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Abstract: Investigating the impact of field plot size on the performance of estimation models for forest
inventory attributes could help optimize the technical schemes for an operational airborne LiDAR-
assisted forest resource inventory. However, few studies on the topic have focused on subtropical
forests. In this study, 104 rectangular plots of 900 m2 (subdivided into nine quadrats with an area
of 10 × 10 m) in subtropical planted forests (Chinese fir, pine, eucalyptus, and broad-leaved forest,
2–56 years old) were used to establish four datasets with six different plot sizes (100, 200, 300, 400,
600, and 900 m2) by combining quadrats. The differences in the LiDAR-derived metrics and forest
attributes between plots of different sizes were statistically analyzed. Based on the multivariate
power models with stable structures, the differences in estimation accuracies of the stand volume
(VOL) and basal area (BA) using plot data of different sizes were compared. The results indicated that:
(1) the mean differences in LiDAR-derived metrics of the plots of different sizes in all forest types
were small, and most of them had no statistically significant differences (α = 0.05) between the plots
of different sizes and the 900 m2 plots; however, the standard deviation of the difference increased
rapidly with decreasing plot size; (2) except for the maximal tree height of the plots, the other forest
attributes, including the mean tree height, diameter at breast height, BA, and VOL of all forest types,
showed no statistically significant differences between the plots of different sizes and the 900 m2

plots; and (3) with increasing plot size, the accuracies of VOL and BA estimations improved markedly,
and the effects of plot size on the estimation accuracies of the different forest attributes and different
forest types were essentially the same. Spatial averaging resulted in the variations in the independent
variables (LiDAR variables) and dependent variables (forest attributes) decreasing gradually with
the increasing plot size, which was the main reason for the model’s accuracy improving. In applying
airborne LiDAR to a large-scale subtropical planted forest inventory, the plot size should be at least
600 m2 for all forest types.

Keywords: forest inventory; airborne LiDAR; rectangular plot; accuracy; spatial averaging

1. Introduction

Airborne laser scanning (ALS; also referred to as Light Detection and Ranging (LiDAR))
can measure distances accurately, penetrate the forest canopy [1], and provide accurate
information characterizing the three-dimensional (3D) structure of a forest canopy [2].
Based on the statistical relationships between airborne LiDAR- or UAV-derived metrics (e.g.,
the height and density percentiles of the laser point clouds) and forest attributes (e.g., mean
diameter at breast, DBH; mean stand height, H; basal area, BA; stand volume, VOL; and
aboveground biomass, AGB) measured in field plots, we could accurately estimate forest
inventory attributes and efficiently generate wall-to-wall maps [3]. Therefore, airborne
LiDAR has been widely applied in large-scale operational forest inventories since 2002 [4,5].
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Thus, it is a transformative technology for forest inventory and ecological monitoring [6].
The area-based approach (ABA) is widely used for airborne LiDAR-based forest attribute
estimation. However, the effects of growth competition on attribute estimation have been
addressed in recent years [7,8]. Meanwhile, UAVs (with LiDAR and optics) have also been
used for small-scale forest research [9,10].

The cost of airborne LiDAR-based forest inventory is determined mainly by point
density, sample size, and plot size. In particular, the point density, which depends on
the flight height, speed, and width of the laser-scanning line strip, determines the cost
of LiDAR data acquisition; the sample size (number of plots) and plot size affect the
field measurement cost. Therefore, while ensuring an acceptable estimation accuracy of
forest inventory attributes, optimizing these technical parameters is essential to reducing
inventory costs. Numerous studies have examined how the point density affects the
accuracy of the airborne LiDAR estimation of forest attributes based on the area-based
approach [11–13]. Watt et al. suggested that if the number of point clouds in a field plot
exceeded 100, the R2 did not change significantly [1]. In a large-scale operational forest
inventory in Norway, the point density was approximately 0.7 points m−2 [14]. Because of
the limited amount of available field data, very few studies have addressed how sample size
affects the accuracy of estimating forest attributes with airborne LiDAR [15]. By performing
Monte Carlo simulations, Gobakken and Næsset found that when the sample size decreased
by 75% and even 50% from the original numbers of 50, 34, and 48, the estimation accuracy
of forest attributes was moderately reduced [11]. When LiDAR data were used as prior
information for stratified sampling, the minimum sample size was approximately 50 for
each stratum in Norway [14]. However, only a few studies have focused on how the plot
size affects the estimation accuracy of forest attributes. Gobakken and Næsset discovered
that as the plot size increased from 200 m2 to 300–400 m2, the model accuracy improved
when a regression model was applied to estimate the mean stand height, basal area, and
stand volume [11]. A study indicated that when the point density exceeded 0.5 points m−2

and the plot size exceeded 400 m2, the R2 of the stand volume model was very stable [1].
In the productive forests in Norway, as the plot size increased from 200–250 m2 to 1000–
4000 m2, the RMSE or standard deviation decreased from 20%–25% to 10%–15% [4,16,17].
Zolkos et al. analyzed over 70 published papers on estimating aboveground biomass
using different remote sensing platforms (airborne and satellite-borne) and sensor types
(optical, radar, full waveform LiDAR, and discrete return LiDAR). They found a robust and
clear correlation between model error and plot size. As the plot size increased, the model
error rapidly decreased [18]. Although the community already knows about the effect of
plot size, previous studies have focused mainly on temperate forests and circular plots.
Moreover, the mechanism of the effect of plot size on the model accuracy of forest attribute
estimation has not been fully revealed. Therefore, further in-depth studies are needed for
different forest types (tropical and subtropical forest, planted forest, etc.), different forest
parameters (basal area, stand volume, etc.), and different plot shapes (round or square).
More importantly, the mechanism of the effect of plot size on the prediction accuracy of
forest attributes needs to be investigated.

To provide additional evidence for optimizing the technical schemes of the airborne
LiDAR-based forest inventory, the present study focuses on subtropical planted forests. The
specific objectives are: (1) to investigate the effects of plot size on LiDAR-derived metrics
and measure forest attributes of different forest types; (2) to analyze the plot size effects
on the model performance in estimating the BA and VOL of various forest types; (3) to
investigate the mechanism of plot size effects on the model accuracy of attribute estimation
for different forest types; and (4) to determine a suitable plot size for the large-scale airborne
LiDAR-assisted subtropical planted forest resource inventory.
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2. Materials and Methods
2.1. Study Area

The study site was located at the state-owned Gaofeng Forest Farm in the southern
part of Guangxi Zhuang Autonomous Region of southern China. Shaped as a rectangle
from northeast to southwest, the length and width of the study site were 11.2 km and
4.2 km, respectively, and the area covered approximately 4770 ha (Figure 1).
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Figure 1. (a) Location of the Guangxi Zhuang Autonomous Region in China; (b) Location of the
study site in Guangxi; (c) Distribution of the field plots.

The study area is characterized by hilly terrain. With elevations of 90–460 m, the
study area had slopes of 15–65◦, with approximately 70% of the areas between 25◦ and 35◦.
Lying south of the Tropic of Cancer, the region has a humid subtropical monsoon climate,
with an average annual temperature of 21.6 ◦C, an average annual rainfall of 1300 mm,
and an average annual relative humidity of 79%. Approximately 95% of the forests in
the region are planted forests. Most forest stands were planted over 15 years ago, except
for the eucalyptus plantations, which are 2–9 years old. The main tree species in the area
include Eucalyptus urophylla, E. grandis × E. urophylla, Pinus massoniana, P. elliottii,
Cunninghamia lanceolata, Illicium verum, Castanopsis hystrix, Michelia macclurei, M.
odora, Magnolia sumatrana, Tilia tuan, Mytilaria laosensis, and Acacia crassicarpa. Among
them, the industrial eucalyptus plantations and anise forests are pure forests. The remaining
60% of the forest stands are artificial or natural mixed forests.

2.2. Field Plot Data

Field plots were measured from October 2016 to February 2017. According to the
dominant species, the forests were categorized into four types (strata), i.e., the Chinese fir,
pine, eucalyptus, and broad-leaved forests. Each forest type had 22–29 field plots, totaling
104 plots.

The setting and measurement of the field plot are described below: (1) the field plot
size was 30 × 30 m (900 m2), all setting in a north-south orientation, and was subdivided
into nine quadrats of 10 × 10 m; (2) a compass and a laser rangefinder (Leica DISTO™
X30) were employed to set and measure the plot and quadrats, and their boundaries were
marked with nylon ropes; (3) within each quadrat, DBH (1.3 m) of all live trees greater than
5 cm, as well as the tree species, were measured and recorded. The heights of three average
trees and the highest tree were measured using a Haglöf Vertex IV hypsometer; (4) the
Trimble Global Navigation Satellite System (GNSS) receiver using a real-time kinematic
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(RTK) positioning method was employed to position the northwestern and southeastern
corners of the plot. Two RTK-GNSS instruments were used as base stations, which were
located in a nearby open area. Using the post-correction approach, the positioning accuracy
was better than 1 m. The coordinates of the corners of each quadrat were calculated by
interpolation. The stand attributes of each quadrant included DBH, H, maximal height
(Hm), BA, tree stem density (N), and VOL, which was calculated using BA and H with the
local provincial species–specific allometric equations [19]. The forest stand attributes of
field plots were determined based on those of the nine quadrants. The summary statistics
of 900 m2 plots are shown in Table 1.

Table 1. Summary of field measurements of the 900 m2 field plots. CV is the coefficient of variation.

Stratum Sample
Size

Stand
Age
(yr)

DBH Height
Max.

Height
(m)

BA Tree
Density
(Stem
ha−1)

VOL

Mean
(cm)

CV
(%)

Mean
(m)

CV
(%)

Mean (m2

ha−1)
CV
(%)

Mean
(m3

ha−1)

CV
(%)

Chinese Fir 22 19–28 15.04 14.78 13.37 13.41 16.45 24.78 19.75 1536 179.87 24.39
Pine 29 7–24 17.83 21.57 13.14 26.94 14.91 26.51 28.69 1166 175.86 42.34

Eucalyptus 25 2–9 11.11 15.26 16.02 20.99 18.67 17.6 35.42 1826 146.25 49.3
Broad-leaved 28 7–56 14.35 27.36 11.37 31.84 13.7 20.44 39.28 1343 128.74 59.24

To analyze the effects of plot size on the LiDAR metrics, measure forest attributes, and
the accuracy of forest attribute estimation, the quadrats were combined into six plots of
different sizes (100, 200, 300, 400, 600, and 900 m2). Four protocols for combination were
used. A protocol is shown in Figure 2, and the other protocols are listed in Table 2.
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different sizes.

Table 2. Four protocols for combining quadrats into plots of different sizes.

Protocol 100 m2 200 m2 300 m2 400 m2 600 m2 900 m2

1 P1 P1, P2 P1, P2, P3 P1, P2, P5, P6 P1–P6 P1–P9
2 P2 P2, P5 P2, P5, P8 P2-P5 P2-P5, P8, P9 P1–P9
3 P6 P6, P7 P1, P6, P7 P5-P8 P1, P2, P5–P8 P1–P9
4 P5 P4, P5 P4-P6 P4, P5, P8, P9 P4–P9 P1–P9

Note: P1–P9 are quadrats 1–9.
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As there were four combination protocols, we obtained four datasets containing plots
of different sizes, in which each forest type had 22–29 field plots of different sizes. The
following method was applied to calculate the forest attributes of each field plot based on
the quadrats: for a plot with a given area (e.g., 400 m2), the BA and VOL were the sums of
the corresponding values of the quadrats enclosed. For example, in protocol 1, the 400 m2

plot enclosed quadrats 1, 2, 5, and 6 (Figure 1 and Table 2); in protocol 2, the 400 m2 plot
enclosed quadrats 2–5 (Table 2). The DBH and H were weighted averages of the BAs of
the corresponding values of the quadrats enclosed, and Hm was the maximal height in all
quadrats enclosed.

2.3. Lidar Data

Helicopter-borne LiDAR data were acquired in September 2016 using a Riegl VQ-1560
LiDAR scanner (Riegl Laser Measurement System, GmbH, Horm, Austria) at an altitude
of 500 m and a speed of 90 km·h−1, and the swath width was 350 m. The characteristics
of the LiDAR sensor were as follows: the laser wavelength was near-infrared; the laser
beam divergence was 0.5 mrad; the pulse emission frequency was 700 kHz; the scanning
frequency was 820 kHz; the maximum scanning angle was ±30◦. The final average point
density was 3.2 points m−2. The point clouds were geo-referenced to a projection system
of the China Geodetic Coordinate System 2000 (CGCS2000). The mean square error of
the laser point cloud height was less than 0.15 m. In the LiDAR data preprocessing, the
TerraScan software (TerraSolid, Ltd., Helsinki, Finland) was used to label the point clouds
as the ground return and non-ground return data using the adaptive triangulation network
(TIN) filter algorithm. A digital terrain model (DTM) with a grid cell size of 2 m was finally
generated using ground returns. Using this DTM, we removed the influence of topography
and obtained DTM-normalized LiDAR point clouds.

According to the coordinates of the four corners of the 900 m2 plot, we extracted the
normalized point cloud data to calculate the LiDAR-derived metrics using the Python
software package (Python version 2.8). The LiDAR-derived metrics included the height
and density metrics, the mean leaf area density (LADmean) of the stand canopy, and its
coefficient of variation (LADcv) [2]. Some researchers used the first LiDAR echoes to extract
the metrics [13,20–22]. However, similar to most researchers [6,23–26], all echoes were used
to extract thirteen LiDAR-derived metrics in this study. Based on the coordinates of the
four corners of all quadrats, LiDAR point clouds were extracted in plots of different sizes,
and the LiDAR-derived metrics were calculated using the same method as that used in the
900 m2 field plot.

2.4. Comparative Analysis of Plot Size Effects

To evaluate the effects of plot size on LiDAR-derived metrics, the two-tailed paired
t-test was employed to analyze the differences of the means of LiDAR-derived metrics
between small plots (100, 200, 300, 400, and 600 m2) and 900 m2 plots for all datasets and
all forest types. These metrics included: mean point cloud height (Hmean); 25th, 50th, and
75th height percentiles (hp25, hp50, and hp75); maximum height (Hmax); CV of point cloud
height distribution (Hcv); canopy cover (CC); 25th, 50th, and 75th density percentiles (dp25,
dp50, and dp75); and LADmean and LADcv. Then, the number of statistically significant
differences for each metric in the four datasets was statistically analyzed.

By employing a method similar to that described above, we analyzed the differences
of the means of forest attributes (DBH, H, Hm, BA, and VOL) between plots of different
sizes and the 900 m2 plots for all four datasets and all forest types.

Forest attributes are closely related to the three-dimensional (3D) structures of their
canopies [27]. To assess the impact of plot size on the model performance of stand attribute
estimations, we constructed VOL and BA estimation models for all forest types using
LiDAR-derived metrics that depict the 3D structure of the forest canopy. The model
formulation is shown as follows [28]:
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ŷ = a0Hmeana1 CCa2 LADcva3 Hcva4 dp50a5 + ε (1)

where ŷ is the estimated VOL or BA, a0, a1, . . . , and a5 are the model parameters, and
ε is the estimation error. To evaluate the reliability of the models, leave-one-out cross-
validation (LOOCV) was applied because only a few field plots were available, which could
not provide an independent validation dataset for all forest types. The three pointwise
goodness-of-fit statistics, R2, rRMSE, and mean predictive error (MPE), were computed
and applied to assess the models. The formula for the MPE is shown below [29,30]:

MPE = tα × (SEE/y)/
√

n× 100 (2)

where SEE =
√

∑ (yi − ŷi)
2/(n− p) is the standard deviation of the estimate, yi is the

observed value, ŷi is the estimate, y is the mean of yi, n is the number of field plots, p is
the number of predictors of the model, and tα is the t value at confidence level α with n-p
degrees of freedom; in this study, α = 0.05.

3. Results
3.1. Plot Size Effects on LiDAR-Derived Metrics
3.1.1. Height Metrics

Among the four datasets of the four quadrat combination protocols, the mean dif-
ferences in LiDAR-derived height metrics (hp25, hp50, hp75, Hmean, Hmax, and Hcv)
between plots of different sizes (600, 400, 300, 200, and 100 m2) and 900 m2 plots were
small for all forest types, and their standard deviations were approximately one order of
magnitude larger than the mean differences. As the plot size increased, the mean of the
differences showed irregular variations, while the standard deviations of the differences
increased rapidly. Figure 3a shows the trends in mean and standard deviation (SD) of the
difference in the Hmean between plots of different sizes and the 900 m2 plot in the Chinese
fir forests.

The paired t-tests were performed to assess the statistically significant differences in
the means of differences in six LiDAR-derived height metrics for plots of different sizes
(600 vs. 900 m2, 400 vs. 900 m2, 300 vs. 900 m2, 200 vs. 900 m2, and 100 vs. 900 m2) in
each dataset. As there were four datasets, four tests were performed. Then, we counted
the number of statistically significant differences (α = 0.05) in these six metrics. The results
were described as follows: (1) for all forest types, the number of statistically significant
differences in Hmax between plots of different sizes and the 900 m2 plot was all four, which
implied that for all forest types, the mean of Hmax for all plots of different sizes differed
significantly from that of the 900 m2 plot; and (2) for the remaining five height metrics, the
maximum number of significant differences was two, indicating that the means of these
metrics were not statistically significantly different between plots of different sizes and the
900 m2 plot for all forest types.

The LiDAR-derived height metrics varied with the area of the field plot and forest
types. In all four datasets for the Chinese fir and eucalyptus forests, the means of Hmean
did not differ significantly between plots of different sizes and the 900 m2 plots, while the
means of hp25, hp50, hp75, and Hcv had a few irregular statistically significant differences.
For the pine forests, the means of hp75 were not significantly different among the field
plots of different sizes, while the means of hp25, hp50, Hmean, and Hcv showed one to
two statistically significant differences in four datasets, but these significant differences
appeared in different datasets and without obvious regularity. There was no statistically
significant difference in the mean of Hmean among the field plots of different sizes for the
broad-leaved forests. The results for the remaining metrics were the same as the results
for the pine forests. The variations in point cloud height metrics among field plots of the
above-mentioned different sizes could be summarized as follows: (1) except for Hmax, the
mean LiDAR-derived height metrics were not statistically significantly different between
plots of different sizes and the 900 m2 plot; (2) Hmean and Hcv were almost not statistically
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significantly different between plot sizes; (3) the probabilities of statistically significant
differences in laser point cloud height metrics for the pine and broad-leaved forests were
higher than those for the Chinese fir and eucalyptus forests; and (4) the probabilities of
statistically significant differences were considerably higher in the height metrics of the
middle-to-low canopy layers (hp25 and hp50) than in the middle-to-upper canopy layers
(hp75) (mainly for the pine forests).
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Figure 3. Mean and standard deviation of the difference in some LiDAR-derived metrics between
plots of different sizes and the 900 m2 plot. M1–M4 and SD1–SD4 were the mean differences
and standard deviations for protocols 1–4, respectively. (a) Mean height of the Chinese fir forests,
(b) canopy cover of the pine forests, (c) dp50 of the eucalyptus forests, and (d) LADcv of the broad-
leaved forests.

The means of Hmax in all plot sizes differed statistically significantly from those
in 900 m2 plots, implying that Hmax was extremely unstable, and thus, unsuitable as a
predictor for estimating forest attributes [9]. Additional analysis indicated that (Table 3): (1)
as the plot size increased, the standard deviations of hp50 and Hmean for all forest types
decreased gradually, and when the plot size was ≥400 m2, the standard deviations of these
two metrics were extremely close, decreasing slightly with increasing plot size; and (2) the
standard deviations of Hcv remained constant for field plots of all sizes.
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Table 3. Standard deviations of some LiDAR-derived metrics and measured forest attributes for field
plots of different sizes.

Forest Type Plot Size
(m2) hp50 Hmean Hcv CC dp50 LADcv H VOL BA

Fir 100 2.50 1.93 0.16 0.15 0.17 0.37 2.62 68.49 7.35
200 1.92 1.62 0.15 0.13 0.17 0.29 2.18 54.82 5.91
300 1.81 1.50 0.15 0.14 0.16 0.26 2.05 50.46 5.48
400 1.34 1.39 0.14 0.13 0.15 0.23 1.88 45.66 5.12
600 1.31 1.36 0.14 0.13 0.15 0.23 1.81 44.73 5.01
900 1.29 1.34 0.14 0.14 0.16 0.23 1.81 43.86 4.89

Pine 100 5.08 3.88 0.19 0.17 0.22 0.45 3.67 90.63 10.43
200 4.46 3.80 0.17 0.15 0.21 0.36 3.55 79.54 8.48
300 4.34 3.80 0.16 0.14 0.20 0.33 3.55 78.11 8.26
400 4.40 3.82 0.15 0.13 0.21 0.31 3.65 75.79 7.98
600 4.38 3.80 0.15 0.13 0.20 0.30 3.54 74.80 7.75
900 4.36 3.78 0.14 0.12 0.20 0.29 3.56 74.45 7.61

Eucalyptus 100 5.95 3.73 0.13 0.22 0.16 0.62 3.57 76.16 7.05
200 5.42 3.63 0.13 0.22 0.15 0.55 3.42 74.06 6.62
300 5.51 3.59 0.13 0.22 0.15 0.50 3.41 73.73 6.52
400 5.24 3.59 0.13 0.21 0.15 0.46 3.56 71.80 6.22
600 5.04 3.49 0.12 0.21 0.14 0.47 3.43 72.15 6.25
900 4.77 3.37 0.12 0.21 0.14 0.46 3.41 72.09 6.23

Broad-leaved 100 5.85 5.47 0.21 0.19 0.26 0.34 4.04 93.61 9.90
200 5.47 5.34 0.20 0.19 0.26 0.27 3.92 83.39 8.90
300 5.50 5.36 0.20 0.19 0.27 0.25 3.85 81.65 8.44
400 5.52 5.37 0.21 0.19 0.27 0.24 3.79 79.89 8.34
600 5.51 5.35 0.20 0.19 0.27 0.22 3.72 77.72 8.12
900 5.51 5.34 0.20 0.18 0.28 0.22 3.66 76.25 8.03

3.1.2. Density Metrics

Similar to the height metrics, the differences in mean of all density metrics (CC, dp25,
dp50, and dp75) between plots of different sizes and the 900 m2 plots were small for all
forest types. Their standard deviations of the differences were approximately one order of
magnitude larger than their mean differences. The mean differences changed irregularly
as the plot size decreased from 600 m2 to 100 m2, while their standard deviations tended
to increase rapidly. Figure 3b shows the variations in mean and standard deviation of the
differences in CC between plots of different sizes and the 900 m2 plots in the pine forests,
and Figure 3c shows the same variations in dp50 in the eucalyptus forests.

For all forest types, the means and standard deviations of the difference in CC between
plots of different sizes and the 900 m2 plots were the smallest among all density metrics.
In the pine and eucalyptus forests, two and one statistically significant differences were
found, respectively. The mean dp25 had one to two statistically significant differences in
the 300, 200, and 100 m2 plots in the pine forests. These results showed that, for all four
forest types, there were not any statistically significant differences in CC and dp25 between
plots of different sizes and the 900 m2 plots. For dp50 in the fir, pine, and broad-leaved
forests, one to four statistically significant differences were observed between plots of
different sizes and the 900 m2 plots, indicating that dp50 varied widely among the plots
of different sizes for these forest types. For the Chinese fir, pine, and broad-leaved forests,
when plot size was less than or equal to 400 m2, four statistically significant differences
were found for dp75, which revealed that in all four datasets of these three forest types,
dp75 differed significantly between plots smaller than or equal to 400 m2 and the 900 m2

plot. There were two or three statistically significant differences in dp75 of the 600 m2

plots. In the eucalyptus forest, no statistically significant difference in dp75 occurred in
the 600 m2 plots, but 1–2 statistically significant differences were noted in plots of other
sizes. The above results of paired t-tests for density metrics of plots of different sizes can
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be summarized as follows: (1) for CC and density percentile of the lower layer (dp25), no
forest type had regular statistically significant differences between plots of different sizes
and 900 m2 plots, but the density percentile of the upper layer (dp75) was not the same
(except for the eucalyptus forest); (2) for dp50, all forest types other than the eucalyptus
forest had some statistically significant differences between plots of different sizes and the
900 m2 plots, although they were irregular.

For all four forest types, the standard deviations of the main density metrics (CC and
dp50) remained approximately constant among the plots of different sizes (Table 3).

3.1.3. Vertical Structure Metrics

Unlike the height and density metrics, the mean differences in vertical structure
metrics (e.g., the LADmean and LADcv) of all forest types between plots of different sizes
and the 900 m2 plots decreased gradually as the plot size decreased, and their standard
deviations increased rapidly. Figure 3d shows how the means and standard deviations of
the differences in LADcv in the broad-leaved forests varied with a decrease in plot size.
When the plot size increased from 100 m2 to 900 m2, the standard deviations of LADcv of
all forest types gradually decreased, as the plot area was greater than or equal to 400 m2,
they were close to each other (Table 3).

In four datasets, two to four statistically significant differences were found in the
means LADmean between the plots of different sizes and the 900 m2 plots in the pine and
broad-leaved forests, indicating that, in these two types of forests, the mean LADmean
of the plots of different sizes differed significantly from those of the 900 m2 plots. In the
Chinese fir forests, there was no statistically significant difference between plots of 600 m2

and 900 m2 for LADmean, while there were one to three statistically significant differences
for plots of other sizes. Eucalyptus forests did not significantly differ from 900 m2 plots
in terms of LADmean, as plot sizes were greater than or equal to 300 m2. There was no
statistically significant difference in LADcv between plots of the following sizes and the
900 m2 plots: less than or equal to 200 m2 for the eucalyptus and broad-leaved forests and
greater than or equal to 400 m2 for the pine forests. In plots of other sizes for these three
forest types, and plots of all sizes for the fir forests, there were one to four statistically
significant differences in LADcv. These results suggested that the vertical structure of the
stand canopies was more homogeneous in the eucalyptus and broad-leaved forests than in
the pine and Chinese fir forests.

3.2. Plot Size Effects on Measured Forest Attributes

The mean differences in measured forest attributes (DBH, H, Hm, BA, and VOL)
between plots of different sizes and the 900 m2 plots of all four forest types were minor
and varied irregularly as the plot size decreased. However, their standard deviations of
the differences were considered great and increased rapidly with a decreasing plot size
(Figure 4).

For four forest types, the results of paired t-tests showed that the means of Hm of
plots of different sizes were statistically significantly different (α = 0.05) from that of 900 m2

plots in most of the datasets. Among other forest attributes, significant differences were
noted in only a few datasets. These results suggested that, except for the means of Hm,
there was little or no significant difference in measured forest attributes between plots of
different sizes and 900 m2 plots.

For all forest types, as the plot size increased from 100 m2 to 900 m2, the standard
deviations of the main stand attributes (H, VOL, and BA) were found to decrease gradually
(Table 3), suggesting that with increasing plot size, the variation in the forest attributes
decreased.



Forests 2022, 13, 2124 10 of 15
Forests 2022, 13, x  10 of 16 
 

 

  

Figure 4. Means and standard deviations of the differences in measured forest attributes between 

plots of different sizes and 900 m2 plots. M1–M4 and SD1–SD4 are the mean differences and their 

standard differences for protocols 1–4, respectively. (a) mean height of the Chinese fir forests, and 

(b) stand volume of the pine forests. 

3.3. Plot Size Effects on the Performances of the Predictive Models of Forest Attributes 

Typically, the differences in estimated VOL and BA between plots of different sizes 

and 900 m2 plots decreased with an increasing plot size for all four forest types, and the 

differences in estimated VOL were greater than those in estimated BA. The greatest dif-

ferences in estimated VOL and BA in the fir forests were 7.38% and −7.6%, respectively; 

in the pine forests, they were −14.38% and −8.66%; in the eucalyptus forests, they were 

−12.57% and −9.48%; in the broad-leaved forests, they were −10.07% and −8.20%. Addi-

tionally, the standard deviations of the estimated VOL and BA increased for all forest 

types as the plot size decreased. 

For all four forest types, the results of paired t-tests indicated that although some 

statistically significant differences (α = 0.05) in the means of the estimated VOL and BA 

appeared between several plots of different sizes and 900 m2 plots in some datasets, 

these differences were irregular. Overall, the means of estimated VOL and BA for plots 

of different sizes did not differ statistically significantly from those of the 900 m2 plots. 

However, after calculating the means of goodness-of-fit statistics and VOL and BA esti-

mation accuracy, we found that as the plot size increased, the R2 of all VOL and BA pre-

dictive models increased gradually, while rRMSE and MPE decreased incrementally 

(Table 4). As the plot size increased from 100 m2 to 900 m2, the accuracy of VOL and BA 

estimation gradually improved. 

As the plot size increased from 100 m2 to 200 m2, the R2 values of VOL and BA esti-

mations had the greatest increase for all forest types, while the rRMSE and MPE had the 

greatest decrease. For all forest types, the rRMSE and MPE values of VOL and BA esti-

mations showed essentially the same trend for plot sizes greater than or equal to 200 m2. 

These results indicated that the effect of plot size on estimation accuracy was similar for 

different attributes and forest types. 

Zolkos et al. summarized more than 30 research papers on discrete LiDAR forest 

biomass estimation and concluded that the residual standard errors (RSE (%)) and plot 

sizes had a logarithmic relationship [18]. However, we found that the multiplicative 

power model ( 1

0rRMSE(%)
a

a A= , where A is the plot size in ha, 0a  and 1a  are the 

model parameters) was most suitable for fitting the relationships between the values of 

rRMSE of the VOL and BA estimations and plot sizes for four forest types (Table 5). 

The values of 1a  in the rRMSE-A model for stand volume estimation were fairly 

close to each other for all four forest types, except for the pine forests, indicating that 

their rRMSE trends were quite similar as the plot size increased. In the rRMSE-A model 

for the basal area estimation, the values of 1a  for the fir and eucalyptus forests and the 

values of a1 for the pine and broadleaf forests were comparatively close, indicating a 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

600 400 300 200 100

M
ea

n
 d

if
fe

re
n

ce
 a

n
d

 S
D

 (
m

)

Plot size (m2)

(a) H of Fir

M1

M2

M3

M4

SD1

SD2

SD3

SD4

-20

-10

0

10

20

30

40

50

60

600 400 300 200 100

M
ea

n
 d

if
fe

re
n

ce
 a

n
d

 S
D

 (
m

3
)

Plot size (m2)

(b) VOL of Pine

Figure 4. Means and standard deviations of the differences in measured forest attributes between
plots of different sizes and 900 m2 plots. M1–M4 and SD1–SD4 are the mean differences and their
standard differences for protocols 1–4, respectively. (a) mean height of the Chinese fir forests, and
(b) stand volume of the pine forests.

3.3. Plot Size Effects on the Performances of the Predictive Models of Forest Attributes

Typically, the differences in estimated VOL and BA between plots of different sizes
and 900 m2 plots decreased with an increasing plot size for all four forest types, and the
differences in estimated VOL were greater than those in estimated BA. The greatest differ-
ences in estimated VOL and BA in the fir forests were 7.38% and −7.6%, respectively; in the
pine forests, they were −14.38% and −8.66%; in the eucalyptus forests, they were −12.57%
and −9.48%; in the broad-leaved forests, they were −10.07% and −8.20%. Additionally,
the standard deviations of the estimated VOL and BA increased for all forest types as the
plot size decreased.

For all four forest types, the results of paired t-tests indicated that although some
statistically significant differences (α = 0.05) in the means of the estimated VOL and BA
appeared between several plots of different sizes and 900 m2 plots in some datasets, these
differences were irregular. Overall, the means of estimated VOL and BA for plots of different
sizes did not differ statistically significantly from those of the 900 m2 plots. However, after
calculating the means of goodness-of-fit statistics and VOL and BA estimation accuracy,
we found that as the plot size increased, the R2 of all VOL and BA predictive models
increased gradually, while rRMSE and MPE decreased incrementally (Table 4). As the plot
size increased from 100 m2 to 900 m2, the accuracy of VOL and BA estimation gradually
improved.

As the plot size increased from 100 m2 to 200 m2, the R2 values of VOL and BA
estimations had the greatest increase for all forest types, while the rRMSE and MPE had
the greatest decrease. For all forest types, the rRMSE and MPE values of VOL and BA
estimations showed essentially the same trend for plot sizes greater than or equal to 200 m2.
These results indicated that the effect of plot size on estimation accuracy was similar for
different attributes and forest types.

Zolkos et al. summarized more than 30 research papers on discrete LiDAR forest
biomass estimation and concluded that the residual standard errors (RSE (%)) and plot
sizes had a logarithmic relationship [18]. However, we found that the multiplicative
power model (rRMSE(%) = a0 Aa1 , where A is the plot size in ha, a0 and a1 are the model
parameters) was most suitable for fitting the relationships between the values of rRMSE of
the VOL and BA estimations and plot sizes for four forest types (Table 5).

The values of a1 in the rRMSE-A model for stand volume estimation were fairly close
to each other for all four forest types, except for the pine forests, indicating that their rRMSE
trends were quite similar as the plot size increased. In the rRMSE-A model for the basal
area estimation, the values of a1 for the fir and eucalyptus forests and the values of a1 for
the pine and broadleaf forests were comparatively close, indicating a similar trend in their
rRMSEs with an increasing plot size. Overall, decreasing trends in rRMSE of VOL and BA
estimation were essentially the same in all forest types as the plot size increased (Figure 5).
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Table 4. Means of R2, rRMSE, and MPE for the predictive models of VOL and BA in plots of various
sizes in the four datasets of four forest types.

Stratum Plot Size (m2)
VOL BA

R2 rRMSE (%) MPE (%) R2 rRMSE (%) MPE (%)

Fir 100 0.390 29.31 13.93 0.313 25.00 11.88
200 0.433 22.38 10.64 0.310 19.77 9.40
300 0.354 21.56 10.25 0.211 19.21 9.13
400 0.424 19.07 9.07 0.327 17.10 8.13
600 0.467 18.11 8.61 0.337 16.55 7.87
900 0.554 16.28 7.74 0.378 15.58 7.41

Pine 100 0.327 43.69 17.48 0.098 37.88 15.15
200 0.445 34.13 13.66 0.172 29.34 11.74
300 0.527 30.73 12.29 0.247 27.13 10.86
400 0.517 30.41 12.17 0.235 26.53 10.61
600 0.572 28.06 11.23 0.302 24.51 9.81
900 0.596 26.93 10.77 0.331 23.46 9.39

Eucalyptus 100 0.669 30.75 13.48 0.569 26.96 11.81
200 0.772 24.48 10.73 0.710 20.42 8.95
300 0.812 22.05 9.66 0.770 17.90 7.85
400 0.864 18.26 8.00 0.823 15.03 6.59
600 0.877 17.37 7.61 0.835 14.45 6.33
900 0.905 15.18 6.65 0.876 12.46 5.46

Broad-leaved 100 0.698 38.73 15.83 0.560 31.45 12.85
200 0.779 30.84 12.60 0.657 25.68 10.49
300 0.788 28.89 11.81 0.668 23.46 9.59
400 0.802 27.43 11.21 0.665 23.73 9.70
600 0.821 25.37 10.37 0.668 22.94 9.37
900 0.847 23.13 9.45 0.690 21.89 8.94

Table 5. Parameter estimates of the multiplicative power regression models for the relationship
between rRMSE (%) and plot size (ha) and their goodness-of-fit statistics.

Attribute Forest Type a0 a1 R2 rRMSE (%)

VOL Fir 6.4570 −0.3574 0.890 11.40
Pine 13.7107 −0.2637 0.772 11.02

Eucalyptus 7.0049 −0.3422 0.828 13.79
Broad-leaved 10.2562 −0.3360 0.879 13.19

BA Fir 6.7816 −0.3109 0.811 11.87
Pine 11.3946 −0.2706 0.608 9.64

Eucalyptus 5.8844 −0.3186 0.842 11.34
Broad-leaved 11.4020 −0.2745 0.735 15.85
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Figure 5. Regression relationships between the rRMSE of the VOL (a) and BA (b) estimation models
and plot sizes (ha) for four forest types.
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The theoretical differences in rRMSE of VOL and BA estimation between plots of
different sizes and the 900 m2 plots were derived based on the regression relationships
between rRMSEs of VOL and BA estimation models and plot sizes described above. The
differences in rRMSEs of VOL estimation between 600 m2 and 900 m2 plots for all four
forest types were approximately 15%, whereas the differences in BA estimation were all
less than 14% (Table 6). Between the plots of various sizes and the 900 m2 plots, there were
some differences between the theoretical (Table 6) and average differences (Table 5) in the
rRMSEs of VOL and BA estimation.

Table 6. Theoretical difference (%) of rRMSEs between plots of different sizes and the 900 m2 plots
calculated from the rRMSE plot size regression models in VOL and BA estimation in four forest types.

Plot Size
(m2)

rRMSE Difference (%) in VOL Estimation rRMSE Difference (%) in BA Estimation

Fir Pine Eucalyptus Broad-Leaved Fir Pine Eucalyptus Broad-Leaved

100 119.3 78.5 112.1 109.2 98.0 83.4 101.4 82.8
200 71.2 48.7 67.3 65.8 59.6 51.5 61.5 51.1
300 48.1 33.6 45.6 44.6 40.7 35.4 41.9 35.2
400 33.6 23.8 32.0 31.3 28.7 25.1 29.5 24.9
500 23.4 16.8 22.3 21.8 20.1 17.6 20.6 17.5
600 15.6 11.3 14.9 14.6 13.4 11.8 13.8 11.8
700 9.4 6.9 9.0 8.8 8.1 7.2 8.3 7.1
800 4.3 3.2 4.1 4.0 3.7 3.3 3.8 3.3

4. Discussion

Some studies have demonstrated that increasing plot size helps to improve the accu-
racy of airborne LIDAR-based forest attribute estimation [1,11,12,18,31–36]. Our study also
supports these findings and provides new evidence for subtropical planted forests. Most
importantly, we have preliminarily revealed the mechanism of the effect of plot size on
forest attribute estimation.

Existing studies have generally agreed that plot sizes affect the accuracy of forest
attribute estimation using LiDAR data because of the following main factors: (1) a large
plot captures an adequate amount of on-ground (in situ) structure variability [37], thereby
providing a more accurate representation of the mean values of forest attributes [36]; (2)
positioning errors in plots constantly exist, and a large plot maintains a greater amount of
spatial overlap between ground-reference and LiDAR data for any given co-registration
error [38], which can effectively reduce the ill effects of co-registration error [31]; and (3) a
large plot has a lower perimeter-to-area ratio, which helps to reduce the relative size of the
random error component associated with edge-induced noise [31].

In this study, although the LiDAR metrics and measured forest attributes were close
among plots of different sizes, as the plot size decreased, the standard deviation increased
rapidly (Figures 3 and 4, Table 3). The main reasons for these findings are that a small
plot encloses fewer trees, resulting in high homogeneity within the plot. Nevertheless, in
a highly heterogeneous population, there is great variation among plots. In contrast, a
large plot encloses more trees and has high heterogeneity among plots; because of spatial
averaging [18,39], the variability among plots is reduced. Variations in LiDAR variables
and measured forest attributes among plots tend to decrease gradually as the plot area
increases, which leads to a decrease in the standard deviation of the response variables and
independent variables of the estimated models of forest attributes. Assuming that a close
regression relationship between the target forest attributes and LiDAR variables exists in
the population, model accuracy improves as variances in the dependent and independent
variables decrease. Therefore, we believe that spatial averaging is the main reason for the
improved model accuracy with an increasing plot size.

Determining the plot size in an operational forest inventory is a difficult process, and
we have to reach a more favorable trade-off between the estimation accuracy of forest
attributes and measurement cost per plot. In short, a suitable plot size at an acceptable
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cost has to be found. Most plot sizes in published research were less than 600 m2 [12].
Our study indicated that for the given point density (3.2 points m−2) and the number of
field plots (Table 1), the trends in improvement of VOL and BA estimation accuracy as
the plot size increased were essentially the same for all forest types (Table 4 and Figure 5).
The estimation accuracy of forest attributes is closely related to the extent of the study
area and the complexity of the forest context, the number of plots, plot sizes, modeling
methods, and sampling strategies or approaches. In 34 studies worldwide, the mean
residual standard error (RSE) of discrete airborne LiDAR-based aboveground biomass
estimation was 27% [18]. In our other study on a large scale (2.21 × 106 ha), which was
essentially centered on the present study site, the rRMSEs for VOL estimation of four forest
types (the plot sizes were 600 m2, the numbers of sample plots for four forest types were 84,
97, 107, and 95, respectively; the pine and broad-leaved forests were mostly natural mixed
forests) were 20.89%, 21.69%, 18.53%, and 36.32%, respectively [28], and the model accuracy
was lower than those of the present study, except for the pine forests. The main reasons are
the limited extent of the present study site and the high homogeneity of the forest structure.
Therefore, based on the results of the present study, it is difficult to determine the most
appropriate set of plot sizes for estimating forest attributes for different forest types in a
larger study area. Assuming that an accuracy of 15% lower than the highest accuracy is
acceptable in forest attribute estimation; we believe that a 600 m2 plot is appropriate for all
forest types, and at this point, the cost of the plot measurement is approximately one-third
lower than that of the 900 m2 plots.

Most field plots in previous studies on this topic were circular [1,12]. In this study,
we focused on rectangular plots. Circular plots have the advantage that plots of different
sizes completely overlap in the central region, and plot data are highly comparable. Its
disadvantage is that it is difficult to identify plot boundaries in fieldwork. Tropical and
subtropical montane or hilly terrain, in particular, are characterized by extreme variations
in slope surfaces and lush understory vegetation, making it extremely difficult to set and
measure a circular plot. The advantage of rectangular plots is that they make plot establish-
ment in fieldwork simple and accurate, thus, ensuring data accuracy. The disadvantage is
that the overlap is not in the center of the plot because of an inadequate overlap among
plots of different sizes (Figure 1), resulting in slightly less comparable data among plots.
Nevertheless, the rectangular plot has traditionally been used in the continuous national
forest inventory (NFI) and operational forest management inventory (FMI) in China. How-
ever, the number of field plots in this study is small for all forest types, there are only six
different plot sizes due to the limitations of the quadrat combinations in rectangular plots,
and the study is focused only on the planted forests. Therefore, future work should expand
the study area to cover more forest types (e.g., natural forests), increase the number of plots,
and increase the number of plots of different sizes.

5. Conclusions

From the analysis presented in this paper, we had drawn the following conclusions:

(1) The means of the 25th, 50th, and 75th height percentiles of laser point clouds, Hmean,
Hcv, CC, 25th and 50th density percentiles, and LADcv of plots of different sizes for all
four forest types showed irregular differences or no statistically significant difference
from that of the 900 m2 plots. However, their standard deviations decreased as the
plot size increased. In general, statistically significant differences in the means of
Hmax, LADmean, and 75th density percentile were found between plots of various
sizes and 900 m2 plots.

(2) Except for the mean Hm, the measured forest attributes of plots of different sizes for
all four forest types exhibited irregular variations and no statistically significant dif-
ference from those of the 900 m2 plots. However, their standard deviations decreased
with the increasing plot size.

(3) As the plot size increased from 100 m2 to 900 m2, the predictive errors (MPE and
rRMSE) decreased at approximately the same rate for all forest types, and the model
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accuracies gradually improved at a similar rate for all forest types. These results
were most likely due to the fact that the standard deviations of the LiDAR-derived
metrics and measured forest attributes decreased as the plot size increased; that is, the
variation in the independent and dependent variables of the model decreased with
the increasing plot size, which improved the robustness of the model.

(4) According to this paper, we preliminarily recommend that for a large-scale subtropical
planted forest inventory, the plot sizes should be at least 600 m2 for all forest types.
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