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Abstract: Engineering bamboo is a type of cheap and good-quality, easy-to-process material, which
is widely used in construction engineering, bridge engineering, water conservancy engineering and
other fields; however, crack defects lead to reduced reliability of the engineered bamboo. Accurate
identification of the crack tip position and crack propagation length can improve the reliability
of the engineered bamboo. Digital image correlation technology and high-quality images have
been used to measure the crack tip damage zone of engineered bamboo, but the improvement
of image quality with more-advanced optical equipment is limited. In this paper, we studied an
application based on deep learning providing a super-resolution reconstruction method in the field
of engineered bamboo DIC technology. The attention-dense residual and generative adversarial
network (ADRAGAN) model was trained using a comprehensive loss function, where network
interpolation was used to balance the network parameters to suppress artifacts. Compared with
the super resolution generative adversarial network (SRGAN),super resolution ResNet (SRResNet),
and bicubic B-spline interpolation, the superiority of the ADRAGAN network in super-resolution
reconstruction of engineered bamboo speckle images was verified through assessment of both
objective evaluation indices (PSNR and SSIM) and a subjective evaluation index (MOS). Finally, the
images generated by each algorithm were imported into the DIC analysis software, and the crack
propagation length was calculated and compared. The obtained results indicate that the proposed
ADRAGAN method can reconstruct engineered bamboo speckle images with high quality, obtaining
a crack detection accuracy of 99.65%.

Keywords: engineered bamboo; digital image correlation; super-resolution reconstruction; crack detection;
generative adversarial network

1. Introduction

Engineered bamboo is a new type of renewable engineering structural material with
certain strength, stiffness, and durability, which has been widely used for large electrome-
chanical packaging, as a building load-bearing material, and in other fields [1]. Engineered
bamboo is made of bamboo bundles or bamboo sheets. Due to the natural porous structure
of bamboo and the inevitable bonding defects of engineered bamboo, the engineered bam-
boo structure may have visible cracks. Therefore, a reasonable assessment of the visible
crack scale, crack development law, and tolerance of the structure needs to be conducted
through fracture analysis [2]. Fracture failure caused by crack propagation is the main
failure mode of engineered bamboo. Initial crack propagation will cause the structure to fail
below the yield stress of the material, making the bearing capacity, stiffness, and even the
service life of the structure significantly lower than expected [3–7]. Therefore, accurate iden-
tification of the crack tip position and crack propagation length can improve the reliability
of engineered bamboo. This is the theoretical basis for establishing the strength theory,
failure criteria, and durability and safety evaluations of engineered bamboo structures.
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Digital image correlation technology is a non-contact modern optical measurement
technology that has been gradually applied to the fracture analysis of engineered bam-
boo. By tracking speckle images of the object surface, measurement of crack propagation
displacement during deformation can be realized [8–10]. In the study of material fracture
mechanisms, as the cracks in engineered bamboo are relatively small, it is necessary to
use a high-performance camera to capture high-quality digital speckle images of the crack
surface of the measured engineered bamboo before and after deformation, in order to obtain
the displacement of each point on the surface of the measured object. In a low-quality
digital speckle image, the cracks are blurred or may not be visible at all, making it difficult
to accurately identify the crack tip position. Therefore, improving the quality of images has
become a serious problem under limited hardware conditions.

Super-resolution reconstruction technology breaks these limitations, allowing for the
reconstruction of low-resolution images into high-resolution images through algorithms, in
order to obtain images containing more information. Traditional image super-resolution
reconstruction methods mainly include interpolation-based super-resolution algorithms,
such as bicubic interpolation and nearest neighbor interpolation; super-resolution algo-
rithms based on degradation models, such as iterative back-projection and maximum a
posteriori probability methods; and learning-based super-resolution algorithms, such as
manifold learning and sparse coding methods [11]. With the rapid development of deep
learning theory and technology, deep learning has been introduced into the field of super-
resolution reconstruction, achieving rapid development [12–14]. Sun, N [15] proposed an
image super-resolution reconstruction method combining traditional algorithms with deep
learning and applied it to the medical field. The algorithm is ideal for detail reconstruction,
producing clear contours and high-quality images. Yang, TT [16] applied a super-resolution
convolutional neural network (SRCNN) to underwater image processing. The results
indicated that the SRCNN method is superior to traditional super-resolution image recon-
struction methods in improving the resolution of underwater images. Das, V [17] conducted
unsupervised super-resolution of OCT images based on generative adversarial networks to
improve the diagnosis of age-related macular degeneration. Experimental results on clinical
OCT images demonstrated that this method is superior to existing methods in terms of SR
performance and calculation time. Super-resolution reconstruction techniques have also
been used for crack detection. Tang, YL [18] used a super-resolution convolutional neural
network (SRCNN) to obtain high-resolution images and corresponding temperature and
deformation fields, proving that SRCNN has potential value in detecting surface defects
or cracks. Xiang, C [19] proposed a micro-crack automatic detection method based on
super-resolution reconstruction and semantic segmentation, in order to detect cracks in civil
infrastructure. The results indicated that the method can achieve good results in detecting
concrete cracks. However, in addition to our team, few people have studied the use of deep
learning models for super-resolution reconstruction in the field of engineering bamboo
speckle image DIC.

Based on super-resolution reconstruction technology and deep learning, this paper
focuses on engineered bamboo speckle images, in order to identify the cracks in engineered
bamboo. For this purpose, an attention-dense residual and generative adversarial network
(ADRAGAN) model based on an attention-intensive residual structure and the relative
mean value is proposed, which is trained using a comprehensive loss function, while
network interpolation is used to balance the network parameters to suppress artifacts.
The model provides a more reasonable structure for crack identification from engineered
bamboo speckle images, effectively improving the engineered bamboo crack identifica-
tion accuracy, providing effective support for fracture analysis of engineered bamboo, an
effective means for calculation of the reliability of the fracture strain energy, and a theoret-
ical basis for the reasonable design of mechanical and electrical packaging and building
structures using engineered bamboo, ensuring the safety of the designed structure.
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2. Materials and Methods
2.1. Imaging

In this experiment, 4-year-old bamboo with a diameter of about 0.3 m and a height of
about 1.7 m from the ground was selected as the raw material. The engineering bamboo
specimens were processed by a standard hot pressing process, and the specimens with
obvious cracks, bubbling, depressions and other defects on the surface were eliminated.
The moisture content of the obtained specimens was 10% [20]. The specific parameters of
the specimens, whose pre-fabricated crack length was 160 mm, are detailed in Figure 1.
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Figure 1. Schematic diagram and dimensional parameters of engineered bamboo specimens (unit: mm).
A, B, C: orientation line for specimen installation positioning; D: data analysis reference point.

The engineered bamboo speckle image acquisition equipment included a DDL-100 kN
universal testing machine, a 5F08 Wolf® Revealer high-speed camera, and an image acqui-
sition (a high-speed camera, a light source, an image acquisition card, and a computer)
and parameter control system, as shown in Figure 2 ( 2©). Table 1 provides the types and
performance parameters of the experimental equipment and the experimental parameters.
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Table 1. Equipment performance parameters and experimental parameters.

Devices Performance Parameters

Universal Testing Machine Range 100 kN
Sampling Frequency 20 Hz

Loading Mode Constant Loading
Loading Speed 2 mm/min

High-speed Camera

Maximum Resolution 4000 × 2000 pixel
Filming Speed 4000 × 2000 @ 500 fps

Minimum Exposure Time 1 µs
Pixel Dimension 7 µm

Sensitivity 4.64 V/lux.s @ 525 nm

Support Trigger Mode Internal trigger, external
trigger

Image Acquisition and
Parameter Control System

Acquisition Cycle 50,000–99,999 µs
Magnification 1×

Support Maximum Resolution 4536 × 3024 pixels
Sampling Frequency 20 s−1

2.2. Image Pre-Processing

Through the above experimental platform and image acquisition process (shown in
Figure 2), a total of 1300 images with size of 4032 × 1348 pixels were obtained. In order
to avoid using unnecessary resources and achieve faster processing speed, the original
images were pre-processed, the black area was removed, and the image was cut to obtain
128× 128 pixel image blocks. The creation and allocation of the dataset are shown in Figure 3.

Forests 2022, 13, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 2. Image acquisition process for engineering bamboo crack speckle. 

2.2. Image Pre-Processing 

Through the above experimental platform and image acquisition process (shown in 

Figure 2), a total of 1300 images with size of 4032 × 1348 pixels were obtained. In order to 

avoid using unnecessary resources and achieve faster processing speed, the original im-

ages were pre-processed, the black area was removed, and the image was cut to obtain 

128 × 128 pixel image blocks. The creation and allocation of the dataset are shown in Figure 

3. 

 

Figure 3. Production and distribution of datasets. 

  

Figure 3. Production and distribution of datasets.

2.3. Super-Resolution Reconstruction Method for Engineered Bamboo Speckle Images Based on
Generative Adversarial Network Model
2.3.1. ADRAGAN Network Structure

A generative adversarial network is a combination of two networks: the generative
network is responsible for generating simulated data, while the discriminant network
is responsible for judging whether the input data are real or generated. The generative
network aims to continuously optimize its own data generated, so that the discriminant
network cannot judge that it is generated, while the discriminant network optimizes
its own judgment, in order to increase its accuracy. Super-resolution algorithms based
on generative adversarial networks comprise pioneering work, introducing the idea of
generative adversarial networks into the field of super-resolution. SRResNet is a generative
network that has been used to generate high-resolution images from low-resolution images,
while Densenet is typically used as a discriminant network, in SRGAN architecture. The
high-resolution images and the output images of the generative network are input into
the discriminant network of the classification structure for (true/false) discrimination, in
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order to achieve the purpose of reconstructing high-quality images, such that the restored
image edges are sharp and the texture details are clear. However, the reconstructed image
will occasionally include artifacts, violating the requirements of training stability and
consistency, and there is still a clear gap between the image reconstructed by the SRGAN
model and real images, meaning that it cannot fully meet the authenticity requirements of
engineered bamboo speckle images.

In order to further improve the quality of the restored image, we improved upon the
SRGAN model. For the generative network, an improved attention-intensive residual block
is used as the basic construction unit, and residual scaling and smaller initialization are
used to reduce the difficulties associated with training. Based on the idea of the relativistic
standard GAN [21], the discriminator estimates the probability that the real image is more
realistic than the high-resolution image after super-resolution reconstruction, replacing
the classical discriminator that estimates whether an image is a real image. The proposed
super-resolution model for engineered bamboo speckle images based on the attention-dense
residual and generative adversarial network (ADRAGAN) is depicted in Figure 4.
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As shown in Figure 4a, the generator takes a low-resolution speckle image as input
and outputs a super-resolution reconstructed image (SR), following which the original
high-resolution image (HR) and SR are input into the discriminator for (true/false) dis-
crimination. If the discriminant network identifies the image as an SR, it is returned to
the generator, which then performs image super-resolution reconstruction using the in-
terpolation balance network parameters. The loop between the generative network and
discrimination network continues until an unrecognized high-quality super-resolution
image is reconstructed.

Figure 4b shows the architecture of the generator of the ADRAGAN network, which
contains n1 (n1 = 16) secondary blocks, each consisting of a convolutional layer, an activation
layer, and an attention module. In particular, the attention module is a hybrid domain
attention module. The hybrid domain attention mechanism utilizes the advantages of
both channel domain and spatial domain attention mechanisms; that is, the signal of
each channel is weighted to increase the correlation between channel information and key
information [22,23]. The same spatial transformation is used for all channels, ignoring the
inconsistency of the importance of different channel information for the current task [24].
Therefore, the weight distribution of the global information in the feature map is utilized
to improve the resolution of the engineered bamboo speckle images and the recognition
of detail information. The network structure proposed in this study did not contain a BN
layer. In this way, the color, contrast, texture and other information of the image can be
better expressed while saving the network space, which greatly improved the training
speed, stability and image expression of the model.

As shown in Figure 4c, the discriminator network of the ADRAGAN contains n2
(n2 = 7) convolution blocks, each of which consists of a 3 × 3 convolution layer, a BN layer,
and a leaky ReLU activation layer, as well as a 3 × 3 convolution layer and a leaky ReLU
activation layer at the front end of the network. Therefore, the whole discriminator contains
eight convolution layers.

2.3.2. Relative Mean Discriminator and Loss Function

In order to make the discriminator more global, we improved the discrimination
network by using a discriminator DRa based on the relative mean, as shown in Equations
(1) and (2) [25,26]:

DRa(xr, x f ) = σ(C(xr)− Ex f [(x f )]), (1)

DRa(x f , xr) = σ(C(x f )− Exr [(xr)]). (2)

In the relative mean discriminator, the loss functions for the discriminator and genera-
tor are given in Equations (3) and (4), respectively [27]:

LRa
D = −Exr [log(DRa(xr, x f ))]− Ex f [log(1− DRa(x f , xr))], (3)

LRa
G = −Exr [log(1− DRa(xr, x f ))]− Ex f [log(DRa(x f , xr))]. (4)

The mean value is obtained by averaging all of the data in a mini-batch, xf = G(xi),
where xirepresents an input low-resolution image.

From Equation (4), it can be seen that the corresponding generator loss function
contains xr and xf, such that the generator can obtain guidance information from the
gradient of the generated data and the real data during training. Compared with SRGAN,
where the mechanism can only judge according to the gradient of the generated data,
this constitutes obvious progress. This adjustment to the discriminator can allow the
network-generated images to have clearer edges and richer details.

However, the guidance of a single loss function is not conducive to restoring the high-
frequency detail information of the image [28], as the restored image may be too smooth
and the visual effect is still blurred. Therefore, scholars have proposed many different
loss functions, such as perceptual loss, content loss, and confrontation loss, among others,
hoping to solve this problem. The loss function used by the discriminator in this article is
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shown in Equation (3), while the loss function used by the generator is a comprehensive
loss function that combines perceptual loss, content loss, and adversarial loss, as shown in
Equation (5) [29]:

LG = Lpercep + λLRa
G + ηL1, (5)

where λ and η are the balance coefficients between the different loss functions.
L1 is the content loss function between pixels—that is, the mean absolute error (MAE)—

as shown in Equation (6) [30–32]:

L1 = LSR
MAE =

1
r2WH ∑rW

x=1 ∑rH
y=1

∣∣∣IHR
x,y − ISR

x,y

∣∣∣, (6)

where IHR and ISR represent the original high-resolution image and the high-resolution
image after super-resolution reconstruction, respectively, and W and H are the width and
height of the image, respectively.

Lpercep is the perceptual loss, which is the Euclidean distance between the features of
the reconstructed image and the real image. It is based on the definition of the VGG19
network [33,34]. As shown in Equation (7), there are two shortcomings to the conventional
method: (1) The features after activation are very sparse, especially in a deep network;
these sparse features provide a weak supervision effect, reducing the performance of the
network; and (2) compared with the real image, the activated features make the brightness
of the reconstructed image inconsistent with the real image.

Lpercep = LSR
VGG =

1
Wi,jHi,j

Σ
Wi,j
x=1Σ

Hi,j
y=1(φi,j(IHR)x,y − φi,j(ISR)x,y)

2
(7)

where Wi,j and Hi,j are the width and height of the corresponding feature map in the
VGG network, respectively, and φi,j is the feature map obtained after the jth convolution
before the ith maximum pooling layer in the VGG19 network. In order to overcome these
two shortcomings, in contrast to conventional methods, we use the features before the
activation layer.

2.3.3. Network Interpolation

The use of a method based solely on a generative adversarial network can lead to
output images with sharp edges and rich textures, which may cause artifacts, while the
image output by methods based solely on PSNR indicators are typically too blurry. In order
to remove artifacts while maintaining good visual perception quality of the image, we
used network interpolation to balance various evaluation indicators. The low-resolution
image is generated by the model parameters generated by the reconstruction image of the
generation network GSPN R, with PSNR as the index, and the low-resolution image is
generated using the model parameters generated by the entire adversarial network GSPAN.
The corresponding parameters obtained by these two networks are interpolated to obtain
the GSPN R interpolation network, according to Equation (8) [31,35]:

θ INTERP
G = (1− α)θPSNR

G + αθGAN
G , (8)

where θ INTERP
G , θPSNR

G , and θGAN
G are the parameters of GINTERP, GPSNR, and GGAN , re-

spectively, and α is the interpolation parameter (α ∈ [0, 1]).

3. Results

This study was performed using the same hardware platform and software envi-
ronment. The hardware platform configuration is detailed in Table 2. The software en-
vironment settings are shown in Table 3. In addition, this study used CUDA10.1 and
CuDNN7604 to accelerate model training. The network parameters of each algorithm are
shown in Table 4. The residual scaling coefficient was set to 0.2 before the residual was
added to the main path.
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Table 2. Hardware platform configuration.

Item Hardware Configuration

Processor Intel Xeon W-2155@3.30 GHz
Mainboard Dell 0 × 8DXD Core i7

Graphics Card Nvidia GeForce GTX 1080 Ti
Video Memory 8 GB

Memory Hellis DDR4 2666 MHz 64 GB

Table 3. Software environment.

Item Parameter Settings

Operating System Windows 10 64-bit
Programming Language Python 3.7

Deep Learning Frameworks Pytorch
IDE Community Edition

Initial Learning Rate 2× 10−4

Attenuation Rate β1 = 0.9, β2 = 0.999

Table 4. Network parameters of each algorithm.

Algorithm SRResNet SRGAN ADRAGAN

Number of residual blocks 16 16 16
Training image size 128 128 128

Suitable for pre-training model? No Yes Yes
Number of feature maps 64 64 64

Batch size 16 16 16

Comparing the improved algorithm with other algorithms, the number of test set images
was 130 under the condition of×4 scaling. We used the objective indices of peak signal to
noise ratio (PSNR) and structural similarity (SSIM) and the subjective index mean opinion
score (MOS) to compare the improved algorithm with other algorithms [36]. PSNR is a full
reference image quality evaluation index, providing an objective standard to measure the
image distortion or noise level. The greater the PSNR value between two images, the more
similar they are. SSIM is based on the similarity between two given images from the three
aspects of brightness, contrast, and structure as a measure, where the mean value is used in
the brightness evaluation, the standard deviation is used in the contrast evaluation, and the
covariance is used in the structural similarity evaluation. The SSIM is provided as a value
between 0 and 1. The larger the SSIM, the smaller the difference between the two images
in these three aspects. The subjective index MOS involves consulting with professionals
who study the engineered bamboo cracks and make a subjective qualitative evaluation of
the image for the observer. Table 5 provides the PSNR, SSIM, and MOS values of the five
algorithms on the engineered bamboo speckle image dataset.

Table 5. Comparison of mean evaluation index results for four algorithms on the test set.

Algorithm PSNR (dB) SSIM MOS

Bicubic B-spline interpolation 20.64 0.615 2.48
SRResNet 24.66 0.827 3.77
SRGAN 28.06 0.845 3.69

ADRAGAN 29.38 0.869 3.8

It can be seen, from Table 5 that the ADRAGAN method used in this paper yielded
higher index values in both objective and subjective indicators for super-resolution recon-
struction on the engineered bamboo speckle image dataset. In particular, the SRResNet
method was 4.02 dB higher than the traditional Bicubic B-spline interpolation method in the
PSNR index, 0.212 higher than the traditional method in the SSIM index, and 1.29 higher
than the traditional method in MOS value. Therefore, the super-resolution reconstruction
method for engineered bamboo speckle images based on deep learning greatly improved
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the three indices, compared with the traditional method, indicating that the image super-
resolution reconstruction effect based on deep learning provides a huge improvement.
Compared with the SRResNet method, the PSNR index of the SRGAN method was in-
creased by 3.4 dB, the SSIM index was increased by 0.018, and the MOS value was reduced
by 0.08 points, indicating that the SRGAN method produced a slight improvement in the
objective indices for the super-resolution reconstruction of engineered bamboo speckle
images. In the image super-resolution task, it could form more abundant high-frequency
information than the previous method; however, the SRGAN network model may produce
artifacts, reducing the subjective evaluation value. In order to remove artifacts, we im-
proved upon SRGAN in our method. Compared with the SRGAN method, the ADRAGAN
method improved the PSNR index by 1.32 dB, the SSIM index by 0.024, and the MOS value
by 0.11 points. Overall, the results for the ADRAGAN method were slightly better than
those of the SRGAN method in the objective indices, while the subjective index value was
greatly improved, indicating that the ADRAGAN method effectively removed artifacts
and had an improved effect regarding the super-resolution reconstruction of engineered
bamboo speckle images.

Figure 5 shows a comparison of the image reconstruction effects for each algorithm. It
can be seen, from the figure, that under 4× scaling, the methods based on deep learning
provided better images than the traditional method. The high-resolution image details
and edge information reconstructed by the ADRAGAN and SRGAN networks were very
rich. These results were not only better than the image quality when using the traditional
method, but also better than the high-resolution image reconstructed using the SRResNet
network. They provide output images with visual effect very close to that of the original
high-resolution image, as can be seen in the figure. Therefore, the GAN network structure
has certain advantages in restoring image visual effects. The SRGAN method performed
relatively worse than the proposed method on the engineered bamboo speckle image
dataset, often producing large-area artifacts. The ADRAGAN method, which uses network
interpolation to balance the network parameters, avoided the problem of frequent artifacts,
leading to good results and verifying the role of network interpolation. The ADRAGAN
method also uses a comprehensive loss function to further improve the perceptual quality
of the reconstructed image.
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4. Discussion

The purpose of studying engineered bamboo speckle image super-resolution recon-
struction methods is to capture the crack tip position of engineered bamboo more accurately,
in order to obtain more accurate crack length data. The low-resolution images, original
high-resolution images, and images generated by various algorithms of engineered bamboo
were imported into DIC analysis software in batches. The pixel distance from the crack tip
position to the vertical extensometer derived by the DIC analysis software was recorded as
d pixels, while the actual distance from the pre-fabricated crack tip to the vertical exten-
someter was recorded as x, and the pixel distance from the prefabricated crack tip to the
vertical extensometer measured by DIC analysis software was recorded as x0. The relevant
calculation dimensions for crack propagation length are shown in Figure 6.
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The actual distance, L, of the crack propagation length can be expressed as:

L = x− d
x
x0

. (9)

When the crack had not yet appeared in the early stage of crack propagation, due to
the existence of software analysis errors, the crack tip position identification was unstable
at this time. After data comparison and analysis, crack tip identification in the DIC analysis
software started from the 223rd image. At this point, it was stable, so the data of images
223–1300 were used for further analysis and comparison.

The DIC analysis software was used to derive the pixel distance d from the crack
tip position of the original high-resolution image and the image generated by each al-
gorithm to the vertical extensometer, and the actual distance L of the crack propagation
length was calculated, respectively. The differences ∆d and ∆L between the parameters
obtained from the images generated by each algorithm and the original high-resolution
image parameters were calculated, and the above operations were performed on images
223–1300. The average pixel distance de from the crack tip position of the image generated
by each algorithm to the vertical extensometer, the average actual distance Le of the crack
propagation length, the average difference ∆de between the pixel distance from the crack
tip position to the vertical extensometer and that in the original high-resolution image, and
the average difference ∆Le between the crack propagation length and that in the original
high-resolution image were calculated. Figure 7 depicts the comparison between images
generated by the algorithms and the original high-resolution image. Table 6 provides
comparison results for each algorithm.

Table 6. Comparison results for the various algorithms.

Algorithm de Le (mm) ∆de ∆Le (mm)

HR 2080.960 59.563 0 0
LR 2183.028 55.128 102.068 −4.436

BICUBIC 2138.146 57.078 57.186 −2.485
SRResNet 2108.088 58.384 27.127 −1.179
SRGAN —— —— —— ——

ADRAGAN 2076.235 59.769 −4.725 0.205
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As shown in Table 6, the average error between the actual crack propagation length
in the low-resolution image, relative to the original high-resolution image, was −4.436 mm,
while that for the bicubic B-spline interpolation method was 2.485 mm. Compared with
the low-resolution image, although it was improved, the error was still large. The ∆Le
of the SRResNet method was −1.179 mm, such that the restoration error was reduced
by 52.6%, compared with the bicubic B-spline interpolation method. The value for the
SRGAN method was −1.109 mm, and the error was reduced by 55.4%, compared with
the bicubic B-spline interpolation method. The effect was more than doubled, indicating
that methods based on deep learning have advantages over traditional methods. The
reconstructed image output by the SRGAN method had an impact on the DIC calculation
due to artifacts and, so, the calculation results were not obtained. However, the error value
for the ADRAGAN method proposed in this paper was 0.205 mm, and the crack detection
accuracy reached 99.65%. Compared with the traditional methods, the accuracy of the
SRResNet and SRGAN methods was surpassed by the proposed method, indicating that
the attention-intensive residual structure and the relative mean generative adversarial
network model are very helpful for the restoration of the crack area in engineered bamboo
speckle images, thus verifying the effectiveness of the improved algorithm proposed in
this paper.

Overall, the proposed super-resolution reconstruction technology for engineered
bamboo speckle image based on the generative adversarial network was used to obtain
high-resolution images. These were directly imported into DIC analysis software to assess
the crack detection accuracy, which was close to that of the image collected using high-
performance equipment. Therefore, this paper demonstrates the potential of applying
super-resolution reconstruction methods based on generative adversarial networks in
the field of engineered bamboo DIC technology, which is of great value for improving
measurement accuracy, reducing equipment requirements, and ensuring the safety of
engineered bamboo structural parts.

5. Conclusions

In order to address the difficulty of determining the crack tip position and measuring
the crack length in the process of measuring the crack propagation scale in engineered
bamboo, a super-resolution reconstruction method for engineered bamboo speckle images
based on the ADRAGAN network was proposed. ADRAGAN consists of a generative
network of dense residual blocks with an attention mechanism, as well as a discriminant
network using the reference relative mean. A comprehensive loss function was used
for training, and network interpolation was utilized to balance the network parameters,
thus suppressing artifacts. Then, the performance of various algorithms on a test set was
evaluated using the evaluation indexes PSNR, SSIM and MOS. From the analysis of the
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objective and subjective evaluation indexes of image quality, the ADRAGAN method
proposed in this study was 8.74 dB, 0.254, and 1.32 points higher than bicubic B-spline
interpolation method; 4.72 dB, 0.042, and 0.03 points higher than SRResNet; and 1.32 dB, 0.024,
and 0.11 points higher than SRGAN in PSNR, SSIM, and MOS, respectively. Therefore, the
ADRAGAN method has obvious advantages over the other methods, in terms of speckle
image super-resolution reconstruction. The images reconstructed by ADRAGAN have
sharper edges and richer detail and are more realistic to the human eye. Finally, the super-
resolution images generated by each algorithm were imported into DIC analysis software,
and the crack propagation length was analyzed and compared. The crack error obtained by
the ADRAGAN method was 0.205 mm. The results of this paper verify the superiority of the
proposed algorithm and the application potential of image super-resolution reconstruction
technology based on deep learning in the analysis of mechanical and fracture properties of
engineered bamboo.
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