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Abstract: The application of UAVs in forest fire monitoring has attracted increasing attention. When 

a UAV carries out forest fire monitoring cruises in a large area of the forest, one of the main problems 

is planning an appropriate cruise path so that the UAV can start from the starting point, cruise the 

entire area with little detour, and return to the initial position within its maximum cruise distance. 

In this paper, we propose a flight path planning method for UAV forest fire monitoring based on a 

forest fire risk map. According to the forest fire risk level, the method uses the ring self-organizing 

mapping (RSOM) algorithm to plan a corresponding flight path. In addition, since it is difficult for 

a single UAV to complete a single full-path cruise task in a large area within its maximum cruise 

time, a multi-UAV cruise scheme is proposed. First, the Gaussian mixture clustering algorithm is 

used to cluster the study area and divide it into several subareas. In combination with the RSOM 

algorithm, the corresponding path is planned for each UAV. A simulation with an actual dataset 

showed that the proposed method solves the problem of UAV patrol path planning for forest fire 

monitoring and can complete the task within a reasonable time. 

Keywords: fire risk map; flight path; multi-UAV 

 

1. Introduction 

Forest fires cause not only great economic losses but also environmental pollution. 

Effective forest fire prevention methods can reduce the losses caused by fires [1–3]. In 

recent years, wireless sensor networks have been used for fire monitoring and early warn-

ing. In theory, when many nodes are deployed, a fire can be detected in a timely manner 

[4–6]. However, forest areas are vast, and the number of nodes that can be deployed is 

limited by financial budgets. Consequently, it is difficult to cover the whole area with a 

limited number of deployed nodes. 

However, widely used fire watchtowers can cover a large area [7–9], although blind 

areas still exist due to the influence of terrain variation. Therefore, in the case of large 

forest areas, constructing an effective monitoring system is of great significance to prevent 

fires. 

Currently, the development of UAV technology has attracted extensive attention 

[10–12], because it has the potential to collect and transfer real-time images of target areas 

[13–15]. UAVs, which have a simple structure and flexible flight capability and are low 

cost, are gradually being used in various fields such as forest fire monitoring [16–18]. 

In a large forest area, one of the problems with using UAVs is planning an appropri-

ate cruise path. Currently, the UAV path planning problem is usually simplified to the 

traveling salesman problem [19,20]. Methods such as neural network, genetic algorithm, 

simulated annealing algorithm, and differential evolution ant colony algorithm can be 

used to get the optimal path [21,22]. When there are a few places that need to be visited 

for data acquisition, the differential evolution and hybrid ant colony algorithms can find 

the shortest patrol path for a UAV route [23–25]. However, in a large forest area, it is 
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difficult to derive the situation of the whole area by traversing the locations of only a lim-

ited number of sensor nodes. 

Compared with a single UAV, collaborative patrolling with multiple UAVs can im-

prove the corresponding monitoring efficiency [26–28]. Multiple UAVs create multiple 

patrol paths from source to destination. The main advantage of using multiple patrol 

paths is that it reduces the area visited by a single UAV. It also helps in reducing the total 

patrol time during emergency patrolling. Table 1 provides a comparison of path planning 

methods in the literature. 

However, how to divide the whole area into subareas so that a single UAV can finish 

its patrol task and return to the initial position within its maximum cruise range and how 

to determine which places should be visited more frequently are still open for research. 

The probability of fire events differs in different regions of a forest. Factors such as 

topography, climate, human activity, and vegetation are recognized as the main causes of 

regional fires [29–31]. These factors can influence each other directly or indirectly. For ex-

ample, an area with steep slope and rugged roads may be a place where few people tread; 

thus, it will have high vegetation coverage and more combustible materials, but fewer 

careless fires caused by humans [32–34]. 

By analyzing the relationship between these factors and historical fire locations, a 

forest fire risk map can be produced. The forest fire risk map is used to predict the prob-

ability of fire occurring in a region, which is crucial for management departments to per-

form patrolling tasks and allocate fire prevention resources effectively [35–37]. Generally, 

one of the main purposes of UAV path planning is to design a patrol path directed at a 

specific target with minimal cost. An important feature of forest fire detection tasks is that 

routes are created with a focus on increasing the probability of fire detection. Thus, when 

we plan a UAV patrolling path, areas with different levels of fire probability should adopt 

different strategies. Otherwise, the UAV resource allocation may not be appropriate, 

which could reduce detection efficiency. 

The random search-based (RSB) method can design a UAV patrol path in the simplest 

way. It randomly selects the points to be visited, considering whether the UAV can finish 

the patrol task and return to the initial position within the maximum cruise range. The 

RSB method can be optimized with fire risk information. The local search-based (LSB) 

method starts with a randomly created path, and then evaluates the fitness of the path by 

the total average fire probability of all possible paths. This is a kind of heuristic algorithm 

that obtains near-optimal paths of a local area by sacrificing optimality and accuracy for 

speed [38]. 

Table 1. Factors considered in path planning methods in the literature. 

Reference 
Large Area 

Suitability 

UAV  

Endurance 

Cruise  

Frequency 

Optimization  

Objective 

Multiple 

UAVs 

    Distance Fire risk  

[13]  √  √   

[17,27] √ √  √  √ 

[21,23]  √     

[25] √   √  √ 

[28] √   √  √ 

[38]  √  √ √ √ 

Ours √ √ √ √ √ √ 

To detect fires in a timely manner, a simple yet effective method is to increase the 

number of UAVs and the times they are dispatched within a specific area. However, the 

number of available UAVs is typically constrained by cost and the specific task. For ex-

ample, a long patrol distance will result in a long waiting time for the same UAV to be 

dispatched again. In the case where the number of available UAVs is fixed, an alternative 
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is to minimize the patrol distance so that the frequency of dispatch is increased within a 

certain time interval. Meanwhile, the percentage of high fire risk areas patrolled should 

be maximized. Ideally, the UAV patrol path could improve the travel time in high-fire-

risk areas without losing the overall detection coverage. Therefore, fire risk information, 

patrol distance, and dispatch frequency should be jointly considered when planning pa-

trol paths for UAV-based early fire detection. However, such factors have not been well 

considered in this type of patrol path planning. Moreover, one of the main problems in 

planning an appropriate cruise path is that the UAV can cruise the target area with little 

detour, and then return to the initial position within its maximum cruise distance. 

In this paper, we propose a risk-specific patrol path (RSUPP) approach for planning 

an optimal UAV patrol path that integrates distance, large area suitability, and fire risk. 

We show that the fire risk map can be exploited to optimize the UAV patrol path. In ad-

dition, since it is difficult for a single UAV to complete the task of patrolling a long path 

in a large forest area within its maximum cruise distance, this approach requires the co-

operation of multiple UAVs. Thus, large areas will be divided into smaller subareas, such 

that single UAVs can finish their patrol task in the subareas. Meanwhile, in order to per-

form specific fire detection patrol tasks for different fire risk areas (for example, when the 

number of patrol times varies with the fire risk), RSUPP applies a novel strategy. 

RSUPP clusters fire risk areas with the Gaussian mixture clustering algorithm. For 

example, very-high-fire-risk areas (points) were clustered and divided into smaller sub-

areas. This made the very-high-fire-risk points in the subareas dense; consequently, the 

point-to-point distance between any pair of points was relatively shorter. Then, the points 

with the same fire risk were input into the RSOM path planning algorithm to obtain the 

shortest path for the UAV in a given subarea. Lastly, multiple UAVs can patrol along the 

shortest path of each subarea within their maximum cruise distance. The workflow of this 

method is shown in Figure 1. 

 

Figure 1. Flowchart of proposed method. 
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It is worth noting that RSUPP is totally different from approaches in previous studies 

[39–41], in which they inputted all points for clustering regardless of the fire risk level. 

In order to validate the performance of RSUPP, we evaluated it against the related 

RSB and LSB algorithms on a practical dataset. Since direct comparisons of the validity of 

these methods could be made only on the basis of the same area, we also clustered the 

whole area using all points. Then, we applied the RSOM-based path planning method to 

the subareas obtained by clustering all points to obtain risk-specific paths of the subareas. 

In order to distinguish this method from RSUPP, we call it AP-RSUPP. 

The evaluation results demonstrate that paths obtained by AP-RSUPP could patrol a 

high percentage of target points within same flight distance. The number of very-high-

risk points patrolled by AR-RSUPP paths was at least 12.03% and 85.64% higher compared 

to the LSB and RSB paths, respectively. The total flight distance with RSUPP was approx-

imately six-tenths the distance with AP-RSUPP at the completion of patrolling all of the 

very-high-risk points. 

The remainder of this paper is organized as follows: Section 2 describes the proposed 

method. The result of the proposal is then analyzed and discussed in Section 3. Section 4 

summarizes the findings and provides a conclusion. 

2. Methods 

2.1. Model Formulation 

To devise an approach that maximizes the percentage of high-fire-risk points pa-

trolled while minimizing the total distance along the points, the following objective func-

tion, constraints, and decision variables were used in the model formulation: 

 min � =  � � ������

��

, (1)

max� =  � � ���

��

, (2)

��� = �
1       if the solution to TSP from point i to point j
0                                                                   otherwise

, (3)

� ��� = 1 (��� � = 1,2, … , �)

���

���

, (4)

� ��� = 1 (��� � = 1,2, . . . , �)

���

���

, (5)

�� − �� + ���� ≤ � − 1 (for i ≠ j, i = 2,3, … , �;  j = 2 … . . . , �), 

All ��� =  0 or 1, All �� > 0. 
(6)

Objective Function (1) is used to minimize the total distance of all patrolled target 

points. Objective Function (2) is used to maximize the points of fire risk being patrolled. 

Constraint (3) indicates whether each point has been visited. Constraints (4) and (5) ensure 

that each point is patrolled only once. Constraint (6) guarantees that all points have a com-

plete loop and that there are no subloops. 

2.2. Gaussian Mixture Model 

In this study, the whole area was clustered using the Gaussian mixture model such 

that a large area was divided into several subareas for patrolling. The Gaussian mixture 

model is a common clustering algorithm that is formed by the linear combination of mul-

tiple single Gaussian models [42]. The model assumes that all samples obey mixed normal 
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distribution and estimates the probability density function of the samples. The model ob-

tained is a linear combination of Gaussian models, with one cluster corresponding to one 

Gaussian distribution. Coordinate points are input, and, after initialization, the respon-

sivity of multiple single Gaussian models to points is calculated, before iterating the pa-

rameters of each model. The iterated parameters are then used to calculate the member-

ship degree of each model. For each point, the model subscript with the highest respon-

sivity is regarded as its category identification, and the category to which the point be-

longs is obtained. 

1. Initialize � Gaussian distributions with random mean � and random variance �� 

for each Gaussian distribution. 

2. Perform soft clustering on the input data (known as the expectation step), and calcu-

late the membership degree of each coordinate point to each category with Equation 

(7). 

� =
�(��|��, ��

�)

�(��|��, ��
�) + �(��|��, ��

�) + ⋯ + �(��|��, ��
�)

, (7)

where �(�|�, �2)  is the probability density function of the normal distribution 

(Equation (8)), and the value range of � is 1, 2, 3, …, K. 

�(�|�, ��) =
1

(2���)�
� −

1

2��
(� − �)�. (8)

3. With E, estimate the parameter mean � and variance �� of the Gaussian distribu-

tion; � is the weighted average of all coordinate points calculated with Equation (9), 

and variance �� is calculated with Equation (10). 

�� =
∑ �(���)��

�
���

∑ �(���)�
���

. (9)

��
� =

∑ �(���)(�� − ��)
��

���

∑ �(���)
�
���

. (10)

4. Evaluate the log likelihood with Equation (11) to check for convergence by summing 

the log-likelihood values of all clusters. If there is convergence, return the result; oth-

erwise, return to step 2. 

ln�(�|�, ��) = � ln �� ���(��|��, ��
�)

�

���

�

�

���

, (11)

where �� is the mixing coefficient. 

2.3. Ring Self-Organizing Map-Based Path Planning 

Let us consider a common application scenario of forest fire monitoring. There are N 

points in the areas that should be patrolled. When a UAV is used for patrolling, it is nec-

essary to find a closed loop so that the UAV passes each point only once and the total 

distance is the shortest. In other words, we want to traverse all points starting from and 

returning to the takeoff point, and the total distance that the UAV passes can be calculated 

using Equation (12). 

����� = � �(��, ����) + �(��, ��)

���

���

, (12)

where �� is the number of points, and the value is [1, n], and �(��, ����) represents the 

distance between points �� and ����. Thus, this can be regarded and solved as the trav-

eling salesman problem (TSP). 
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The ring self-organizing map (RSOM) algorithm was used for path optimization [43]. 

The algorithm is an unsupervised self-learning competitive neural network. The features 

of the input data can be extracted by the algorithm. The principle is to get the nearest 

neuron of the current node, which is called the winning neuron, and then use this neuron 

to create a Gaussian distribution and update the positions of other neurons successively, 

i.e., to update the output neuron weight vector. After iterations, the output neurons con-

tinue to learn the features behind the input data. When RSOM is applied to TSP, each node 

in the input layer can be seen as a point. The weights of neurons in the output layer and 

the output layer are in the same dimension, which indicates the location of neurons. The 

requirement is to proceed from the starting point only once through each node, and finally 

return to the starting point. Therefore, the output layer is a ring structure. After the for-

mation of the ring results, the neurons compete to win in the training process. Algorithm 

1 shows the path planning process of RSOM method. 

Algorithm 1: Path planning algorithm based on RSOM 

1: ▷Input: Tmax, nums, N, C, W 

2: ▷Tmax: Number of iterations 

3: ▷Nums: Number of classified points 

4: ▷C: Counter for each neuron 

5: ▷W: Weight of each neuron 

6: ▷Tint: Check time interval 

7: ▷Output: Path 

8: i = 0, j = 1 

9: While (i <Tmax) do 

10:  for j = 1 to Nums do 

11:    NeuronIndex = minDistanceNeuron(sorted(distance(j,1:N))) 

12:    PreNeuronIndex = getPreNeuronWithNeuronIndex() 

13:    NextNeuronIndex = getNextNeuronWithNeuronIndex() 

14:    W = updateParameterW(NeuronIndex,PreNeuronIndex,NextNeuronIndex) 

15:    C(NeuronIndex)++ 

16:  end for 

17: ▷Add neurons 

18:  if mod(i,Tint) == 0 

19:     distance1 = distance(NeuronIndex,PreNeuronIndex) 

20:     distance2 = distance(NeuronIndex,PreNeuronIndex) 

21:     if distance1 > distance2 

22:       insertNewNeuronbetween(NeuronIndex,PreNeuronIndex) 

23:     else  

24:      insertNewNeuronbetween(NeuronIndex,NextNeuronIndex) 

25:     end if  

26:  end if 

27: ▷Draw points and neuronal paths 

28:  displayW(Nums, W, i) 

29: end While 

30: return displayPath(Nums) 
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3. Results and Discussion 

3.1. Results of RSOM-Based Planning 

A national forest park in China with high forest fire risk was selected for the case 

study. In order to improve the fire prevention ability, a forest fire risk map of the area was 

produced in [44]. The risk rating of a forest fire was derived by using a range of factors 

that influence the occurrence of a fire (e.g., topography, meteorology, human activities, 

and vegetation data). As shown in Figure 2, the areas in the fire risk map were divided 

into five risk levels: very low, low, medium, high, and very high. 

 

Figure 2. Forest fire risk map of study area. 

When planning the patrol path of the UAV, different patrolling strategies should be 

adopted for areas with different fire probability to save on cost. Thus, specific flight paths 

of UAV were planned for different risk areas. 

The latitude and longitude coordinates of the grids with different risk levels in the 

fire risk map were extracted as patrolling points (Figure 3). Using the RSOM algorithm, 

the flight path map and flight distance corresponding to each point were obtained (Figure 

4). 

  
(a)  (b)  
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(c)  (d)  

 

 

 

 

 

 

 

(e)   

Figure 3. Extracted coordinates for patrolling: (a) very-low-risk area; (b) low-risk area; (c) moderate-

risk area; (d) high-risk area; (e) very-high-risk area. 

  
(a)  (b)  

  
(c)  (d)  
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(e)   

Figure 4. Planned paths for areas with different fire risk: (a) very low risk; (b) low risk; (c) moder-

ate risk; (d) high risk; (e) very high risk. 

Table 2 shows the flight distance and flight time corresponding to different risk levels 

when the flight speed of the UAV was 60 km/h. It can be seen that the flight distance and 

time differed in different risk areas. Among them, the moderate-risk area had the longest 

flight distance and flight time, 585.63 km and 9.76 h, respectively. It is difficult for a single 

UAV to finish the task of patrolling the long path of a large forest area within its maximum 

cruise distance; thus, multiple cooperating UAVs are required to patrol such a large area. 

Table 2. Flight distance and time of single UAV. 

Risk Level Very Low Low Moderate High Very High 

Distance (km) 88.96 493.79 585.63 375.48 165.00 

Time (h) 1.48 8.23 9.76 6.26 2.75 

3.2. Results of Multiple UAVs with RSUPP 

Considering the endurance and time cost of a UAV, it is difficult for a single UAV to 

complete an entire cruise within its maximum cruise distance. Therefore, various risk ar-

eas should be patrolled by multiple UAVs. In this case, each UAV starts from a different 

position and takes a flight route so that only one UAV passes through each coordinate 

point (except the starting point). This can be regarded as the multiple traveling salesman 

problem (MTSP). 

The vehicle routing problem (VRP) can be considered as a generalization of the 

MTSP. The VRP has different solutions in different application scenarios. Here, the system 

characteristics of the MTSP problem actually represent a special situation of the VRP [45]. 

That is, in an actual UAV flight situation, we need to consider the following issues [46]: 

(a) Whether the area traveled by the UAV is a fully connected graph; 

(b) Whether there is only one shortest path between any two points; 

(c) Whether the starting point coincides with the stopping point. 

The TSP problem adequately describes these three issues. Moreover, denser points 

indicate a shorter total distance between them. Considering the UAV’s cruising ability, a 

smaller area with relatively dense points is preferred. Thus, through Gaussian mixture 

model clustering, the MTSP problem was transformed into multiple independent TSP 

problems to satisfy the model application and requirements for cruising ability. 

The fire risk maps corresponding to the study area were clustered. First, the param-

eters of the Gaussian mixture model were initialized and iteratively updated. Then, the 

final cluster classification was obtained according to the Gaussian mixture distribution. 

The coordinates corresponding to each category were input into the RSOM neural net-

work to get the flight path and distance. Figure 5 shows the flight paths for multiple co-

operating UAVs in the corresponding risk areas. 
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 5. Multi-UAV paths: (a) very low risk; (b) low risk; (c) moderate risk; (d) high risk; (e) very 

high risk. 

As mentioned above, each fire risk area was divided into patrolling subareas by 

Gaussian mixture model clustering; these subareas could be patrolled by multiple UAVs. 

The flight distance and flight time corresponding to each subarea are listed in Table 

3. The flight distance, from very low risk to very high risk, was 87.25, 492.11, 580.96, 369.01, 

and 163.58 km. The comparison of flight distance between a single UAV and multiple 

UAVs is shown in Table 4. The optimized total flight distance of multiple UAVs was 

slightly shorter than the distance with a single UAV. The time needed to finish the patrol-

ling task in any risk area was greatly shortened by the cooperation of multiple UAVs. 

Taking the very-high-risk area as an example, it can be seen that it took 2.75 h for a single 

UAV to cruise once (Table 2). As shown in Table 3, when multiple UAVs carried out the 

cruise task simultaneously, the task could be completed within 0.57 h, which is only about 

one-fifth of the time required for a single UAV. 
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Table 3. Flight distance and time corresponding to each area obtained by multiple UAVs. 

Sub-

Area 

Very Low Low Moderate High Very High 

Distance Time Distance Time Distance Time Distance Time Distance Time 

0 13.75 0.23 67.14 1.12 90.94 1.52 48.20 0.80 34.31 0.57 

1 13.13 0.22 47.70 0.80 82.61 1.38 37.50 0.63 26.27 0.44 

2 11.25 0.19 73.27 1.22 30.45 0.51 26.98 0.45 23.33 0.39 

3 15.01 0.25 85.69 1.43 87.77 1.46 26.98 0.45 17.25 0.29 

4 9.55 0.16 70.90 1.18 67.14 1.12 68.63 1.14 14.92 0.25 

5 18.91 0.32 31.49 0.52 85.09 1.42 59.31 0.99 9.93 0.17 

6 2.64 0.04 55.74 0.93 80.73 1.35 55.24 0.92 10.72 0.18 

7 3.01 0.05 60.18 1.00 56.23 0.94 46.17 0.77 26.85 0.45 

Total  

distance 
87.25 492.11 580.96 369.01 163.58 

Table 4. Comparison between single and multiple UAVs. 

Method 
Very Low Low Moderate High Very High 

Distance (km) Distance (km) Distance (km) Distance (km) Distance (km) 

A UAV 88.96 493.79 585.63 375.48 165.00 

Multi-UAV 87.25 492.11 580.96 369.01 163.58 

Optimization 

(%) 
1.9 0.3 0.7 1.7 0.8 

Generally, a high fire risk level indicates that there is a high probability of fire in the 

area. Shortening the time for the patrolling task means that the frequency of patrolling in 

the area can be increased in a day. Consequently, a fire can be monitored in time, and the 

loss caused by fire can be reduced. For areas with different risk levels, the cruising fre-

quency of UAVs should also be different. In this paper, the corresponding cruising fre-

quency was allocated according to the fire risk level, as shown in Table 5. In practice, the 

frequency of patrolling different risk areas can be flexibly adjusted according to the flight 

time and endurance of UAVs in actual situations. The total patrolling time for each sub-

area with multiple cooperating UAVs can be calculated using Equation (13). 

��������� = � ���� × �����

�

���

, (13)

where ��������� represents the total time for the UAV to cruise all risk levels in each sub-

area, ����  is the frequency of each risk level, and �����  is the time for UAV patrolling 

at each risk level in each subarea. 

Table 5. Frequency corresponding to each risk level. 

Risk Level Frequency 

Very low 1 

Low 2 

Moderate 3 

High 4 

Very high 5 

The control stations of the UAVs are shown in Figure 6, where P0–P7 indicate the 

starting positions of the UAVs. Patrolling tasks in areas with different risk levels can be 

completed by multiple UAVs. The longitude and latitude corresponding to the stations 

are shown in Table 6. 
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Figure 6. Site distribution of UAVs. 

As shown in Table 7, the total cruising time for subareas 0 and 2 was 13.08 and 7.91 

h, respectively. The cruising time for other subareas was about 10 h. This means that all 

patrolling tasks could be finished within 1 day. 

Table 6. Longitude and latitude corresponding to UAV sites. 

Site Latitude Longitude  

P0 32°7′51.28″ N 118°37′10.41″ E 

P1 32°5′54.94″ N 118°36′40.02″ E 

P2 32°6′53.23″ N 118°34′24.37″ E 

P3 32°5′44.13″ N 118°33′21.98″ E 

P4 32°3′54.38″ N 118°34′40.50″ E 

P5 32°4′57.84″ N 118°31′55.44″ E 

P6 32°3′15.76″ N 118°33′4.09″ E 

P7 32°4′5.73″ N 118°29′25.35″ E 

Table 7. Total cruise time for each category when using multiple UAVs. 

Subarea Very Low Low Moderate High Very High Total Time (h) 

0 0.23 1.12 1.52 0.80 0.57 13.08 

1 0.22 0.80 1.38 0.63 0.44 10.68 

2 0.19 1.22 0.51 0.45 0.39 7.91 

3 0.25 1.43 1.46 0.45 0.29 10.74 

4 0.16 1.18 1.12 1.14 0.25 11.69 

5 0.32 0.52 1.42 0.99 0.17 10.43 

6 0.04 0.93 1.35 0.92 0.18 10.53 

7 0.05 1.00 0.94 0.77 0.45 10.20 

3.3. Comparison of Related Works 

In order to compare the same conditions with related works, the whole area was first 

clustered and divided into subareas without considering the fire risk level. For each sub-

area, we applied the proposed RSOM-based path planning method to obtain the risk-spe-

cific path. In order to distinguish this method from RSUPP, we call it AP-RSUPP. 
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We compared our work with RSB and LSB methods [38]. The proposed AP-RSUPP 

planned patrol paths for every fire risk level in a given subarea, and the patrols were car-

ried out along the paths planned for the specific risk levels. For example, after traversing 

the path planned for high-risk areas, all of the very-high-risk points were covered. Thus, 

the percentage of high-fire risk-points patrolled by the AP-RSUPP path reached 100%. 

In order to compare the performance under the same conditions, we used the flight 

distance obtained by AP-RSUPP as the limiting condition of RSB; that is, the flight distance 

was the same with RSB and AP-RSUPP. Table 8 shows the percentage of each risk level 

patrolled by RSB and AP-RSUPP paths within the same flight distance in each subarea. It 

can be seen that, without the fire risk information, the number of high- and very-high-risk 

areas patrolled was very low when there was random patrolling by RSB paths. 

Table 8. Percentage of risk levels patrolled by RSB and UPP paths within same flight distance in 

each subarea. 

Subarea 

Very Low Low Moderate High Very High 
AP-RSUPP 

(%) Distance 
RSB 

(%) 
Distance 

RSB 

(%) 
Distance 

RSB 

(%) 
Distance 

RSB 

(%) 
Distance 

RSB 

(%) 

0 16.86 7.69 80.76 7.63 128.26 9.79 86.19 8.05 39.95 8.44 100 

1 21.52 0.00 133.15 3.55 134.33 4.39 64.11 3.50 25.90 6.72 100 

2 12.67 6.98 71.76 3.02 112.57 3.65 72.75 4.46 19.59 2.38 100 

3  8.78 0.00 77.26 12.93 110.08 13.39 93.55 12.82 56.86 14.36 100 

4 13.76 18.75 71.23 12.26 86.74 9.66 75.63 13.41 43.01 10.57 100 

5 20.07 3.28 159.68 3.48 129.81 3.95 71.10 2.82 30.98 3.51 100 

6 17.34 13.04 81.89 11.59 83.80 11.54 52.58 9.04 32.43 10.71 100 

7 22.11 2.60 133.57 3.76 155.43 4.38 85.35 3.13 33.54 2.4 100 

Total dis-

tance 
133.11 809.3 941.02 601.26 282.26  

With the fire risk information, the path for patrolling for fire detection can be more 

purposeful. A very high fire risk level indicates a high probability of fire. Therefore, we 

should pay more attention to areas with a very high risk level. Taking the flight distance 

obtained by AP-RSUPP as the limiting condition, the LSB path patrolled along the route 

with the higher total average local fire probability. As shown in Table 9, the percentage of 

very-high-risk areas patrolled by the LSB path was improved compared to RSB. 

Table 9. Proportion of very-high-risk areas to subareas and percentage patrolled by LSB and UPP 

paths. 

Subarea Origin (%) LSB (%) AP-RSUPP (%) 

0 8.49 48.10 100 

1 3.97 15.13 100 

2 3.77 73.81 100 

3 13.21 87.97 100 

4 11.68 20.33 100 

5 3.55 10.53 100 

6 11.10 17.86 100 

7 3.84 33.6 100 

From Tables 8 and 9, we can see that the number of very-high-risk fire points pa-

trolled by AP-RSUPP paths was approximately 85.64–97.6% higher compared to RSB 

paths and 12.03–84.76% better compared to LSB paths. 

From Tables 3 and 8, we can see that the total distance for traveling all very-high-risk 

fire points was 163.58 and 282.26 km with RUSPP and AP-RUSPP, respectively. The total 
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patrol distance of RUSPP paths was approximately six-tenths the distance of AP-RUSPP 

paths at the completion of patrolling all very-high-risk points. 

4. Conclusions 

This paper proposed a UAV flight monitoring method based on a forest fire risk map. 

The RSOM neural network algorithm was used to plan routes for the UAV according to 

fire risk levels. Considering the endurance and time cost of a UAV, it is difficult for a 

single UAV to complete the whole cruise within its maximum cruise distance. Therefore, 

several risk areas should be patrolled with the cooperative effort of multiple UAVs. This 

problem can be solved by regarding it as a multiple traveling salesman problem. 

Therefore, a combination of the clustering method and the RSOM distribution 

method was proposed to solve the path planning problem of multiple UAVs. First, the 

Gaussian mixture model was used to cluster risk levels, and then the respective flight 

paths were obtained through the RSOM neural network. When multiple UAVs were de-

ployed cooperatively to complete the patrolling task, the maximum time required for each 

single UAC was shortened. The simulation results showed that the proposed method can 

be used to plan the paths, and the patrolling tasks can be completed within a reasonable 

time. 
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