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Abstract: Bamboo is a material with good tensile and flexural resistance. As a construction material
with structural capacity, using bamboo implies considerable environmental advantages in relation
to other typical materials such as steel or concrete. For its correct implementation, it is necessary
to define its mechanical properties and durability. Bamboo is susceptible to degradation due to the
lack of natural toxins and thin walls, which means that shallow decomposition processes can imply
appreciable reductions in its mechanical capacity. The main degrading agents considered in this study
were beetles, termites, and xylophagous fungi. The aim of this study was to analyze the durability
of three different species: DS, PA, and AA. Durability and mechanical tests results after 6 months
of exposure to biotic and abiotic agents were compared with their original properties and chemical
composition. In this study, durability was analyzed in two ways. Firstly, the loss of mass due to
fungal infection was investigated. The results obtained were based on the standard EN 113 using
the fungus CP. Secondly, bending and compressive strength was evaluated after a durability test
according to the standard EN 335:2013 for the CU3.1 use class after a 6 month period in the city of
Donostia/San Sebastian, Spain. The DS and AA varieties were rated as very durable CD1, while the
PA variety is durable CD2, thus proving to be an attractive material for construction.

Keywords: bamboo; durability; bending strength; construction materials

1. Introduction

During the last few decades, many research groups have been dedicated to develop
and promote more sustainable materials for the construction sector. Timber has been one
of the most commonly used sustainable building materials in Europe. However, in Asia,
there is a widespread use of bamboo in construction. Even if both are lignocellulosic
materials, their different internal structures imply distinct mechanical and structural prop-
erties. The interesting properties of bamboo are making it more and more popular in the
world [1–5]. According to the American Bamboo Society, by 1988, it had more than 4000
uses [6]. However, its relatively high composition in starch, reducing sugars, and proteins
makes it easily degradable by fungi in a hot and humid environment, which reduces its
application value [7–9]. It generally has a low natural durability, and fungi can easily attack
it during storage, transport, and final use. For applications, it is important to know its
susceptibility [9].

Bamboo is not exclusive to Asia, as it grows naturally on all continents, and it is
estimated that more than 22 million hectares in the world are intended for its cultivation [6],
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with Brazil being the country with the greatest diversity of species [10,11]. However, in the
Western world, it is still little known [12,13].

These plants are fast-growing giant herbs that have woody stems. The characteristics
of each vary in size, growth habit, sun tolerance, soil moisture needs, and tolerance to
cold and hot temperatures. The culm is a natural hierarchical cellular material that has
good mechanical properties, including tensile and flexural strength, along the direction
of its fibers. Since it is a functionally graded natural compound, the interfaces among its
different ingredients, including fibers, parenchymal cells, and lignin matrix, can have a
significant impact on its mechanical properties [14]. The hierarchical microstructure is
due to the vascular bundles of the parenchyma matrix surrounded by support cellulose
fibers. These fibers provide the main mechanical properties. In addition, cellulose fibers act
as reinforcement to strengthen the lignin matrix, similar to polymeric matrix composites
reinforced with fibers. This structure creates crystalline and amorphous regions within the
microstructure, where linear glucose chains with hydrogen bonds form crystalline regions,
while irregular hydrogen bonds create amorphous regions [15,16].

Better mechanical properties are observed along the direction of its fiber than along the
transverse direction. The unique microstructural properties of natural bamboo with respect
to its mechanical properties make it a suitable renewable material for composite materials in
high-performance applications. Typically, the density is higher on the outside surface and
decreases toward the inner layers of the cross-section of its wall [4,17–21]. Therefore, the
outer layers of stalks are supposed to have better mechanical properties [21–23]. However,
to date, no exhaustive and systematic studies in terms of density and geometry of the culm,
including wall thickness, diameter, and height of the culm, have been developed.

Rot fungi inflict severe damage to bamboo and timber constructions and need expen-
sive refurbishment measures [8,24]. Bamboo is more susceptible to decay than wood, due
to the lack of natural toxins [25] and their typically thin walls, which means that shallow
decay processes may involve appreciable reductions in their mechanical capacity. The sig-
nificant environmental biotic pressure on the culm and its products necessitates protective
measures to put in place. The number of insects that feed on bamboo is estimated to consist
of at least 1200 species, of which degrading fungi account for more than 400 species [26].

There are mainly three causes of deterioration.

i. First, certain beetles (Hylotrupes bajulus larvae) are attracted to the starch and lay their
eggs inside the culm. After that, the eggs hatch and the larvae feed along the stem and
eventually through the stem walls to escape, leaving small round or oval outlet holes.
The attack speed is faster on fresh green bamboo (it is more susceptible); however,
even when dry, it can be attacked in warm and humid climates, where the balance
moisture content of bamboo on the outside (under cover) is usually higher than that
in more temperate climates [27].

ii. Second, termites are little insects similar to ants that live in colonies and feed on
plant material. They are also attracted to bamboo starch; however, unlike beetles,
they have enzymes that allow them to break down cellulose. As they live in large
colonies, they can cause short-term damage. There are two generic types of termites
depending on their habitat: underground or dry wood. The former live in the ground
(preferably moist), while the latter construct their nests in the wood itself or bamboo.
Underground termites are translucent; thus, they build tunnels or find hidden paths
to avoid sunlight [28].

iii. Third, xylophagous fungi cause rot. For the fungus to thrive, the culm must be
relatively wet with at least 20% moisture, which essentially means that it must be
exposed to rain or soil moisture [29]. During post-harvest processing, mold and
micro-fungi cause severe damage, devaluating its economic potential [8,30–32].

As with wood, the most effective ways to protect bamboo from deterioration are
drying before use and design or construction measures. It must remain dry, protecting it
from wind and rain. Prolonged exposure to water should be avoided. This will prevent
putrefaction and reduce the rate of xylophage attacks [33,34]. In addition, humidity can
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also be detrimental with danger of collapse, as occurs in fast-growing wood species such as
poplar [35].

For the use of bamboo in its original form as a construction material with structural
capabilities, it is necessary to know its mechanical properties and durability. Given the dif-
ferences between species, it is important to characterize each one properly. Accordingly, as
with conifer wood (pine, fir, etc.), with bamboo, it is necessary to create comparative tables
according to the species and use. There are several tables describing bamboo characteristics,
but they do not describe it with its original form, instead evaluating other products made
from bamboo, such as battens and particleboards [36,37].

The aim of this study is to (i) analyze the durability of bamboo using EN 113:2021 (fungi
infestation in laboratory conditions), (ii) assess the effect of external climatic conditions
following EN 350:2016, and (iii) compare the results for three different species: DS, PA,
and AA. These three species, although they have similar applications, are physically very
different: finishing and appearance, interior structure, density of fibers, provision of feeding
ducts, etc. [38]. The results in flexural and compressive tests from small samples can be
applied to the structural design of larger structural elements considering their use class.

2. Materials and Methods
2.1. Materials

The materials analyzed were the most commonly used bamboo species in the manu-
facture of small structures: DS (Dendrocalamus strictus), PA (Phyllostachys aurea), and AA
(Arundinaria amabailis). The bamboos were supplied by Bambusa Importaciones y Proyec-
tos, SL and underwent a stabilizing treatment with borax salts, which improved the natural
durability and other properties such as fire resistance. The bamboo provider delivered
culms obtained in the seventh harvest of the bamboo plant, which can be considered homo-
geneous in terms of morphological and mechanical properties. The preparation of samples
storage and transportation was performed according to ISO standard 22157:2019 [39].

The origin of the different species, the climatological growth conditions, the den-
sity of culm wall (ρ), and the total or average density of each species (ρ’) are shown in
Tables 1 and 2, respectively. Since the objective was to use culm in its original form as a
structural material, the whole culm was used in all the tests.

Table 1. Origin and growth conditions of the three bamboo species.

Species Origin Altitude
(m)

Precipitation
(mm)

Moisture
Content

(%)

Zone Temperature
(◦C)

Average Max. Min.

DS Kanchanaburi
(Thailand) 400–600 1060 57–81 27 30 25

PA Anji County, Huzhou,
Zhejiang (China)

200–500 1543 71–80 18 28 −3
AA 200–500 1543 71–80 18 28 −3

Table 2. Different characteristics of the three bamboo species.

Species Description
Moisture
Content

(%)

Density
(kg/m3)

Height (m) Diameter
(mm)

Age (Years)
ρ

(Culm Wall)
ρ′

(Total)

DS Cylindrical and solid
form 6.60 ± 0.70 624 624 5–15 30–50 3–4

PA Cylindrical and
hollow form 5.47 ± 0.61 863 362 6–9 30–50 3–4

AA Cylindrical and
hollow form 5.72 ± 0.15 940 497 6–13 20–60 3–4
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2.2. Methods

In this study, durability was analyzed in two ways. The first focused on the loss
of mass due to fungal infection, while the second was performed on samples that were
outdoors for 6 months. Both durability tests were performed on the three bamboo species
along with Pinus sylvestris L. (PS) specimens that were used as control samples.

The mechanical behavior of bamboo, as a natural material, shows a wide dispersion in
terms of mechanical properties. The statistical analysis of results improved the predictions
from a safety standpoint. The testing standards take into account this scatter, defining a
minimum number of samples according to the measured property. Therefore, five samples
per bamboo specie were used on the durability tests, while 25 samples were required in
the mechanical tests (bending and compression tests). Furthermore, the EN 1058:2010
standard calls for the fifth percentile in the mechanical test to guarantee the integrity of
the structures.

2.2.1. Durability EN 113:2021

The screening test was based on EN 113:2021 [40]. The screening test based on that
standard consists of placing previously weighed and sterilized specimens in contact with
the basidiomycetes fungus Coniophora puteana (CP) for 16 weeks in a climatic chamber
at 22 ◦C and a relative humidity of 70%. This fungus was selected because it is the
most virulent of the four fungi that the standard contemplates within the procedure of
standardized tests, achieving an average mass loss between 40% and 50% in untreated wild
pine. According to the literature, CP is not only more virulent than other fungi, but the
rotting it causes also affects more mechanical properties of wood than that caused by other
fungi [41–43].

Once the 16 weeks of contact were completed, the specimens were removed, the
adhered mycelium was cleaned, and the wet weight was obtained, the specimens were
introduced into the stove at 103 ◦C for 18–24 h until obtaining a constant weight or the dry
weight. Comparing the initial dry weight and the final dry weight, the percentage of mass
loss was obtained, which was required to obtain the durability class.

The conclusions from this test were based on EN 350:2016 [44]. The norm allocates
wood durability classes against basidiomycetes attack, and the criteria for the allocation
depend on the average mass loss obtained as a percentage.

2.2.2. Durability EN 335:2013

The samples were prepared for a use class CU3.1 for a period of 6 months in accordance
with the EN 335:2013 standard [45]. During this natural durability test, bamboo samples
were exposed to biotic and abiotic agents in the city of Donostia/San Sebastián (43◦18′34.92′′

N and 2◦0′34.2′′ W) located on the east coast of the Gulf of Biscay.
Figure 1 shows the layout, where specimens were fixed vertically with cable ties,

avoiding any contact with the ground. Thus, a water deposit accumulated in the culm,
accelerating the putrefaction phases, and the study was performed in the most adverse
conditions. The weather conditions collected by Euskalmet (Basque Metereology Agency)
at Miramón weather station (43◦18′34.92′′ N and 2◦0′34.2′′ W) during the 6 months of
exposure are summarized in Figure 2. After completion of the weathering period, the
samples were used for mechanical tests to compare the results with those obtained in the
previous characterization study [21].
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2.2.3. Chemical Characterization of Bamboo

Different chemical components of the three bamboo species, including extractives and
lignin, were experimentally measured. Firstly, samples were prepared using the TAPPI T
257 cm—85 and TAPPI T 264 cm—97 standards in order to measure the moisture content.
For the extraction of extractives with ethanol toluene, TAPPI T 204 cm—97 standards were
used. The benzene/ethanol mixture seemed to provide the most complete of all solvent-
extractable substances in lignocellulosic materials. The percentage of insoluble acid lignin
was obtained using the TAPPI T 222 cm—98.

2.2.4. Mechanical Tests

The mechanical properties of the three species before and after environmental exposi-
tion over 5 months (EN335:2013) were analyzed through bending and compression tests
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(Figure 3). For this purpose, 25 specimens were used for each test type using two machines:
Tinius Olsen H50 KN (displacement precision ± 0.026 mm) and Metrotec MS-7M 260 KN
(load precision 0.5% between 50 KN and 260 KN; class 0.5). The characteristic values were
obtained from the strain–stress curves obtained for each test. Maximum stresses were
calculated using the load value for the first crack, not the maximum load. The speed
used for the bending test was 3 mm/min, and the average test time was 51.58 s. In the
compression test, the speed was 5 mm/min, with the average test time of 40.45 s.
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Figure 3 shows diagrams of the bending and compression tests and the related magni-
tudes according to ISO 22157, where Lb is the clear span in flexural test (distance between
nodes), Lc is the sample length in the compression test, and D is the diameter of the cross-
section of a piece of bamboo taken as the average of two perpendicular measurements
made across opposite points on the outer surface. Measurement is usually made at the
center of an internode region; d is the inside diameter or diameter of transverse hole, Fb is
the bending load applied at the mid-span, Fc is the compressive load, Db is the mid-span
deflection in bending, and Dc is the shortening in compression.

Table 3 shows the dimensions of each type of bamboo studied in the tests. Because the
DS culm is solid, it has no inside diameter.

Table 3. Dimensions of the specimens for mechanical tests. Lb is the clear span in flexural test
(distance between nodes), Lc is the sample length in compression test, D is the diameter of the cross-
section of a piece of bamboo taken as the average of two perpendicular measurements made across
opposite points on the outer surface, and d is the inside diameter or diameter of transverse hole.

Dimension
(mm)

Bending Compression

DS PA AA DS PA AA

Lb, Lc 180–360 130–350 170–420 180 150 180
D 27–41 27–33 31–38 28–39 27–33 28–38
d 0 17–31 21–29 0 20–26 21–28

Bending Strength and Stiffness Parallel to the Fibers

Given the dimensional variability of the samples, for this analysis, a three-point
flexural test was chosen where the sample was supported on two simple supports (i.e., no
moment restraint) situated below the two nodes, with the culm between them and the load
applied at the mid-span (Figure 3).

The values obtained from the tests were bending strength (σbf, highest normal stress
at fracture) and modulus of elasticity in bending (Eb) (Equation (2)). These were obtained
following the formulae for the moment of inertia I (Equation (3)), section modulus W
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(Equation (4)), and normal stresses σb (Equation (1)) in a circular hollow section in bending,
and the bending moment under a load in a three-point bending setup M.

σb =
M
W

=
FbLb/4
2I/D

, (1)

Eb =
(Fb2 − Fb1)L3

b
48(∆b2 − ∆b1)I

, (2)

I =
π

64

(
D4 − d4

)
, (3)

W =
π

32D

(
D4 − d4

)
, (4)

where σb is the normal stress at the most distant fibers from the centroid of the circular
hollow section (outer fibers), M is the applied bending moment, W is the section modulus
of the outer fibers of a circular hollow section, I is the moment of inertia of a circular hollow
section, Eb is the modulus of elasticity in bending, Fb1 is 10% of the maximum load and
Fb2 is 40%, and Db1 and Db2 are deflections, where Db1 is caused by force Fb1, and Db2 is
caused by Fb2. Measurements were taken according to the ISO 22157 standard.

Compression Strength and Stiffness Parallel to the Fibers

In the compression test, the sample rests vertically on a fixed base (Figure 3, right).
The compression load depends on the upper loading platen located over the top end of
the sample. The length of the specimens was 180 mm for the case of DS and AA, and 150
mm for PA. This difference was due to the shorter internode length in the case of PA. Since
bamboo is a natural product, the diameter and thickness of the samples were variable; the
diameter of DS ranged between 28 and 39 mm, the diameter of PA ranged between 27 and
33 mm, and the diameter of AA ranged between 28 and 38 mm (Table 3).

The values obtained were compression strength parallel to the fibers (σcf) (Equation (5))
and modulus of elasticity in compression parallel to the fibers, Ec (Equation (7)). These
were obtained considering the formula for the cross-sectional area A (Equation (6)).

σc f =
Fc ult

A
, (5)

A = π

(
D
2

)2
− π

(
d
2

)2
A =

π

4

(
D2 − d2

)
, (6)

Ec =
(Fc2 − Fc1)Lc

(∆c2 − ∆c1)A
, (7)

where σcf is the normal stress parallel to the fibers, A is the cross-sectional area, Ec is the
modulus of elasticity in compression parallel to the fibers, Fc ult is the maximum load at
which the specimen fails, Fc1 is 10% of the maximum load and Fc2 is 40%, and Dc1 and Dc2
are shortening deformations, where Dc1 is caused by force Fc1, and Dc2 is caused by Fc2.
Measurements were taken according to the ISO 22157 standard.

2.2.5. Density

Densities were calculated in two ways. First, the density of the culm wall (ρ) (Equation (8))
was calculated, taking the total mass of the bamboo and the volume of the wall. Second,
the total or average density (ρ′) (Equation (9)) was calculated, taking the total mass and the
total volume, including the hollow interior volume.

ρ =
4m

π(D2 − d2)L
, (8)

ρ′ =
4m

πD2L
, (9)
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where d is the inside diameter of bamboo (mm), D is the outer diameter (mm), L is the
length (mm), and m is the measured mass (g) of the specimen. Measurements were taken
according to the ISO 22157 standard.

3. Results and Discussion
3.1. Durability against Fungus Basidiomycetes

The obtained durability classes (Table 4) depend on the mean quantified mass loss.
After the results obtained from the screening test based on EN 113:2021, the durability
classes were identified according to EN 350:2016. As noted, DS and AA varieties were
classified as very durable DC1, while the PA variety was classified as durable DC2.

Table 4. Mean mass loss (ML1) for DS, PA, and AA species after the durability test according to
standard EN 350:2016 and mean mass loss (ML2) according to standard EN335 CU3.1.

EN 350:2016 EN335 CU3.1

Species ML1
(%)

Durability
Class Description ML2

(%)

DS 3.95 DC1 Very durable (ML ≤ 5) 15.28
PA 5.65 DC2 Durable (5 < ML ≤ 10) 10.15
AA 3.02 DC1 Very durable (ML ≤ 5) 7.85
PS 56.71 DC5 No durable (30 < ML) ——-

Figure 4 also includes the mass loss in the weathered specimens according to EN 335.
Comparing the two durability tests, it can be seen that the weathered specimens lost two or
three times as much mass as the fungus-rotted specimens. This difference is due to the fact
that, in EN 335, the specimens are exposed to the environment for a longer period of time
(6 months compared to 4 months in EN 113:2021). In addition, several microorganisms
from the environment are also involved in the decomposition of the bamboo, whereas, in
EN 113:2021, the fungus CP is the only one responsible for the loss of mass. In both cases,
the most important mass loss occurs inside the culm because it has less fiber density and is
more likely to be attacked by external agents [38,46].

A decisive factor in the durability of plants is their chemical composition in terms
of the amount of extractive substances, whereby the less the plant has, the less durable it
will be [41]. Comparing the results of the toluene/ethanol extractive (Table 5), it can be
stated that the values were between 10% and 15%, which would imply a good durability
for these three species, especially compared to the PS control samples (0.90%). Extractive
compounds can be classified into three subgroups according to their chemical composition:
phenolic aromatic compounds such as tannins and lignins, aliphatic compounds (fats and
waxes), and terpenes and terpenoids. While aliphatic compounds can act as surfactants that
limit the adhesion of fungi to the wood surface, phenolics have rather a direct effect on the
physiology of fungi [47]. In this research, differences were observed. The species with the
highest percentage of extractives was PA, and, according to the durability results (Table 4),
it was the least durable species. This may be due to the fact that, in the determination of
extractives, toluene/ethanol was used in the process. In these solvents, sugars can also
dissolve, which worsens the durability, invalidating the results obtained using this method.
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Table 5. Chemical composition of DS, PA, and AA bamboos.

Species
Composition

Extractives
(%)

Lignin
(%)

DS 12.12 ± 0.05 23.80 ± 5.50
PA 14.71 ± 1.46 18.37 ± 1.55
AA 9.70 ± 1.34 28.85 ± 3.62

PS [48] 0.90 25.4 ± 8
Bibliography [22,49–52] 0.91–10.91 22.66–24.11

The durability of lignocellulosic materials was also related to the lignin content [53,54].
Species AA and DS had a lignin content of 29% and 24%, respectively, whereas this content
was lower for species PA (19%), in good agreement with the durability of these species
(Table 4). The highest lignin content was obtained with the AA species, coinciding with
the bamboo that showed the highest durability according to the EN 350:2016 standard and
the literature [42,55]. In fact, several studies have indicated that the physical and chemical
properties of lignin serve as a barrier against pest and pathogen invasion [53,56]. Indeed,
lignification is a mechanism of disease resistance in plants. During defense responses,
accumulation of lignin or lignin-like phenolic compounds has been shown to occur in a
variety of plant–microbe interactions [53,54].
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3.2. Mechanical Properties

Stress and elasticity moduli of bamboos in fracture were measured under flexural and
compression loads before and after 6 months of weathering in environmental conditions
(EN335 standard). Average values and values of the fifth percentile are shown in Table 6. In
order to increase safety due to the natural dispersion of the properties of natural materials,
it is customary in the design of timber structures to use the values corresponding to the
fifth percentile instead of the average values (EN 1058:2010 [57]). The same approach was
adopted here.

Table 6. Mechanical properties and density of DS, PA, and AA. Initial values and values after 6
months weathering are included.

DS PA AA

Time
(Months) 0 6 0 6 0 6

Be
nd

in
g

Average

σbf
(MPa) 90.3 ± 27.2 77.5 ± 16.6 40.5 ± 7.0 50.6 ± 25 55.3 ± 7.7 52.7 ± 11.5

Eb
(MPa) 3234 ± 2181 3932 ± 2010 4091 ± 1898 2960 ± 2427 6689.5 ± 2454.7 4846 ± 2116

5th
percentile

σbf
(MPa) 58.5 52.2 31.6 30.1 45.1 36.3

Eb
(MPa) 921 1192 2042 1185 3039 1894

C
om

pr
es

si
on Average

σcf
(MPa) 50.4 ± 10.5 29.5 ± 7.7 71.4 ± 11.5 66.7 ± 8.7 78.2 ± 10.8 71 ± 13.2

Ec
(MPa) 4249 ± 1180 2674 ± 822 6555 ± 1605 5895 ± 1674 6645 ± 1921 6577 ± 1713

5th
percentile

σcf
(MPa) 36.6 20 50.0 54.9 61.1 46.7

Ec
(MPa) 2454 1604 3818 4105 4513 3943

Densities

ρ
(kg/m3) 624.45 529 862.55 775 939.85 866

ρ′

(kg/m3) 624.45 529 362.00 302 497.00 387

3.2.1. Bending

DS bamboo showed a noticeable reduction in the mean value of bending strength after
the 6 month weathering durability test (Table 6). The decrease was smaller (15%) at the
fifth percentile value. This was probably due to a degradation of the culm core. In the case
of PA bamboo, a reduction in strength of less than 5% was observed at the fifth percentile,
and the mean value was even higher. Although it suffered a 10% loss in mass, the strength
was practically the same after 6 months.

In the case of AA bamboo, the mean values did not vary substantially after 6 months
of aging, and the fifth percentile was significantly lower (20% decrease), making it the
species most affected by weathering. Due to the morphology of this species, the inner part
of the culm wall is almost free of fibers, which causes it to lose most of the mass in that
inner part of the culm wall [38]. In the absence of affected fibers, this loss of mass should
not be significant in terms of strength. However, it is important in the bending test, as
this inner part of the bamboo helps to maintain the tubular shape of the culm. As for the
stiffness analysis, DS did not appear as affected (it even appears to have improved). In the
case of PA and AA, there was a significant reduction in the stiffness average value: over
26% in the case of PA and 27.5% in the case of AA.

In summary, degradation reduced the flexural strength in the fifth percentile in the
three types of bamboo (DS 10%, PA 5%, and AA 20%), as well as the stiffness fifth percentile
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in hollow culms (PA 42% and AA 37.6%). This is due to the morphology of hollow culm,
where, although the interior does not provide structural capacity [38], it helps to maintain
the tubular form in bending tests, a problem that does not occur with the solid species.

Figure 5 shows images of the bending test of the three species. DS (Figure 5a) was the
most heavily loaded, but had a full inner section. The fibers in the bending tensile zone
broke locally when the maximum shear stress limit was exceeded. The fact that DS has a
solid top gives it an advantage over AA and PA, which have a hollow top. The fracture
of the PA (Figure 5b) indicates that, once the test is finished and the load is removed, the
PA returns to its shape in such a way that it is not possible to see with the naked eye the
cracks generated during the test. Furthermore, it can be seen how the external agents were
only able to attack the epidermis where the flange was holding the bamboo during the
durability test.
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The latter (Figure 5c) have a lateral flaring in the area where the clamp is applied,
which results in bending in the plane of the cross-section. With reduced strength in the
plane transverse to the direction of the fibers, longitudinal cracks appear along the culm [21].
The AA and PA diagrams in Figure 6 have the shape of a sawtooth. During the test, the
load increased, and, at the initiation of a crack, a redistribution of stresses occurs until other
fibers were mobilized, and the load increased again until the generation of the next crack
began, generating a new sawtooth in the graph (Figure 6).

The fracture toughness of the materials was also analyzed in relation to their density
(Figure 7), i.e., the specific strength, in order to compare these results with those obtained
in the previous study [21], in which the same mechanical tests were carried out before the
natural durability test.

Results indicated that the DS showed the highest fracture stresses at 6 months of
testing. However, the results are misleading, as the fracture mechanism is different having
a solid culm. AA and PA with hollow culms were comparable, as they have similar cross-
sections and fractures. At similar densities, AA had a higher strength than PA. Figure 7
shows the dispersion of the results. Although it appeared in all three species, the DS
results showed the greatest dispersion. This variability offers little certainty in the design
of structural elements for future applications. The trend line of the PA is surprising, as it
was observed that a higher density led to a lower strength. The loss of mass occurred in
the inner part and, in the case of PA, upon losing the inner part, which was the least dense,
the overall density increased. This inner part is necessary to maintain the tubular shape.
Therefore, the loss of mass of the inner part increases the density of the culm and, in turn,
decreases its resistance to bending.
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3.2.2. Compression

The results of the compression test of the specimens obtained after 6 months of
exposure to the environment are presented in Table 6. The values of compressive strength,
stiffness, and density of each species showed a certain variability, as already detected in
other tests [21]. The most variable in terms of strength and stiffness was the AA species.
In terms of density, the variation in all species was similar. The higher variability of the
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AA species means that, although its average strength was the highest, the value of the fifth
percentile, i.e., that used in the structural calculations, was not. In contrast, this was true in
the 0 month tests [21].

The density values indicated that the AA species suffered less loss in the culm wall,
around 8%, which also resulted in a loss of strength of less than 10% and a loss of stiffness
of around 1%. In this case, analyzing the fifth percentile, the greater variability of the
samples evaluated at 6 months suggests that the values were considerably reduced, but
this was due to the variability of the material and not to the loss of mass.

The PA species suffered losses in wall density of around 10%, which also resulted in
a slight loss of strength and stiffness. Analyzing the average values, the loss in strength
was less than 7% and the loss in stiffness was less than 10%. Furthermore, when analyzing
the fifth percentile value, the highest variability of the samples analyzed was found in the
samples obtained at 6 months.

After 6 months of weathering, although all species lost density in their culm wall, the
most affected by this compression test was the solid species (DS). Compared to the initial
results, the DS species suffered a culm wall density loss of about 15%, which resulted in
strength losses of about 45% and stiffness losses of about 35%. These are very high losses,
probably due to the very morphology of bamboo, where most of the mass loss in hollow
species occurs in the interior, which is easier to attack due to the lower concentration of
fibers [38]. On the other hand, in the case of DS, the most affected area was the outside,
with its consequent loss of mechanical properties.

Figure 8 shows an example of the load–displacement diagrams obtained in the com-
pression tests. Figure 9 presents images of the fractures of these three species. In the
three types of bamboo studied, DS, PA, and AA, the response to the compression test was
continuous, with no sawtooth patterns appearing as in the bending tests.

In the case of DS, a bamboo with a solid culm, collapse appeared at the weakest point
of the compression zone. This is where the longitudinal fibers began to separate under
shear stresses. Once the separation started, the fracture extended continuously in the
transverse plane.
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As PA and AA have a hollow circular culm, their geometry is more optimal for
resisting compression. When the shear stress of the material holding the fibers together
was overcome, cracks appeared in the center of the culm. The gradual growth of the crack
resulted in a continuous reduction in load on the graph. The cracks appeared mainly at
the upper and lower ends of the specimen, together with longitudinal cracks arising in the
center of the culm [21].

Figure 10 shows the relationship between compressive fracture toughness and density
for the three types of bamboo. The graph shows that the density of the culm wall had a
direct relationship with its compressive strength; a higher density of the wall led to a higher
fracture stress and stiffness in compression. This direct relationship between wall density,
strength, and stiffness also appeared at 0 months [21]. Analyzing Table 6, it can also be
deduced that density had a similar influence on the modulus of elasticity: a higher density
made the material stiffer. Figure 10 also shows the dispersion of material properties.
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4. Conclusions

In order to use bamboo species safely and efficiently, it is necessary to carry out
durability tests and evaluate the mechanical properties after six months of exposure to
biotic and abiotic agents. The results obtained were contrasted with a previous study
of characterization of these three same species [21], in order to observe differences in
their performance.

The DS and AA bamboo varieties were found to be very durable CD1, while the PA
variety was durable CD2.

Bending strength values of DS showed a reduction in the fifth percentile of about 10%
at 6 months. For PA, the reduction was less than 5%, and, for AA, there was a reduction of
about 20%. On the other hand, regarding the bending stiffness values, DS did not appear as
affected, while a reduction in stiffness of more than 26% was observed for PA, with almost
27% for AA. The DS withstood the highest bending loads, as it had a solid culm section.

The fracture toughness of the materials was also analyzed in relation to their density.
In general, a direct relationship was observed between the density of the culm wall and its
strength and stiffness. A denser wall led to higher strength and stiffness. The DS results
showed the greatest dispersion and, therefore, offer little certainty for the design of the
structural elements. For PA, it was observed that a higher density led to lower strength,
due to the fact that the loss of mass occurred in the internal part, which was the least dense,
such that the overall density increased while the flexural strength decreased.

In compression, the most variable in terms of strength and stiffness was the AA species,
which is why it also had the lowest fifth percentile value. In the case of PA, the average loss
in strength was less than 7%, and the average loss in stiffness was less than 10%; however, if
the fifth percentile was analyzed, the higher variability of the samples at 0 months resulted
in slightly higher values at 6 months. After the 6 month weathering period, although all
species lost wall density, the most affected was the solid species (DS) with losses in culm
wall density, strength, and stiffness of 15%, 45%, and 35%, respectively.

Thus, it can be concluded that most of the mass loss in hollow species occurred on
the inside. In the case of DS, the most affected area was the outside, where fibers were
present in greater quantity, with a consequent loss of mechanical properties. As PA and
AA have a hollow circular culm, their geometry was more optimal to resist compression.
Accordingly, as in the case of bending, a higher wall density led to a higher fracture stress
in compression. Therefore, morphology is a critical factor in the durability of bamboo. In
hollow species, although the inner part does not provide structural capacity, it helps to
maintain the tubular shape in bending tests, whereas this is not the case for solid species.

This work focused on three bamboo species. The same methodology should be applied
on other species in order to enlarge the available comparative data. Protective treatments
for increasing durability should be further tested to evaluate their efficiency in preventing
the loss of mechanical properties.
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