregation of different species in the same commu-
nity, which can describe the dissimilarity of tree species based on a reference tree and a
set of neighboring trees, and the degree of mixing determines the state of light and the
composition of litter, which in turn influences the growth and regeneration of trees [53].
The species-mingling value at the tree level varies inversely with the relative density of
each tree species. The more uniform the trees are collected at the stand level, the lower
the mixing rate between species. The species-mingling index has been used to determine
the influence of structure-based forest-management methods on the spatial structure of
forest stands. The focus has been put on the effects of species mixing on growth and the
interactions between trees that cause such effects [13]. However, the effects of species
mixing on growth largely depend on stand structure. In this contribution, species-mixing
and BAI were negatively correlated in all cases except whole stand, suggesting trees with
similar properties occurring in groups rather than alone have a larger BAI. However, for
the whole stand, with the increases in Mm, BAI first increases, passes a maximum, and
then decreases. This result clearly shows that it is not that the higher the degree of mixing,
the greater the growth of the forest, but that there is a threshold, that is, the maximum
growth of the forest is when there are three different trees around the target tree. Another
important point here is that the implication of mingling (M) based on neighboring trees
and species diversity are distinguished.

The degree of stand crowdedness is easy and convenient to evaluate and determines
whether the forest requires to be cultivated, the time for the first thinning, and the cutting
intensity. The crowding degree (C) of trees based on the relationship of neighboring trees
was proposed by Hu and Hui [28]. Only limited information was found in the literature
on C. Notably, the neutral tree species has the greatest correlation between BAI and Cm.
This finding may mean that neutral tree species are the most sensitive to competition.
Nevertheless, further work is required to establish the relationship between growth and
crowding.

Collectively, (1) BAI and species diversity are positively correlated at the stand level,
and (2) BAI first increases and then stabilizes with the increases in SDI. (3) The maximum
value of Wm is 0.517. (4) BAI first increases, surpasses the maximum, and then decreases
with the increases in Mm. At the tree level, the BAI of the gap decreases first and then
gradually stabilizes with an increase of Um in gap, and the BAI of shade_tolerant increases
first (after a period of quiescent stability) and then tend to be stable with the increases in
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Um in shade_tolerant. Thus, our study supplies guidelines for forest management. For
example, according to the relationship between biodiversity and growth, at the level of
the forest stand, we need to maintain multi-species mixing. According to the relationship
between SDI and growth, stand competition will reduce stand growth after the canopy is
closed. According to the relationship between the degree of mixing and growth, the best
choice for the target tree is to be adjacent to three trees of different species. According to
the relationship between the uniform angle index and growth, the stands are expected to
be randomly distributed. According to the relationship between dominance and growth,
for light-demanding tree species, we plant small trees around it, and the opposite is true for
shade-tolerant tree species. In particular, priority should be given to indicators with high
importance when there are contradictions between different indicators. The simulation
effect of this study may not be particularly good because it did not consider BAL (the basal
area in larger trees) and other related variables, but it mainly focused on the relationship
between growth and spatial structure.

5. Conclusions

This study presented a random-forest model for BAI estimation, which can effec-
tively identify the relationship between stand density, biodiversity, and spatial structure on
growth. The model can help in determining the most-important predictors and how they
affect BAI: (1) SDI was the most-important predictor in BAI model positively correlated
with growth. (2) A positive correlation was found between BAI and tree species diversity
at the stand level. (3) The stands were expected to be randomly distributed based on the
relationship between the uniform angle index (W) and growth. (4) The relationship be-
tween U and BAI indicated that small trees should be planted around the light-demanding
tree species and vice versa. Undoubtedly, structure-based approaches to forest manage-
ment can possibly increase forest production through changes in tree relative size and
spatial-distribution patterns. Simultaneously, our results provide insight on the effects of
biodiversity and density on BAI, which can assist future forest management.
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