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Abstract: The diversity of genetic resources is essential to cope with environmental changes. However,
despite forests play a crucial role in mitigating changes, genetic knowledge has scarcely been used
for forest conservation. In this study, we used nuclear microsatellites to understand the patterns
of genetic diversity and population genetic structure in Ocotea rotundata van der Werff (Lauraceae),
an endemic Ecuadorian tree, highly affected by habitat changes and fragmentation. Our results
show high levels of genetic diversity, except in one population. The level of genetic differentiation
between populations was low and genetic clusters showed no apparent spatial pattern. In fact,
a high degree of genetic admixture was found between most populations. Migration rates were
asymmetric but overall high, except in one population, where outgoing gene dispersal was limited.
Nevertheless, allelic fixation values suggested a general deficit in heterozygotes, probably due to an
increase in the levels of mating between close relatives. Although long-lived organisms, such as trees,
can often accumulate a surprising amount of genetic diversity, the results found here could be an
early sign of a decline in the diversity of O. rotundata. These findings provide baseline information
on genetic resources to support future restoration programs to mitigate the impacts of changes in
O. rotundata populations.
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1. Introduction

Forest trees cover almost 30% of the terrestrial surface of the earth, from boreal
to tropical latitudes, being responsible for 3/4 of the terrestrial biomass and crucial to
the global carbon cycle [1]. Forests are expected to play an important role in climate
change mitigation but their adaptative potential depends on the variability of forest genetic
resources [2–4]. Understanding how forest trees cope with environmental changes and
the impacts that changes might have on their genetic diversity are crucial questions, but
they remain largely unexplored and very few conservation strategies have empirically
considered genetic information [1,5].

Maintaining the variability in genetic resources is a fundamental issue in the context
of changes but this is often a complex subject in long-lived species, since long-distance
gene flow between patches might occur, buffering the effects of inbreeding and genetic
drift [6,7]. In trees, somatic mutations can also occur, being transmitted to the offspring,
and promoting increases in genetic diversity [8]. Consequently, high genetic diversity
has been reported in many trees, such as Koompassia malaccensis Maingay ex Benth. [9],
Cercis canadensis L. [10], and Shorea leprosula Miq. [11]. Nevertheless, gene flow needs
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to be recurrent throughout generations or from multiple population sources to maintain
adequate levels of genetic diversity and the presence of rare alleles [10,12]. Thus, isolation
and small population size can affect genetic diversity, even in the case of wind-pollinated
species (e.g., Fagus sylvatica L. [13]; Juniperus communis L. [14]; Polylepis incana Kunth [15]).
Unlike ecosystems where community dynamics are relatively fast, these processes might
be harder to detect in forests as it takes several generations to reach a critical threshold [16].
The effects of disturbance in the gene flow of tree species are even harder to understand in
tropical forests, since they are well under-represented in genomic studies, aside from a few
commercially important species [17,18]. Nevertheless, fragmentation and deforestation in
neotropical forests due to clearance and land conversion for agriculture are major drivers of
biodiversity loss, contributing to global warming [19]. Ecuador is one of the most biodiverse
countries in the world but has one of the highest deforestation rates in South America [20,21].
Drivers of deforestation and fragmentation include, predominantly, land conversion to
agriculture, but also pastures to livestock, road development and infrastructures, and oil
extraction [22,23]. In addition to forest loss, many species occur in small, irregular, and
fragmented populations with a decreasing patching size, due to agriculture, development,
and mining activities [20,21,24].

In this study, we focused on Ocotea rotundata van der Werff, an endemic Ecuadorian
tree. This species has a restricted distribution in the high Andes mountains, with pop-
ulations occurring in five tropical forest patches, in the South Ecuadorian provinces of
Loja and Zamora-Chinchipe [25–28] (Figure 1). Ocotea species are a wide genus within the
Lauraceae family, with 350–400 species distributed in tropical and subtropical areas of the
Americas, including the Caribbean and West Indies, but with some species also occurring
in Africa, Madagascar, and the Mascarene Islands [26,27,29]. In Ecuador, ca. 48 species of
Ocotea have been reported [30], many narrowly distributed in fragmented populations [26].
Ocotea species are often pollinated by insects, such as thrips, which have a limited flight
ability, constraining the dispersion of pollen at long distances [31,32]. Species often show
low levels of regeneration through seedlings [33], being highly affected by land logging
and exploitation [34]. Many Ocotea species, including O. rotundata, are widely used in
Ecuador due to the quality of the timber [35]. Several parts of the tree, including bark,
fruits, and leaves have aromatic properties [30], being used as a spice and in traditional
healing practices [36].

Ocotea rotundata was considered a relatively common species in Ecuador due to the
high number of trees per population [27]. However, the species is now included in the
IUCN Red List as Vulnerable due to a continuing decline in area, extent, and/or quality of
habitat [25]. Deforestation and habitat fragmentation by mining have recently increased
forest loss in South Ecuador, especially in indigenous lands where legal and illegal activities
often occur [23,37]. Despite the close location to the Podocarpus National Park, a high
number of mine concessions operate in the south of Ecuador, where O. rotundata populations
occur [38]. The Podocarpus National Park is a known landmark of species conservation,
featuring more than 4000 plant species (approximately 40% are endemic) and having a
very low level of deforestation within its boundaries [21]. Nevertheless, between 1990 and
2018, at least 4% of deforestation occurred within the boundaries of protected Ecuadorian
areas and up to 25.5% in buffer zones [23]. Land changes in this region are also occurring
at a fast rate. Between 1975 and 2001, 20% of the forests occurring in the study area
were converted into pasture fields, especially patches close to roads [39]. During the
same period, fragmentation in the area also increased as forest patches increased from
66 to 581 and the mean forest patch size decreased from 433 to 34 ha [39]. To reduce the
high levels of deforestation, Ecuador has recently promoted several initiatives aimed at
developing sustainable practices, restoring habitats, and conserving biodiversity [40]. The
implementation of conservation measures and the management of fragmented populations
should consider the levels of genetic diversity and the genetic structure of populations, but
this is unknown for most species.
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Figure 1. Topographic map of the study area in Ecuador with elevation displayed. (Left) location
of Ocotea rotundata populations and the Podocarpus National Park. (Right) detail of the study area.
Populations sampled are indicated by a red dot. Main roads are indicated by a dashed line. The blue
line indicates the limit of the Podocarpus National Park. Main cities are also indicated.

In this study, we developed nuclear microsatellites (nSSRs) to determine the patterns
of genetic diversity, population structure and differentiation, and the level of inbreeding
in Ocotea rotundata populations. We specifically asked: (1) Is genetic diversity uniform
across the populations of O. rotundata? (2) Is gene flow occurring between populations
and do they show any asymmetric patterns in the magnitude and direction of gene flow?
(3) How are populations structured genetically and do they show any evidence of spatial
structure? The results provide valuable information to assist conservation actions and the
establishment of guidelines for the conservation of O. rotundata.

2. Materials and Methods
2.1. Population Sampling

Sampling occurred in all the five known populations of Ocotea rotundata van der Werff
described for the Southern Ecuadorian provinces of Loja and Zamora-Chinchipe [25–27]
targeting a total of 140 adult trees (Figure 1). Following [31], individuals with a DBH higher
than 5 cm were considered to be adult trees. Leaf samples from 25–30 adult plants were
collected in each population representing a sample of all recorded adult trees. Except for
the population of ZAM that occurs very close to city roads, the remaining ones occur in
apparently well-conserved patches within the tropical forest and one within the buffer
zone of the Podocarpus National Park (Figure 1). As part of a general study aimed at
understanding the distribution of Ocotea species in Ecuador and status of its populations,
we also quantified the number of adult trees in each population. The total number of adult
trees recorded in each population was LOJ = 1341, CER = 1336, YAN = 1289, CAT = 2750,
and ZAM = 2830. Despite intensive field searches, no other populations of O. rotundata
were found. This species differentiates very well from other Ocotea due to its broad leaves
that have a ferruginous indument and secondary veins. Flowers are creamy to pale yellow
and pubescent, especially when they are young. Fresh leaves were collected in silica gel,
brought to the laboratory, and stored at −80 ◦C until DNA extraction.
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2.2. DNA Extraction and Development of nSSRs

Total genomic DNA was extracted using the DNeasy™ Plant Minikit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions and stored at −80 ◦C. Two small,
inserted libraries digested with HaeII and RsaI enriched with (CT)n sequences were con-
structed using the DNA of O. rotundata. DNA fragments were ligated into a p-GEM-T
Easy Vector following the manufacturer’s instruction and the plasmids were transformed
into Escherichia coli cells (Promega, Madison, WI, USA). The cloned fragments were am-
plified using the M13 forward and reverse primers from the plasmid DNA of positive
clones and PCR sequenced as followed: 3 min at 94 ◦C, followed by 45 cycles at 94 ◦C
for 1 min, annealing at 53 ◦C for 1 min, 2 min at 72 ◦C, and 5 min at 72 ◦C. A total of
88 clones was isolated from the two libraries (48 from HaeII and 40 from RsaI), from which
68 showed a positive hybridization signal. From those, readable sequences were obtained
from 63 clones, all containing the repetitive sequences. Finally, 15 sequences were rejected
due to the proximity of the microsatellite at the end of the sequence. Primer 3 [41] was used
to develop primers based on the remaining 48 sequences. DNA sequencing was performed
in both directions in an Applied Biosystems 3730 DNA Analyzer (Applied Biosystems,
Foster, CA, USA).

2.3. nSSR Amplification

We tested the amplification of primers in 10 samples (2 from each population). From
these, 18 did not amplify, 10 were not reproducible, and 10 were monomorphic across
samples. The remaining 8 primers produced robust, highly polymorphic amplified bands
and were, therefore, used to genotype all O. rotundata samples (Table 1). Amplifications
were performed in 15 µL reactions containing 1.25U MyTaq DNA polymerase and 1X
MyTaq Reaction Buffer (meridian Bioscience, London, UK), 0.4 µM Primer F-FAM and R,
and 100 ng of genomic DNA under the following PCR conditions: initial denaturation at
94 ◦C for 5 min, followed by 35 cycles of denaturation at 94 ◦C for 1 min, specific annealing
temperature for 30 sec, followed by 72 ◦C for 1 min, and a final extension at 72 ◦C for 5 min.
Genotyping of microsatellite fragments was conducted on AB 3500 Genetic Analyzer (Life
Tecnologies Inc., New York, NY, USA). Allele sizes were determined using GeneMarker
3.1. (Softgenetics, State College PA, USA) based on the size standard GS-600 LIZ (Life
Tecnologies Inc., NY, USA). All loci were checked for the presence of null alleles using
MICRO-CHECKER v.2.2.3 [42]. For each microsatellite locus, genetic diversity was assessed
by calculating the mean number of alleles (A), the mean expected heterozygosity (He),
and the mean observed heterozygosity (Ho) using GenAlEx v6.51 [43]. Departures from
Hardy–Weinberg equilibrium (HWE) were also performed within each locus estimating F
values with 900 randomizations using FSTAT 2.9.3.2 [44]. To calculate the extent of linkage
disequilibrium between pairs of loci (LD) we set dememorization numbers at 10,000 and
performed 100,000 iterations for all permutation tests (exact tests) in Genepop [45]. In
all analyses, significant values were corrected for multiple comparisons by Bonferroni
correction [46].
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Table 1. Characteristics and genetic diversity statistics of the nuclear microsatellite markers used in
the genetic study of Ocotea rotundata. For each locus, the mean number of alleles (A), mean expected
heterozygosity (He), and the mean observed heterozygosity (Ho) are shown. * indicates a significant
departure from HWE.

Locus Primers (5′-3′) Ta (◦C) Repeat Motif Size Range
(bp)

Accession
Number A Ho He

Orot5 F: GGTACTCGCGTTTGGGTCTA 58 (AC)10 196–223 OP428738 2 0.55 0.58
R: AGAGTAGTAGTCCCGGGTAAAA

Orot8 F: GTCGGAAACTCTACCAAAGTGA 58 (TC)8 131–140 OP428739 4 0.62 0.63
R: CCATCCCCGTAGAGTCTCG

Orot11 F: TGACAAAGGGTACGTATGAGC 57 (CTT)6 188–193 OP428740 6 0.41 0.49
R: TAATCCCTACCACATGCCCG

Orot15 F: TTTCTATACCTACGCGCCGG 58 (TTCA)10 179–187 OP428741 3 0.45 0.49
R: TAAACCTCCCTCTCCCCTCT

Orot21 F: CGGGACTATCAGAAGGTACGT 59 (GT)22 180–185 OP428742 6 0.13 * 0.21
R: TGGGTAAAAGTCTGCTGATCCT

Orot22 F: TCCTCCTACTCCTATCTACGGA 50 (CT)13 148–155 OP428743 6 0.18 * 0.32
R: ATCGTCTCTGCTATCCCTGC

Orot32 F: CCTCTACTATTCTCTTTAGCGCA 55 (GAA)8 170–175 OP428744 8 0.44 0.45
R: TGCCGATCTGACTATGGAGG

Orot34 F: GGGATCGATCGAAAGCTACG 60 (TA)22 190–195 OP428745 5 0.56 0.58
R: TCCTCCTAGTCCCGTAGTCC

2.4. Genetic Diversity and Differentiation

For each population, genetic diversity was assessed by calculating the mean number
of alleles (A), the mean number of effective alleles (Ae), the number of private alleles
(Apr), the mean expected heterozygosity (He), the mean observed heterozygosity (Ho),
and the mean allelic fixation index (F) using GenAlEx v6.51 [43]. Significant differences
between populations were tested using an ANOVA followed by a post hoc Tukey’s test
(p < 0.05). Departures from Hardy–Weinberg equilibrium (HWE) were also performed
within each population estimating F values with 900 randomizations using FSTAT 2.9.3.2 [44].
Significant values were corrected for multiple comparisons by Bonferroni correction [46].

The partitioning of genetic diversity among populations (FST) and within populations
(FIS) was analyzed using Wright’s F statistics [47]. To test for significant differences in
genetic partitioning among populations, population differentiation (PhiPT) was calculated
using GenAlEx 6.51 [43]. We also used an analysis of molecular variance (AMOVA) to
quantify the partitioning of genetic variance using Arlequin 3.11 with a significance level
of 0.05 after 10,000 permutations [48]. The coefficient of genetic differentiation (Gst) and
gene flow (Nm = 0.5(1 − Gst)/Gst) was estimated for total populations using POPGENE
1.32 [49]. Additionally, pairwise relative migration rates were estimated using Alcala’s
Nm [50]. The directionality of differentiation was estimated according to [51], using the
‘diveRsity’ package in R [52] and plotted against the map of populations sampled.

2.5. Genetic and Spatial Population Structure

To understand the existence of discrete genetic structure among samples, we used
STRUCTURE v.2.3.4 [53] assuming clusters from K = 1 to K = 8, with 10 repetitions per K.
Models were run assuming ancestral admixture and correlated allele frequencies using run
lengths of 300,000 steps for each K after a burnin of 50,000. The optimum K was determined
using STRUCTURE HARVESTER [54], which identifies the optimal K based on both the
posterior probability of the data for a given K and the ∆K [55]. The results of the replicates
at the best-fit K identified by STRUCTURE were post-processed using CLUMPP 1.1.2 [56].
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A principal component analysis (PCoA) was also constructed in GenAlEx 6.51 [43] to detect
the genetic relatedness among individuals based on Nei’s genetic distance.

Spatial genetic structure (SGS) was assessed using the spatial autocorrelation and
the Sp statistic using SpaGeDi 1.5a [57]. Spatial autocorrelation was computed as a multi-
locus kinship coefficient Fij between individuals against their physical distance [58] and
averaged for eight distance intervals. To test for the significance of SGS, deviations
from the null hypothesis, which assumed no spatial genetic structure, were assessed by
10,000 permutations of spatial distributions. The Sp statistic was calculated as defined
by [59].

3. Results
3.1. Diversity between Loci

The mean number of alleles ranged between two in Orot5 and eight in Orot32 (Table 1).
For each locus, observed heterozygosity values ranged from 0.13 to 0.62 and expected
heterozygosity ranged from 0.11 to 0.145 (respectively, for loci Orot21 and Orot8). Significant
departures from HWE were detected in two loci: Orot21 and Orot22. No null alleles
were detected. Pairwise comparisons between loci showed no significant disequilibrium
(p > 0.05), revealing that all loci were assorted independently at the different loci.

3.2. Genetic Diversity and Differentiation in Ocotea rotundata

An average of 9.84 ± 2.40 alleles was found among 140 O. rotundata samples, with
significant differences being found between populations because ZAM showed a very low
number of alleles (F = 26.7, p < 0.05; Table 2). The same pattern was found when considering
the mean number of effective alleles (F = 14.1, p < 0.05) and the mean number of observed
(F = 11.5, p < 0.05) and expected heterozygosity values (F = 13.2, p < 0.05). Diversity values
were overall high, except in ZAM, which showed particularly low levels of diversity. Only
two private alleles were found in this population while the remaining populations showed
a higher number of private alleles (F = 35.1, p < 0.05; Table 2). Mean allelic fixation values
were always significantly greater than zero in all populations (p < 0.05).

Genetic differentiation between populations was low (FST = 0.082) but moderate within
populations (FIS = 0.351). The coefficient of genetic differentiation among populations (Gst)
was 0.161 according to POPGENE. AMOVA revealed that most of the genetic diversity
found was explained by variance within populations (83%), the remaining being portioned
among populations.

PhiPT and the gene flow (Nm) between populations were 0.104 (p < 0.001) and 1.68,
respectively. Pairwise migration rates between most populations were very high (Figure 2).
The highest incoming and outgoing rates of exchange were found between neighboring
populations, such as YAN and CER and CAT and LOJ. High outgoing migrations were also
found from CER to the remaining populations, while a lower incoming rate was recorded
from the farthest populations of CAT, LOJ, and ZAM. ZAM exhibited very low outgoing
migration rates to all populations, contrary to incoming rates (Figure 2).

3.3. Genetic and Spatial Population Structure

The Bayesian clustering program STRUCTURE suggested the existence of four genetic
groups based on LnP(D) and ∆K values (Figure 3). A high degree of genetic admixture was
found between most O. rotundata populations (Figure 3). Nevertheless, a dominant genetic
cluster was found in CER that was different from the prevalent ones that characterized
LOJ, YAN, and CAT. Further, ZAM was the only homogeneous genetic population. Overall,
this same pattern was found in the principal coordinate analysis (PCoA), where no specific
clusters were found, with the exception of ZAM (Figure 4).
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Table 2. Genetic diversity of Ocotea rotundata per population. Different superscript letters indicate significant differences between populations after a post hoc
Tukey’s test (p < 0.05).

Populations Location Latitude Longitude Altitude N A Ae Apr Ho He F

LOJ Loja −3.91 −79.15 2600 25 11.3 b 8.9 b 8 b 0.72 b 0.86 b 0.22 b*
CER Cerro Toledo −4.38 −79.13 2900 30 9.1 b 8.4 b 11 b 0.73 b 0.81 b 0.21 b*
YAN Yangana −4.36 −79.30 3000 30 10.4 b 10.8 b 9 b 0.69 b 0.73 b 0.19 a*
CAT Catamayo −4.04 −79.23 2750 25 12.3 b 10.1 b 9 b 0.67 b 0.80 b 0.11 a*
ZAM Zamora −4.05 −78.99 2150 30 6.1 a 4.2 a 2 a 0.43 a 0.62 a 0.27 c*

Overall 140 9.84 ± 2.40 7.06 ± 2.86 7.81 ± 3.42 0.65 ± 0.12 0.76 ± 0.09 0.20 ± 0.07

N: sampling size used in this study; A: mean number of alleles per population; Ae: mean number of effective alleles; Apr: number of private alleles per population; Ho: mean observed
heterozygosity; He: mean expected heterozygosity; F: mean allelic fixation index; * indicates significant deviation from HWE.
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Figure 3. Genetic structure of Ocotea rotundata samples based on the best assignment results retrieved
by STRUCTURE (K = 4). Each sample is represented by a thin vertical line divided into K-colored
segments that represent the individual’s estimated membership fractions in K clusters. Population
labels refer to Table 2.

Spatial autocorrelation analyses using SPAGeDI detected significant SGS at the shortest
distances in most populations of O. rotundata: 25–50 m (Figure 5). The strongest SGS was
found in ZAM since it showed the highest pairwise kinship (Fij) and almost all distance
classes showed significant SGS (up to 80 m; Figure 5). Further, in ZAM, a pronounced
negative slope of Fij values was detected in the first distance class (up to 10 m). This was
also reflected in a higher Sp statistic in this population (Sp = 0.026) than in the remaining
ones (LOJ = 0.016; CER = 0.011; YAN = 0.013; CAT = 0.018).
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4. Discussion
4.1. High Genetic Diversity in Ocotea rotundata

Our study revealed the existence of high levels of genetic diversity in O. rotundata,
despite the low number of populations. Diversity was higher than the heterozygosity
values found in other threatened species of Lauraceae as Litsea auriculata S.S. Chien & W.C.
Cheng (Ho = 0.33 to 0.50; [60]) or Cinnamomum balansae Lecomte (Ho = 0.14 to 0.34; [61]) and
especially when considering exploited tropical trees, such as Warburgia salutaris (Bertol.)
Chiov. (Ho = 0.45 to 0.61; [62]) or Chinchona officinalis L. (Ho = 0.58 to 0.68; [63]). Truly, many
life factors, including the type of breeding system, biogeography, and dispersal, might
influence genetic diversity values [64]. However, when compared with other Ocotea species,
the values reported in this study were higher than the ones found in three threatened
Brazilian species, O. odorifera (Vell.) Rohwer (Ho = 0.63), O. porosa (Nees & Mart.) Barroso
(Ho = 0.52), and O. catharinensis Mez (Ho = 0.57), in a genetic study also using microsatellite
markers [31]. The number of alleles, including the expected ones and the number of
private alleles reported in our study, were also higher than the ones found in the threatened
Brazilian species, which occur in heavily harvested populations that are experiencing
important reductions in size [31]. For instance, Brazil exported more than 176,000 tons of
O. catharinensis wood between 1944 and 1951, leading to a rapid population decline [31].
That is not the case of O. rotundata, as the main constraints to its survival are the recent
changes and the level of fragmentation occurring in its habitat due to mining and land
conversion into pasture fields [39]. This would explain the low level of heterozygosity
and the low number of alleles found in ZAM since this population occurs near the city
and is very close to roads that have been updated in the last few decades. The lower
number of adult plants recorded in this population probably caused a genetic drift [65],
which could have removed enough genetic variation in ZAM when compared with the
other populations.

Assessment of the impact of habitat changes in the genetic diversity of long-lived
trees is a big challenge and has often failed to detect a genetic response [6,7]. Indeed, a
review of the genetic consequences of habitat degradation on neotropical trees found no
significant differences between disturbed and control populations in most of the studies
(9 out of 13), except when analyzing progeny inbreeding (6 out of 8), reproductive output
(7 out of 10), and fitness (all 6) [66]. These studies highlight how genetic diversity might
slowly be lost throughout generations, with impacts that, in the case of trees, may only
be felt after centuries [67]. In our study, we also found that the allele fixation index was
significantly positive in all populations of O. rotundata, indicating a deficit in heterozygotes,
probably due to inbreeding. This small, but already detectable, effect on genetic diversity
might represent an early signal of an increased loss of diversity in these populations.
Future studies focused on seeds or juveniles combined with parental analysis are, therefore,
recommended to highlight the genetic health of O. rotundata populations.

4.2. Low Differentiation and High Gene Flow between (Most) Populations

In small and fragmented populations, genetic divergence is often increased because
of reduced gene flow and strong genetic drift [68,69]. However, the opposite was found
in O. rotundata, since genetic differentiation between populations was low (FST = 0.082).
The levels of population differentiation reported here were lower than the ones found in
O. porosa (FST =0.116) and O. catharinensis (FST =0.148) but similar to O. odorifera
(FST =0.086). Even lower differentiation levels have been also reported in other trees, such as
Quercus variabilis BI. (FST = 0.046) [70] or Castanopsis fargesii Franch. (FST = 0.031) [71]. This
could be explained through high gene flow between populations. In fact, when Nm is
higher than one, as reported here (Nm = 1.68), it suggests that enough gene flow is, or
has been, occurring, which can prevent genetic differentiation between populations [47].
This would explain why genetic diversity in O. rotundata populations showed no clear
geographic pattern and why a high level of genetic admixture was found between most
populations, except ZAM. The existence of high gene exchanges in O. rotundata was sup-
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ported by the high migration rates found between populations, except for ZAM, where
the lowest outgoing rates were found. Habitat disturbances and fragmentation strongly
influence genetic drift, gene flow, and inbreeding, which could explain the reduction in
the levels of gene flow from ZAM to the other populations and the low level of admixture
according to STRUCTURE and PCoA analyses. Fragmentation can impose restrictions on
seed dispersal and crossing between close relatives, ultimately leading to an enhancement
in SGS throughout distances [72,73], such as the one found in this population. Remarkably,
CER seems to act as an important genetic source to all populations due to its high levels of
outgoing migration rates but, at the same time, seems to be receiving less gene flow from
all remotest populations. CER was found to be genetically different from the remaining
populations according to STRUCTURE results, and the dominant genetic group found in
CER was not prevalent in other populations. This might suggest an active role of local
adaptation throughout the species distribution [3]. However, the close location of the
Podocarpus National Park to CER could have helped to maintain, or at least shape, some
differences in the patterns of genetic structure found in this population.

The reproductive biology and breeding system of O. rotundata are yet unknown but
many species within the family Lauraceae are outcrossing [74]. Contemporary gene flow
in Ocotea is often facilitated by native pollinators [75], the action of new pollinators [76],
or through wind dispersion of pollen [77]. An efficient frugivorous community has also
been reported to be an important disperser of seeds between forest patches [78]. Here,
significant SGS was only prevalent at the shortest distances, except in the population of
ZAM. Restricted seed dispersion and the possibility of mating between close relatives
could explain the high pairwise kinship found in the first distance class due to the spa-
tial clustering of siblings. However, the overall differences in SGS found between most
populations and ZAM could be explained, as mentioned above, by the smaller popula-
tion size and its location in a more disturbed area. The range of Sp values estimated for
O. rotundata populations (Sp = 0.011–0.026) was higher than the mean values reported
by [59] for outcrossing species (Sp = 0.0126), being closest to the levels of species with
a mixed mating (Sp = 0.0372). The values found in O. rotundata were close to the ones
reported for other neotropical trees that have mixed mating systems, such as
Theobroma cacao L. (Sp = 0.018 [79]) or Anadenanthera colubrina var. cebil (Griseb.) Altschul
(Sp = 0.023 in saplings and 0.009 in adults [80]), suggesting the possibility of a mixed
mating system in O. rotundata. Sp values reported here were also higher than the ones
reported by [59] for species with seeds dispersed by animals (Sp = 0.0088), being clos-
est to wind-dispersed (Sp = 0.0120) and gravity-dispersed seeds (Sp = 0.0281), which
would indicate autochory as the main factor contributing to explaining seed dispersal in
O. rotundata, contrary to the existence of a frugivorous animal dispersal community. Ex-
tensive gene flow can also occur through high pollen movement in O. rotundata, as Sp was
close to the values of species with pollen dispersed by animals (Sp = 0.0171) [59]. Thus,
although Ocotea species are reported to be pollinated by insects with limited flight ability,
such as thrips [31,32], our results suggest the existence of, past or current biotic agents,
mediating pollen flow between populations.

4.3. Genetic Insights for Conservation Actions

Despite the high levels of genetic diversity, the levels of inbreeding and the very low
number of populations in a habitat that is increasingly being more disturbed raise several
concerns, since stochastic factors can jeopardize the risk of extinction. In this context,
management plans for O. rotundata should concentrate on in and ex situ conservation
actions to maintain the genetic diversity of populations and the connectivity between
populations. Owing to the high diversity of O. rotundata, the fragmented forest patches
of this region should be given high conservation priority to ensure gene flow and the
long-term sustenance of this species in Ecuador.

Specifically, we recommend the following actions: (1) seed collection for ex situ
conservation and future tree planting in situ activities; (2) active planting or assisted
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regeneration in populations with a low number of adult trees, such as ZAM; (3) creation
of new populations to allow for future connectivity between patches. With such a limited
distribution, seeds should be collected from each population. Sampling should consider,
at least, a minimum distance of 80 m in populations to minimize genetic relatedness
among sampled seeds in each site. Progeny tests would allow for studying the potential of
adaptative traits and assess if the magnitude of genetic diversity and gene flow remains
stable across generations.
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