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Abstract: Intense, large-scale forest fires are damaging and very challenging to control. Locations,
where various types of fire behavior occur, vary depending on environmental factors. According
to the burning site of forest fires and the degree of damage, this paper considers the classification
and identification of surface fires and canopy fires. Deep learning-based forest fire detection uses
convolutional neural networks to automatically extract multidimensional features of forest fire images
with high detection accuracy. To accurately identify different forest fire types in complex backgrounds,
an improved forest fire classification and detection model (FCDM) based on YOLOv5 is presented in
this paper, which uses image-based data. By changing the YOLOv5 bounding box loss function to
SIoU Loss and introducing directionality in the cost of the loss function to achieve faster convergence,
the training and inference of the detection algorithm are greatly improved. The Convolutional Block
Attention Module (CBAM) is introduced in the network to fuse channel attention and spatial attention
to improve the classification recognition accuracy. The Path Aggregation Network (PANet) layer in
the YOLOv5 algorithm is improved into a weighted Bi-directional Feature Pyramid Network (BiFPN)
to fuse and filter forest fire features of different dimensions to improve the detection of different
types of forest fires. The experimental results show that this improved forest fire classification
and identification model outperforms the YOLOv5 algorithm in both detection performances. The
mAP@0.5 of fire detection, surface fire detection, and canopy fire detection was improved by 3.9%,
4.0%, and 3.8%, respectively. Among them, the mAP@0.5 of surface fire reached 83.1%, and the
canopy fire detection reached 90.6%. This indicates that the performance of our proposed improved
model has been effectively improved and has some application prospects in forest fire classification
and recognition.

Keywords: forest fire classification detection; YOLOv5; SIoU Loss; CBAM; BiFPN

1. Introduction

Forests are the ecosystem with the largest terrestrial distribution area and the richest
biological types. With the role of purifying water, regulating climate and enriching types of
diversity, they are an important guarantee for maintaining the ecological security of the
Earth. And substantial forest fires are the more terrible forest disasters and can result in
significant property losses and severe safety issues [1].

Affected by environmental conditions, such as weather, topography, fuels, etc., lo-
cations where different types of fire behavior occur are different, and the corresponding
fire suppression measures are different. A typical fire classification is based on the fire
burning site, and the forest fire types can be classified as underground fires, surface fires
and canopy fires. Among them, underground fires [2] mostly spread and expand in the
eroded or peat layers below the ground surface. It is not easy to see the fire during daytime,
and it is more difficult to detect based on computer vision recognition. Surface fire [3] is
a relatively common type of forest fire that spreads mostly along the forest floor surface,
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burning ground covers, such as young trees, shrubs, and understory, and burning the
base of large tree trunks and exposed roots. When surface fires encounter strong winds
or groups of young coniferous trees, dead-standing trees, and low-hanging branches, the
flames burn to the upper part of the canopy and expand rapidly downwind to become
canopy fires. Canopy fires are extremely devastating to the forest because they spread along
the canopy, burning ground cover, young trees, and underwood below while destroying
leaves, burnt branches, and trunks above. In this paper, forest fire images are based on
computer vision images taken by UAVs with a small pixel scale, so surface fires and canopy
fires are mainly considered.

Traditional forest fire monitoring methods include ground detection, aerial monitoring,
satellite monitoring, etc. Ground monitoring carries out real-time monitoring of forest
fires through manual inspection, radar monitoring [4], etc. The recognition rate is high,
but it is susceptible to the influence of terrain and natural conditions, and the detection
efficiency is low. Aerial monitoring [5–7] occurs through low-altitude aircraft such as
drones carrying forest fire monitoring equipment to achieve real-time monitoring of forest
fires on a large scale. However, the detection cost is high, vulnerable to environmental
factors, and it is difficult to carry out long time continuous monitoring. Satellite remote
sensing technology [8–10] covers a wide range of areas and has a short imaging period,
which gradually becomes an important means of forest fire monitoring. However, it is
limited by the repetition period and detection resolution, which makes it difficult to achieve
continuous monitoring and is less flexible in mobility.

Currently, forest fire detection based on video images uses a large amount of existing
video surveillance equipment to achieve 24 h monitoring of forest areas [11–13]. It can
achieve large range observation, high detection accuracy, easy data storage, etc., which
is a more reasonable and low-cost solution in forest fire detection technology. A forest
fire detection tracking program was created by Chi Yuan et al. [14] using the chromaticity
characteristics of flames, channels in the Lab color model, and a combination of median
filtering and color space conversion. Jin et al. [15] were able to extract the fire. Combining
multicolor detection in RGB, HIS, and YUV color spaces with motion features might help
locate potential fire locations. Prema et al. [16] extracted static and dynamic texture features
from candidate fire areas based on colors in YVbCr for various fire detection scenarios.
MAI Mahmoud et al. [17] applied background subtraction to fire boundaries, and used
a color segmentation model to label and classify regions into true fire and non-fire using
support vector machines.

Video and image-based forest fire detection can be divided into traditional machine
learning-based [18] and deep learning-based forest fire inspection. Due to the complex and
versatile forest environments, deep learning-based forest fire inspection can automatically
extract multidimensional forest fire features using deep convolutional neural networks,
which have better classification, generalization, and detection capabilities than traditional
machine learning methods. Chen et al. [19] firstly used a local binary pattern (LBP) feature
extraction and support vector machine (SVM) classifier for smoke inspection and presented
a method for forest fire inspection based on UAV images using a convolutional neural
network (CNN). Panagiotis et al. [20] identified candidate fire areas by a Faster R-CNN
network and proposed an image-based fire detection method combining deep learning
networks and multidimensional texture analysis. PuLi et al. [21] proposed an image-based
fire detection algorithm with a target detection CNN model based on existing algorithms
such as Faster-RCNN, R-FCN, SSD, and YOLO V3. A custom framework was proposed by
Saima Majid et al. [22] which uses Grad-CAM method for visualization and localization of
fire images and uses attention mechanism and migration learning along with EfficientNetB0
network training. Barisic et al. [23] applied a convolutional neural network YOLO for
training to propose a vision-based UAV real-time detection and tracking system. However,
existing forest fire detection has fewer experiments to classify fires. Therefore, the deep
learning-based forest fire classification and inspection technique helps to detect and identify
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forest fire types as early as possible and take relevant suppression measures as soon as
possible, which has important practical application value.

In this paper, we develop an improved forest fire classification and detection model
based on YOLOv5, which uses image-based data. First, the YOLOv5 [24] bounding box
loss function CIoU Loss [25] is changed to SIoU Loss [26]. Directionality is introduced in
the cost of the loss function to achieve faster convergence, which significantly improves
the training and inference of the detection algorithm. Secondly, due to the small target and
low pixels of forest fires, which are prone to information loss, the CBAM [27] attention
mechanism module is introduced in the network. The fusion of channel attention and
spatial attention improves the accuracy of extracted features and enhances the classification
recognition accuracy. Finally, the Path Aggregation Network (PANet) [28] layer is improved
into a weighted Bi-directional Feature Pyramid Network (BiFPN) [29] to fuse and filter
forest fire features of different dimensions to prevent feature loss and enhance the detection
of different types of forest fires.

The rest of this paper is organized as follows. In Section 2, the homemade forest fire
classification dataset and the methods and modules used in the experiments are introduced.
The forest fire classification detection model presented in this paper is also elaborated in
this section. Section 3 presents the metrics for evaluating the model performance. This
section also includes the experimental results of each part of the improvement. Section 4
describes the discussion and analysis of the model, as well as the outlook for future work.
A summary of the entire work is presented in Section 5.

2. Materials and Methods
2.1. Dataset

The quantity and quality of datasets largely affect the results of improved forest fire
classification recognition based on YOLOv5. In this paper, forest fire images are based on
computer vision images taken by drones. Therefore, we first find forest fire images through
the network as well as obtain forest fire images from some publicly available datasets.
The images suitable for training are manually filtered. After that, we perform manual
classification. Surface fires start burning from ground cover and spread along the ground
surface. Canopy fires burn fiercely and tend to be found within coniferous forests with
high resinous content. The collected forest fire images are classified into surface fire images
and canopy fire images depending on the burning location. Samples of typical forest fire
images and forest fire images from the UAV view are shown in Figure 1.

Forests 2022, 13, x FOR PEER REVIEW 3 of 16 
 

 

and identify forest fire types as early as possible and take relevant suppression measures 
as soon as possible, which has important practical application value. 

In this paper, we develop an improved forest fire classification and detection model 
based on YOLOv5, which uses image-based data. First, the YOLOv5 [24] bounding box 
loss function CIoU Loss [25] is changed to SIoU Loss [26]. Directionality is introduced in 
the cost of the loss function to achieve faster convergence, which significantly improves 
the training and inference of the detection algorithm. Secondly, due to the small target 
and low pixels of forest fires, which are prone to information loss, the CBAM [27] attention 
mechanism module is introduced in the network. The fusion of channel attention and spa-
tial attention improves the accuracy of extracted features and enhances the classification 
recognition accuracy. Finally, the Path Aggregation Network (PANet) [28] layer is im-
proved into a weighted Bi-directional Feature Pyramid Network (BiFPN) [29] to fuse and 
filter forest fire features of different dimensions to prevent feature loss and enhance the 
detection of different types of forest fires. 

The rest of this paper is organized as follows. In Section 2, the homemade forest fire 
classification dataset and the methods and modules used in the experiments are intro-
duced. The forest fire classification detection model presented in this paper is also elabo-
rated in this section. Section 3 presents the metrics for evaluating the model performance. 
This section also includes the experimental results of each part of the improvement. Sec-
tion 4 describes the discussion and analysis of the model, as well as the outlook for future 
work. A summary of the entire work is presented in Section 5. 

2. Materials and Methods 
2.1. Dataset 

The quantity and quality of datasets largely affect the results of improved forest fire 
classification recognition based on YOLOv5. In this paper, forest fire images are based on 
computer vision images taken by drones. Therefore, we first find forest fire images 
through the network as well as obtain forest fire images from some publicly available 
datasets. The images suitable for training are manually filtered. After that, we perform 
manual classification. Surface fires start burning from ground cover and spread along the 
ground surface. Canopy fires burn fiercely and tend to be found within coniferous forests 
with high resinous content. The collected forest fire images are classified into surface fire 
images and canopy fire images depending on the burning location. Samples of typical 
forest fire images and forest fire images from the UAV view are shown in Figure 1. 

  
(a) Typical surface fire (b) Surface fire from the UAV view 

Figure 1. Cont.



Forests 2022, 13, 2129 4 of 15Forests 2022, 13, x FOR PEER REVIEW 4 of 16 
 

 

  
(c) Typical canopy fire (d) Canopy fire from the UAV view 

Figure 1. Training image samples in the dataset. (a,b) Surface fires and (c,d) canopy fires. 

2.2. YOLOv5 
As the network model continues to improve toward lightweight, the YOLO series 

incorporates effective methods from FCOS, RepVGG, and other networks to achieve bet-
ter detection. YOLOv5 is currently a more mainstream target detection algorithm. 
YOLOv5s network is the network with the smallest depth and the smallest feature map 
width in the YOLOv5 series, and has faster recognition speed and higher accuracy. 

In this paper, the forest fire classification detection model is improved based on ver-
sion 6.0 of YOLOv5. The network structure is divided into four parts: Input, Backbone, 
Neck, and Prediction. The network structure of YOLOv5 is shown in Figure 2. First, in the 
Input part, the data are processed to increase the accuracy and discrimination of detection. 
Second, the Backbone part is mainly divided into Conv, C3, and SPPF module. Third, the 
Neck network adopts the feature pyramid structure of FPN (Feature Pyramid Network) 
and PANet (Pyramid Attention Network). FPN [30] transfers the semantic information 
from the deep layer to the shallow layer to enhance the semantic representation at differ-
ent scales. PANet [28] builds on this and introduces a bottom-up path. This makes it easier 
to transfer the information from the bottom to the top and enhances the localization ability 
at different scales. Finally, the Prediction part is to use the loss function to calculate the 
position, classification, and confidence loss, respectively. YOLOv5 uses CIoU Loss to cal-
culate the bounding box loss by default and considers the width-to-height ratio of the 
bounding box based on DIoU Loss [25]. It makes the target box regression more stable. 
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2.2. YOLOv5

As the network model continues to improve toward lightweight, the YOLO series
incorporates effective methods from FCOS, RepVGG, and other networks to achieve better
detection. YOLOv5 is currently a more mainstream target detection algorithm. YOLOv5s
network is the network with the smallest depth and the smallest feature map width in the
YOLOv5 series, and has faster recognition speed and higher accuracy.

In this paper, the forest fire classification detection model is improved based on version
6.0 of YOLOv5. The network structure is divided into four parts: Input, Backbone, Neck,
and Prediction. The network structure of YOLOv5 is shown in Figure 2. First, in the
Input part, the data are processed to increase the accuracy and discrimination of detection.
Second, the Backbone part is mainly divided into Conv, C3, and SPPF module. Third, the
Neck network adopts the feature pyramid structure of FPN (Feature Pyramid Network)
and PANet (Pyramid Attention Network). FPN [30] transfers the semantic information
from the deep layer to the shallow layer to enhance the semantic representation at different
scales. PANet [28] builds on this and introduces a bottom-up path. This makes it easier to
transfer the information from the bottom to the top and enhances the localization ability
at different scales. Finally, the Prediction part is to use the loss function to calculate the
position, classification, and confidence loss, respectively. YOLOv5 uses CIoU Loss to
calculate the bounding box loss by default and considers the width-to-height ratio of the
bounding box based on DIoU Loss [25]. It makes the target box regression more stable.
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2.3. SIoU Loss

The loss function plays an important role in model performance [31]. It is an important
metric for measuring the difference between the predicted and true values of a deep
convolutional neural network and is particularly important for a target detection algorithm.
Therefore, the loss function determines how well the model parameters are trained.

The traditional target detection loss function such as CIoU Loss in YOLOv5 increases
the consideration of aspect ratio based on the previous loss function, but does not consider
the vector angle between the required regressions, i.e., the direction of mismatch between
the required real frame and the prediction frame. In addition, this can lead to the problem of
wandering of the prediction frame during the training process and reduce the experimental
training speed. The definitions are as follows. The literature [26] proposes a new loss
function SIoU Loss based on CIoU Loss, which does not only rely on the aggregation of the
bounding box regression indicators and introduces directionality in the loss function cost to
redefine the penalty indicators. As shown in Figure 3, the blue curve is the YOLOv5-SIoU
training effect and the red curve is the YOLOv5-CIoU training effect. The experiments
prove that SIoU converges faster and trains better compared to CIoU.
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SIoU loss function consists of four cost functions, including Angle cost, Distance cost,
Shape cost, and IoU cost. The definitions are as follows.

IoU =
|A ∩ B|
|A ∪ B| (1)

LossCIoU = 1− IoU +
ρ2(A, B)

c2 + αv (2)

LossSIoU = 1− IoU +
∆ + Ω

2
(3)

Λ = 1− 2× sin2
(

arcsin(x)− π

4

)
(4)

∆ = ∑t=x,y

(
1− e−γρt

)
γ = 2−Λ (5)

Ω = ∑
t=w,h

(
1− e−ωt

)θ (6)

In the above equation, IoU is the IoU loss, where A represents the prediction frame
and B represents the real frame. ρ is the distance between the centroids of box A and box B,
c is the diagonal length of the minimum enclosing rectangle of box A and box B, v is the
similarity of the aspect ratio of box A and box B, and α is the influence factor of v. Λ is the
angular loss that allows the prediction frame to move faster to the horizontal or vertical
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line where the true frame is located. The angle cost scheme in the loss function is shown in
Figure 4. ∆ is the distance loss. Ω is the shape loss. Ch is the height difference between the
center point of the real frame and the predicted frame, and σ is the distance between the
center point of the real frame and the predicted frame.
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2.4. CBAM

Forest fire targets generally have low pixels in the pictures. The target detection
process is prone to missing information and missed false detection. Therefore, we add
CBAM attention mechanism in the Backbone part of the network model. It can not only
improve the detection accuracy for different types of forest fire targets, but also enhance
the extraction of target features for detecting different types of forest fire targets, and
reduce the cases of missed forest fires and mis-detected forest fire types. CBAM is used in
feedforward convolutional neural networks. Combining the Channel Attention Module
(CAM) and Spatial Attention Module (SAM), it is an uncomplicated and valid end-to-end
general-purpose module. The structure of CBAM attention mechanism is divided into two
parts. The first part is the channel attention module, as shown in Figure 5.
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Figure 5. The structure of the Channel Attention Module.

First, the given feature maps are used as inputs for global maximum pooling and mean
pooling, respectively. The pooled two one-dimensional vectors are then fed into a shared
Multi-Layer Perceptron (MLP). Then the two features’ output from the MLP are subjected
to summation operation and sigmoid function activation operation. The feature maps of
the final generated channel attention module are used as the input features required for the
spatial attention module, i.e., the second part, as shown in Figure 6.
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The global maximum pooling and global average pooling are performed on the feature
maps output by the channel attention module. In addition, the two binary vectors after
pooling are channel spliced. Then the convolution operation descending and sigmoid
activation function operation is performed. The final feature map of the spatial attention
module is obtained.

The CBAM attention mechanism module integrates the above two components. For
the input feature maps, the CBAM module inferred the attention maps sequentially along
both channel and spatial dimensions. The attention graph is then multiplied with the input
feature graph to perform adaptive feature optimization. Its module structure is shown in
Figure 7. Adding CBAM locations to the network is shown in Figure 8.
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2.5. BiFPN

The difficulty of target detection lies in finding an efficient way to fuse multi-scale
features [32]. YOLOv5 uses a Path Aggregation Network (PANet). An additional FPN
bottom-up path aggregation network is added to the Feature Pyramid Network (FPN).
We consider improving the PANet layer into a weighted bi-directional feature pyramid
network (BiFPN). BiFPN constructs top-down and bottom-up bi-directional channels and
repeats the same level to achieve simple and fast fusion and screening of forest fire features
in different dimensions. BiFPN introduces weights in feature fusion compared to the
previous equal treatment of different scale features. This can better balance the feature
information of different scales of forest fire, prevents the loss of forest fire features, and
improves the inspection of different types of forest fires. The structural design of FPN,
PANet, and BiFPN is shown in Figure 9.

Forests 2022, 13, x FOR PEER REVIEW 8 of 16 
 

 

sigmoid activation function operation is performed. The final feature map of the spatial 
attention module is obtained. 

The CBAM attention mechanism module integrates the above two components. For 
the input feature maps, the CBAM module inferred the attention maps sequentially along 
both channel and spatial dimensions. The attention graph is then multiplied with the in-
put feature graph to perform adaptive feature optimization. Its module structure is shown 
in Figure 7. Adding CBAM locations to the network is shown in Figure 8. 

 
Figure 7. The structure of the CBAM module. 

 
Figure 8. The location of the CBAM added in the network. 

2.5. BiFPN 
The difficulty of target detection lies in finding an efficient way to fuse multi-scale 

features [32]. YOLOv5 uses a Path Aggregation Network (PANet). An additional FPN 
bottom-up path aggregation network is added to the Feature Pyramid Network (FPN). 
We consider improving the PANet layer into a weighted bi-directional feature pyramid 
network (BiFPN). BiFPN constructs top-down and bottom-up bi-directional channels and 
repeats the same level to achieve simple and fast fusion and screening of forest fire fea-
tures in different dimensions. BiFPN introduces weights in feature fusion compared to the 
previous equal treatment of different scale features. This can better balance the feature 
information of different scales of forest fire, prevents the loss of forest fire features, and 
improves the inspection of different types of forest fires. The structural design of FPN, 
PANet, and BiFPN is shown in Figure 9. 

 
 

(a) (b) (c) 

Figure 9. The structural design of FPN, PANet, and BiFPN. (a) FPN; (b) PANet; (c) BiFPN.



Forests 2022, 13, 2129 8 of 15

With the depth of the network layers, there is a certain degree of missing features
when converting low-dimensional semantics to high-dimensional semantics. Therefore, it
is necessary to fuse the features of different layers. In this paper, BiFPN is introduced in the
Neck network layer for feature fusion to improve the model performance.

2.6. Improved Forest Fire Classification and Detection Model FCDM

Forest fire targets generally have the problem of too-low pixels in the pictures. Surface
fires and canopy fires are difficult to distinguish after the fire has started for a period of
time, and the target detection process is prone to missing information and false detection by
omission. To address this problem, we improve the original YOLOv5 model. The improved
forest fire classification and recognition model based on YOLOv5s version 6.0 in this paper
is shown in Figure 10.
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Firstly, in the input side part, the data input is subjected to adaptive image scaling,
Mosaic data enhancement, and adaptive anchor frame calculation. The data are processed to
increase the accuracy and discrimination of detection. Second, the Backbone part introduces
CBAM attention module. Conv module encapsulates three functional modules of Conv2d,
Batch Normalization (BN), and activation function (SiLU). The C3 module borrows the
idea of CSPNet [33] module to improve the inference speed and maintain the recognition
accuracy of model detection while reducing the computation. SPPF is proposed based on
SPP [34], and the module uses multiple small-size pooled kernel cascade generation to
fuse the feature maps of different sensory fields to further improve the operation speed.
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CBAM improves the precision of target detection and enhances the extraction of detection
target features. Third, the weighted Bi-directional Feature Pyramid Network (BiFPN)
is introduced in the Neck network layer part to prevent feature loss and improve the
inspection of different types of forest fires. It makes it easier to transfer the information
from the bottom layer to the top and enhances the localization ability at different scales.
Finally, the Prediction part uses the loss function to calculate the location, classification,
and confidence losses, respectively. The bounding box loss function is changed to SIoU
Loss. Directionality is added to the cost of the loss function, which enhances the training
and inference of detection algorithms.

3. Results
3.1. Training

The experiment conditions in this paper are shown in Table 1. Based on the default
parameter values of YOLOv5 and continuous adjustment of experiments, the training
parameters of the improved forest fire classification and detection model are set as shown in
Table 2. The initial learning rate of the YOLOv5 model is 0.01, and the epoch is automatically
adjusted with the effect of the mold validation set. The epoch of 200 is the best fit. The
forest fire classification dataset is divided into training set, validation set, and test set in the
ratio of 8:1:1. The details of the forest fire classification dataset are shown in Table 3.

Table 1. Experimental conditions.

Experimental Environment Details

Programming language Python 3.9
Operating system Windows 11

Deep learning framework Pytorch 1.12.1
GPU NVIDIA GeForce RTX 3060

Table 2. Training parameters setting for improved forest fire detection model.

Training Parameters Details

Epochs 200
batch-size 8
Img-size 640 × 640

Initial learning rate 0.01
Optimization algorithm SGD

Table 3. Details of our dataset.

Dataset Train Val Test

forest fire dataset 441 49 54
surface fire 242 27 31
canopy fire 197 22 25

3.2. Model Evaluation

To verify the detection performance of the improved forest fire classification detection
model in this paper, the Microsoft COCO evaluation metric [35] is used in this paper. This
metric is widely used to evaluate target detection tasks and is currently recognized as one
of the more authoritative standards in terms of target recognition.

The evaluation metrics use precision (P), recall (R), and mAP@0.5 to compare the
performance of each model. Among them, mAP@0.5 is the average accuracy of each class
of images when IoU is set to 0.5, and is the main evaluation metric for target detection
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algorithms. The higher the mAP@0.5 value, the better the target detection model detects on
a given dataset. The calculation equations are as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

AP =
∫ 1

0
P(r)dr (9)

mAP =
1
N

N

∑
i=1

APi (10)

Time = Pre− process + In f erence + NMS (11)

FPS =
1

Time
(12)

In the above equation, Precision is the ratio of all correct predictions of the model
in which the true value is a positive sample. Recall is the proportion of the model’s
correct predictions among the total positive samples. P(r) denotes the P–R curve, and the
horizontal and vertical coordinates are recall and accuracy. AP is the average accuracy,
which is represented in the P–R graph as the area enclosed by the horizontal and vertical
coordinates. Time represents the time taken for the whole training and consists of three
parts. FPS indicates how many forest fire images can be processed in one second.

Taking forest fire detection as an example, TP denotes the number of correctly pre-
dicted forest fire images. That is, if the detection target is forest fire, the model detection
result is forest fire. FP means the detection target is non-forest fire and the model detection
result is non-forest fire. FN means the detection target is forest fire and the model detection
result is non-forest fire. Pre-process indicates the image pre-processing time. Inference
indicates the training inference time. NMS, also known as non-maximum suppression, is
the frame post-processing time.

The experimental procedure is described as follows. First, the original YOLOv5 de-
tection model is trained using the forest fire classification dataset and evaluated using the
test set. Then different loss functions are modified and different attention mechanisms
are added for training. The best combination is selected based on the detection results.
Attentional mechanisms are developing rapidly, and the more mainstream attentional mod-
ules are currently SE, CBAM, and GAM. In this experiment, these three typical attention
modules were selected for experimental comparison. The SE (Squeeze-and-Excitation)
attention module [36] solves the loss problem caused by the different importance occupied
by different channels of the feature map in the convolutional pooling process, which can
improve the accuracy of the forest fire detection network. The CBAM attention module
considers more spatial attention on the basis of SE, and uses both tie pooling and maximum
pooling to reduce the loss of forest fire information brought by pooling to a certain extent.
The GAM (Global Attention Mechanism) [37] adopts a sequential channel-space attention
mechanism and redesigns the CBAM sub-module to amplify the global dimensional interac-
tion features while reducing the dispersion of forest fire information. These three attention
mechanisms are the current mainstream modules. Finally, the Path Aggregation Network
(PANet) layer is replaced with a weighted Bi-directional Feature Pyramid Network (BiFPN)
to build a forest fire classification recognition model. The detection model was tested using
the same test set. The mAP@0.5 results were obtained as shown in Table 4.
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Table 4. Experimental results of the model.

Model Forest Fire
Detection (mAP@0.5)

Surface Fire
Detection (mAP@0.5)

Canopy Fire
Detection (mAP@0.5) FPS Time

(ms)

YOLOv5s 0.830 0.791 0.868 58 17.2
YOLOv5s + Alpha-IoU 0.802 0.761 0.844 62 16.1

YOLOv5s + SIoU 0.851 0.805 0.896 63 15.9
YOLOv5s + SIoU + SE 0.851 0.791 0.901 63 15.9

YOLOv5s + SIoU + GAM 0.860 0.803 0.907 28 35.7
YOLOv5s + SIoU + CBAM 0.864 0.828 0.899 61 16.4

YOLOv5s + SIoU + GAM + BiFPN 0.861 0.793 0.908 56 17.9
YOLOv5s + SIoU + CBAM + BiFPN

(FCDM, ours) 0.869 0.831 0.906 64 15.6

3.3. Detect Performance and Analysis

From the above results, we found that YOLOv5, as one of the current more advanced
single-stage target detection models, has a better mAP@0.5 for forest fire classification
recognition, but there is still room for improvement. The FPS value was 58 and the
detection time was 17.2ms, the detection speed was low, and the detection was slow in
real-time detection. In Experiments 2–3, the loss functions in YOLOv5s were changed
to Alpha-IoU Loss and SIoU Loss, respectively. In Experiment 2, the mAP@0.5 values of
forest fire inspection and forest fire classification detection were decreased to some extent.
In addition, in Experiment 3, forest fire, surface fire, and canopy fire improved by 2.1%,
1.4%, and 2.8%, respectively. This indicates that SIoU Loss introduces directionality in the
loss function cost, which improves the training and inference of forest fire detection to a
larger extent.

Based on Experiment 3, three attention mechanisms were added for comparison in
Experiments 4–6: SE, GAM, and CBAM, respectively. The GAM attention mechanism was
better for canopy fire detection with concentrated distribution, improving by 1.1%, but
there was a slight decrease for surface fire detection. In addition, the CBAM attention
mechanism had some degree of improvement for all forest fire detection. Among them, it
was better for the detection of surface fires with more scattered distribution and irregular
shape, improving by 2.3%. The detection speed is faster and occurs in real-time detection;
the FPS value is 61 and the detection duration is 16.4 ms.

Based on the addition of the attention mechanism, Experiments 7–8 improved the path
aggregation network PANet layer into BiFPN. The experiments demonstrated that there
was a slight improvement of map value after improving BiFPN. It indicated that BiFPN can
fuse and filter different dimensional forest fire features to prevent feature loss and improve
the detection of forest fire at different scales. The detection speed is faster and satisfies the
requirements of forest fire in real-time detection with an FPS value of 64 and a detection
time of 15.6 ms.

Finally, Experiment 8 with a more balanced enhancement effect was used as the final
forest fire classification detection model selected in this paper, with mAP@0.5 values of 86.9%,
83.1%, and 90.6% for forest fire, surface fire, and canopy fire detection, respectively. Compared
with the YOLOv5s model, the mAP@0.5 of this model improved by 3.9%, 4.0%, and 3.8%,
respectively, indicating that this model is better for forest fire classification detection.

The effect of the YOLOv5 model and FCDM forest fire classification detection model is
shown in Figures 11 and 12. Figure 11 shows the detection effect of forest fire training image
samples with typicality. Figure 12 shows the detection effect of forest fire image samples
from a UAV camera view. From the detection effect figure, the YOLOv5 model detection of
the forest fire rectangular box position does not fit with the real box, and there will be the
problem of missed detection, and the detection effect is poor. The FCDM model detection
fits better with the real forest fire target frame, with better detection of forest fire types and
less false detection and omission. It indicates that the forest fire classification detection
model FCDM presented in this paper is better for forest fire classification detection.
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4. Discussion

Forests are important for maintaining the ecological security of the planet. Uncon-
trolled forest fires pose a threat to forests and may have far-reaching effects. Over the past
half-century, the area burned by forest fires in the western United States has increased
tenfold each year [38]. And fires that are not disposed of in a timely manner can pose a
significant safety hazard. As the technical methods in the field of target detection continue
to mature, it is of some practical significance to apply them to detect and identify fire types
and take corresponding suppression measures in a timely manner. Forest fire detection
techniques are constantly being improved, but it is difficult to distinguish forest fire types
based on pictures. The detection of different types of forest fires has not been well-studied.

Accordingly, for the above reasons, forest fire classification detection technology needs
further research and development. Through experiments, we found that the YOLOv5
model has better detection results in identifying forest fires. However, surface fires and
canopy fires are difficult to distinguish after a period of time after the fire starts, and
the pictures have the problem of low pixels. The target detection process is prone to
missing information and false detection by omission. Therefore, we considered changing
the bounding box loss function to SIoU Loss to improve the training and inference of the
detection algorithm. We also introduced the CBAM attention mechanism into the network
to improve the classification recognition accuracy. We also improved the PANet layer as
BiFPN to enhance the inspection of different types of forest fires.

However, the forest fire classification and detection model proposed in this paper still
has some shortcomings. Therefore, we consider further optimization of this model. First,
different detection models and attention mechanisms will produce different detection effects
for different forest fire types with different distribution and target shapes. For example,
the CBAM attention mechanism has a certain improvement for all types, while the GAM
only has a higher improvement for canopy fire detection. Further search for models with
better detection for individual forest fire types is considered for integration. Secondly,
forest fire types are difficult to distinguish after a period of time from the beginning of the
fire, and surface fires tend to turn into canopy fires as they increase in intensity. Further
photographing or searching for images of the early stage of fire is considered to extend the
dataset and enhance the reliability of the dataset.

The experiment results show that the forest fire classification and recognition model
proposed in this paper has good application prospects. In practical applications, cameras
are considered to be loaded on UAVs or helicopters. Compared with forest fire identification
techniques using a large number of sensors, different fire-fighting measures can be taken
in a timely manner according to the detection results while saving costs. Therefore, we
believe that the forest fire classification and detection model proposed in this paper is
more advantageous.

5. Conclusions

The frequent occurrence of global forest fires, the increased difficulty of fire control, and
the lack of timely disposal have caused great property losses and serious safety problems.
Therefore, it has a certain development space and practical significance to detect and
identify fire types and take corresponding fire extinguishing measures in a timely manner.

In this paper, an improved forest fire classification and detection model FCDM based
on YOLOv5 is presented. Firstly, the bounding box loss function is changed to SIoU Loss,
and the directionality is introduced in the loss function cost to improve the training and
inference of the detection algorithm. Secondly, the CBAM attention mechanism module is
introduced into the network to enhance the classification identification accuracy. Then, the
PANet layer is improved as a weighted BiFPN to enhance the inspection of different types
of forest fires. The experimental results show that the forest fire classification and detection
model proposed in this paper outperforms the YOLOv5 algorithm in terms of forest fire,
surface fire, and canopy fire detection performance.
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In further subsequent studies, we will keep testing the model in this paper to further
improve its detection performance and consider its value in practical applications. Addi-
tionally, we will think about combining several single detection models that are effective for
particular types of forest fires to see if their fusion models increase detection for all species
in comparison to a single model. To better deploy the model in practical applications, we
will further develop the detection performance of the model and study the light weighting
of the model. We hope to combine more advantages in forest fire detection techniques in
future research, so that forest fire classification and detection techniques can continue to
develop and innovate.
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