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Abstract: For several decades, warming-induced fires have been widespread in many forest systems.
A forest fire could be a potential indicator, since the Great Xing’an Range is susceptible to global
climate changes and frequent extreme events. This region has a relatively integrated forest community
structure. This paper investigated 35 factors to explore how natural conditions affect fire scale.
We analyzed the fire spatiotemporal distribution, by combining the Google Earth Engine (GEE)
platform and historical records, and then reconstructed the fire-prone climate conditions. We used an
exploratory model to minimize the climate factors and a geographically and temporally weighted
regression (GTWR) model to predict regional large-scale lightning fire occurrence. The main results
are (1) Lightning fire occurrence increased during the past four decades, and the regional fire season
starts from the spring (May to June). (2) The time of occurrence of lightning fires had a strong
correlation with the occurrence density. (3) The main natural factors affecting a fire-affected area
are air moisture content, topographic slope, maximum surface air temperature, wind direction,
and surface atmospheric pressure. The regional climate can be characterized that the prevailing
southeastern wind bringing lots of precipitation and strong surface pressure, combined with the
regional periodic lightning weather and irregular high temperatures, forming fire-prone weather.
The abnormal soil water content in the spring led to vegetation growth and increased fuel storage.
The low air water content and long-term water deficit made the local air dry. Lightning strikes are
an influential factor in fire frequency, while climatic conditions shape the fire-affected areas. (4) The
seven days of pre-fire data are more accurate for studying lightning fire occurrence. The GTWR
model showed the best fitness among the four models. Fire-prone areas showed a trend of increasing
from south to north. In the future, lightning fires will likely occur in this region’s north and east. Our
work would promote the local forest fire policy-making process.

Keywords: fire-prone climate; lightning fire prediction; GTWR model; Google Earth Engine; Great
Xing’an Range

1. Introduction

The Great Xing’an Range has one of the well-preserved pristine Larix Gmelinii forests
in China and is China’s most extensive national boreal forest [1]. Due to its specific
geographical condition, this region experiences frequent forest fires and high forest fire risk
grades [2,3]. As an essential terrestrial ecosystem [4], forests are directly affected by surface
heat changes. The occurrence of forest fires will seriously threaten the regional ecological
environment [5,6]. Studying the forest fires in the Great Xing’an Range can make up for the
lack of research in this area and quantitatively monitor the restoration of forests after fires.

Fire is a vital natural factor in global ecosystems; it shapes boreal forests’ development
and composition, covering over one billion hectares worldwide [7]. However, large-scale
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uncontrolled forest fires damage the structure and function of the forest, pollute the envi-
ronment, and pose a major threat to human life and property security. Warming-induced
fire activities have been widespread in many forest ecosystems for several decades [8].

Prior studies revealed that fire cycles were historically associated with climate os-
cillations [9]. Small fires considerably increased the burned area and carbon emissions
all over the world [10]. To some degree, a low-intensity burn will reduce fire risk and
benefit ecosystems. Yet, megafires will be part of future fire-regime problems (e.g., how to
identify high-risk areas and concentrate efforts on reducing high-severity patch size) [11].
Previous quantitative research also demonstrated that drought-induced forest die-offs
raise fire-spreading rates [12]. Forest fire patterns are studied using remote sensing (RS),
geographic information systems (GIS), and historical fire data in Nepal [13], they found
three factors mainly correlate to fire ignition and spread in mountain terrain, including
fuel availability, temperature, and ignition potential. The work of Veraverbeke et al. [14]
in the burned areas of North America suggested that lightning fires propel long-term
burned area dynamics, and future lightning fires may hasten the northward expansion
of the boreal forest treeline. Eskelson and Monleon [15] discussed the relation between
forest fire fuel consumption and post-fire fuel accumulation in California forests. They
indicated that different fire severity classes have different fuel accumulation patterns. With
the progressive improvement of remote sensing technology, more and more remote sensing
products are being used [16]. Since the extremely large fire of 1987 in northeastern China,
which caused significant emissions on a global scale, Chinese fire researchers take the Great
Xing’an Range’s forest fires seriously [7].

Knowing spatiotemporal fire regimes is essential to understanding the fire–vegetation–
climate dynamics [17]. The burning during the past century was spatially variable [9].
Using a geographical interpolation and model combined with fire scars to modernize the
historical fire areas is meaningful for spatially explicit fire frequency reconstruction [18,19].
Azpeleta Tarancón, et al. [20] used dendrochronological methods and various fire statis-
tics to reconstruct and assess landscape fire regimes. Their results showed that histor-
ical fires were synchronous with drought years and were often preceded by wet years.
Rodrigues, et al. [21] argued that fire trends in southern European countries are regionally
decreasing in burned areas but increasing in fire occurrence. Fréjaville and Curt [22] state
that fire–climate relationships changed rapidly, and fire activities were highly correlated
with extreme fire weather, yet the relationship’s intensity is hydroclimate-dependent. Ac-
cording to four decades of study in the Iberian Peninsula, expanding urban–rural bonds
may accelerate fire incidence [23]. In central Europe, Adámek, et al. [24] revealed that
environmental factors primarily controlled fire occurrence, while human factors strongly
drove fire density.

Previous research in China mainly emphasized the spatiotemporal distribution of
nationwide fires. Yi, et al. [25] combined national fire records and satellite fire data to study
vegetation fire patterns, illustrating the synchronous relationship between precipitation
variation and burned area [26]. Ying, et al. [27] used county-level in situ observations to
establish a random forest model analyzing the correlation between fire and five relevant
factors. Their results suggested that spring temperature was the key factor affecting the
number of fires. Liu, et al. [28] investigated forest fires in Jilin Province, Northeast China.
They suggested that fire occurrence had a significant intro-annual temporal pattern, after
the provincial government strictly implemented forest fire prevention measures [29].

As the technology develops, more and more models have been put into use [30–33].
However, China’s prevailing view of spatiotemporal fire regimes has not yet been thor-
oughly investigated. The natural conditions in the northern forests of the Great Xing’an
Range of Inner Mongolia differ from those of Heilongjiang Province [34]. The regional
spatiotemporal fire regimes remain poorly understood.

The discovery of previously unknown spatiotemporal patterns, by using spatiotempo-
ral linear regression methods, provides a better understanding of the ecological world [35].
Several lines of evidence suggest that linear regression models are useful in evaluating fire
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risk [2,36]. When analyzing the relationship between fire occurrence and its influencing
indices, simple linear regression models such as the ordinary least squares (OLS) [37]
model and global linear regression (GLM) model [38] could not fully consider the spatial
heterogeneity of different variables’ distribution. The geographically weighted regres-
sion (GWR) model [36,39] has been largely used for its unique features of accounting for
spatial heterogeneity. GWR models can obtain the spatial non-stationarity changes by
assigning distance-based regression coefficients to different variables. The GWR model
focuses more on spatial variance and data analysis rather than spatiotemporal variance
and prediction [40]. The geographically and temporally weighted regression (GTWR)
model originated from the geographically weighted regression (GWR) model [41]. Adding
a temporal regression function into the GWR model turns the two-dimensional spatial
coordinates (geospatial) model into three-dimensional spatiotemporal coordinates, allow-
ing the model to manage both the spatial and temporal variations in non-stationarity
simultaneously [42,43]. GTWR is more fit in studying the potential rules under natural
conditions [40]. However, much of the research up to now has been used in evaluating
human-related fire risk [40,44], with not many attempts in the field of forest fire risk [45],
and there are even fewer studies using the GTWR model to study lightning-induced forest
fire or fire-affected areas.

Our study is based on a combination of fire records and multi-sensor satellite ob-
servations, using a geographically and temporally weighted regression (GTWR) model.
We aim to explore the spatiotemporal fire regimes in forest fires and its correlation with
surface influence factors between 1986–2020 in the boreal forest of the Great Xing’an Range
of Inner Mongolia. The purpose of this study is to: (1) Find the most relevant surface
influence factors that impact lightning fire scales and compare different pre-fire climate
factors to reveal the effects of surface influence factors on fire occurrence and its affected
areas in different time scales. (2) Explore the spatiotemporal patterns of fire activities and
reconstruct seasonal variation and yearly fire-prone climatical patterns. (3) Test different
linear regression models for analyzing the spatiotemporal heterogeneity of the impact of
factors on fire activities.

2. Materials and Methodologies
2.1. Study Region

The northern forest of the Great Xing’an Range of Inner Mongolia is located in North-
east China and lies at the junction of Inner Mongolia, Heilongjiang Province, and Russia. It
is characterized by a cold temperate continental climate, under alternating monsoons [46].
The historical annual average temperature and precipitation (Figure 1) present a general
high regional precipitation, with noticeable temperature differences. The perennial tempera-
ture is low, at an average of−17.75 ◦C [47]. The annual precipitation fluctuates between 450
and 550 mm [48]. Between 1960 and 2018, annual precipitation at Genhe station increased
at a rate of 15.5 mm per decade. Historical records show that the Great Xing’an Range of
Inner Mongolia has had more than 3400 forest fires occurring in the last six decades [49].
Based on the European Centre for Medium-Range Weather Forecasts (ECMWF) data, we
also made a map of historical monthly precipitation and air temperature (see Figure 1).

Our study area has a latitude of 50◦ N~54◦ N and covers an area of 53,449.1 km2, with
most parts being larch forest. The dominant tree species are Xing’an larch, white birch, and
Mongolian pine (Pinus sylvestris var. Mongolia) [50]. This region has an intact community
structure with relatively less artificial disturbance. Nevertheless, this area has become one
of China’s high forest fire risk regions because of the frequent wildfire disturbances.
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Figure 1. Study region maps: upper left is location of study region; lower left is historical monthly
precipitation and temperature; right is lightning-induced fires and historical (2001–2021) vegetation
loss (LF: lightning-caused fires, SR: study region, NB: national border, VC_loss: vegetation loss).

2.2. Data Sources and Statistical Analysis

This paper uses multisource data to build a correlation between forest-fire-affected
area and surface influence factors. The lightning fire records are collected from the local
forest bureau, ranging from 1986 to 2020. As our study region has little influence from
human activities, four influential factors were used: vegetation and topographical, climatic,
and cloud parameters.

Vegetation data was derived from the NOAA CDR (National Oceanic and Atmospheric
Administration, Climate Data Record) project, which has records of 5 spectral bands and
satellite sensors. AVHRR (Advanced Very-High-Resolution Radiometer) can provide
different spectral indices all over the world. We used the Normalized Difference Vegetation
Index (NDVI) [51] and Leaf Area Index (LAI) [52] to represent the vegetation conditions in
our study region.

Topographical factors are obtained from the National Aeronautics and Space Adminis-
tration Digital Elevation Model (NASA DEM) dataset [53], which is reprocessing of Shuttle
Radar Topography Mission (STRM) data [54].

The climate data in this study mostly comes from the ERA 5 dataset [55]. ERA5 dataset
is the fifth generation of hourly global climate reanalysis data from ECMWF (European
Centre for Medium-Range Weather Forecasts). ERA 5 dataset provides data from 1950 to
the present, with a resolution of 30 km [56]. GEE delivers the data from 1981 to the present.
As some of the environmental predicters are not directly included in ERA 5 dataset, we
need to calculate some specific data based on the components available in the ERA5 dataset.

The wind speed or direction is calculated from the U and V components [57]. WS and
WS, representing the wind speed and wind direction, respectively, are calculated as follows:

WS =
√

U2 + V2 (1)

WD = tan−1(−U,−V)× 180
π

(2)

Climatic water deficit (CWD) [58] is the difference between potential and total evap-
oration, to represent the climate’s unmet evaporative demand for water. The arid index
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(AI) is the ratio of total evaporation and total precipitation. It can be used to describe how
much water is required to meet the evaporation [59].

Relative humidity (RH) is calculated from the surface temperature (T) and dewpoint
temperature (Td) [60] as follows:

RH = 100− 5(T − Td) (3)

Due to lack of lightning flash observation data in the same time frame as our study,
we employed cloud top properties to represent the lightning parameters. Previous re-
search [61–63] has established that there exists a correlation between cloud top parameters
and lightning density. We intend to use four cloud parameters consisting of cloud top
height (CTH), cloud optical depth (COD), cloud top pressure (CTP), and cloud top tem-
perature (CTT). Three simulated lightning density parameters have also been used in this
study, which contain CTH-derived lightning density (LD_CTH), COD-derived lightning
density (LD_COD), and CTP-derived lightning density (LD_CTP). Empirical models of
lightning density can be found in the study by Karagiannidis, et al. [64]. All cloud top prop-
erties come from NOAA CDR of Reflectance and Brightness Temperatures from AVHRR
Pathfinder Atmospheres—Extended (PATMOS-x), Version 5.3 (NOAA CDR PATMOSX
v53) [65,66]. All products of NOAA CDR PATMOSX v53 were derived using the ABI
(Advanced Baseline Imager) Cloud Height Algorithm (ACHA) [67]. Table 1 shows all
35 indices.

Table 1. Exploratory factors.

Abbreviation Units Explain Source

LAI (0–100) Leaf Area Index
NOAA CDR AVHRRNDVI (−1,1) Normalized Difference Vegetation Index

ELE m Elevation
NASA DEMSLOPE 0◦–90◦ Slope

Aspect 0◦–90◦ Aspect

RH g/kg Relative humidity

ERA5-Land Hourly

WS m/s Wind speed
AI % Arid index
CE g Canopy evaporation
CWD g Climatic water dificit
DT K Dew point temperature
ROFF m Sum of surface and subsurface runoff
STL1 K 0–10 cm surface soil temperature
STL2 K 10–20 cm surface soil temperature
SUBROFF m Underground water runoff
SNR J/m2 Surface net solar radiation
STR J/m2 Surface net thermal radiation
SHF J/m2 Surface latent heat flux
SP Pa Surface pressure
SURROFF m Surface runoff
TEMPMEAN2 K Mean temperature of air at 2 m above surface
TEMPMAX2 K Max temperature of air at 2 m above surface
TEMPMIN2 K Min temperature of air at 2 m above surface
Total_evapor g Total evaporation
Total_prec m Total precipation
VSWATERL1 m3/m3 0–7 cm surface soil water volume
VSWATERL2 m3/m3 7–28 cm surface soil water volume
WD 0–360◦ Wind direction
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Table 1. Cont.

Abbreviation Units Explain Source

CTH km Cloud top height

NOAA CDR PATMOSX v53

COD Cloud optical depth
CTP hPa Cloud top pressure
CTT K Cloud top temperture
LD_CTH fl/km2 CTH-derived lightning density
LD_COD fl/km2 COD-derived lightning density
LD_CTP fl/km2 CTP-derived lightning density

2.3. Data Processing

We first used the GEE platform to obtain the data (as shown in Table 1) and assigned
them to the fire records points. Twenty-eight relevant factors were obtained for each fire
point. Notably, due to the wind direction and aspect in a consistent degree number from
0 to 360, we divided them into different approaches to better visualize the results. The
classification rules are defined as: the northern wind (0◦ to 22.5◦ and 337.5◦ to 360◦); the
northeastern wind (22.5◦ to 67.5◦); the eastern wind (67.5◦ to 112.5◦); the southeastern wind
(112.5◦ to 157.5◦); the southern wind (157.5◦ to 202.5◦); the southwestern wind (202.5◦ to
247.5◦); the western wind (247.5◦~292.5◦); the northwestern wind (292.5◦~337.5◦).

Due to a large amount of data, we need to choose the indexes most related to fire scale
by applying an exploratory regression analysis in ArcGIS software [68]. The exploratory
regression analysis can determine the possible combinations of exploratory variables
that can best perform in an OLS model. It is a data mining tool aiming at applying
data dimensionality reduction [69]. By evaluating all the possible variables and variable
combinations, we have more chances to find the best varying variety and maximumly
reduce the interference of the irrelevant variables [70]. We defined the fire-affected areas
as the dependent variable and the surface influence factors as the independent values. In
choosing the best models, we ranked them based on the adjusted R2, variance inflation
factor (VIF), and Akaike Information Criterion (AIC) to find which climate and vegetation
condition combinations are easier to occur in large fires. The VIF evaluates whether there
is overfitting and multicollinearity in our regression model. A smaller VIF means better
performance. The AIC is to evaluate the model’s fitness. A smaller AIC value means that the
model fits the sample data better. The adjusted R2 measures data fitness degree, generally
in the range of (−∞, 1). The larger values of adjusted R2 indicate better performance of
the model. In our study, the VIF is the constraint factor, meaning we only evaluate those
combinations under VIF 7.5 and choose the smallest VIF model. The correction coefficient,
adjusted R2, and the AIC determine the performance of different combinations. We also
performed a spatial autocorrelation test to avoid multicollinearity errors in order to evaluate
the model residuals.

It is reported that the correlation of fire activities with climate parameters varies in
different time scales [71,72], and these time scales vary from day to decade [73,74]. Existing
studies of fire regimes [75–78] proved that climate factors may have a short-time-lagged
effect on fuel moisture and soil moisture. To incorporate with lagged effect and periodic
effect of different time scales in climate parameters, we applied different time scales to
maximumly reveal the fire-related factors’ temporal patterns: the short-term scale refers
to daily to monthly change; middle-term scale refers to month-to-seasonal change; the
long-term scale refers to yearly or periodic change of whole study period.

We used an exploratory regression to find the most influential factors of fire-affected
area in short-term (days to month) time scale. Hence, we appointed the fire-occurrence day
and three types of pre-fire time length in this study to get more accuracy: 7 days before the
fire (7d_pre), 14 days before the fire (15d_pre), and 30 days before the fire (30d_pre). We
only differentiated climatical parameters and the vegetation parameters among different
pre-fire scales; the topographical and cloud properties were the same in all four types.
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After finding the most relevant influence factors, we applied those climatic factors from the
hourly images to monthly images to get the average values of all cells in our study region.
In the middle-term scale, we firstly classified the fire-occurrence date into different months
and distinguished the fire-prone season and other seasons based on the fire frequency. Next,
we applied the climate data to seasons and used historical statistical analysis to reconstruct
the perennial seasonal fire-prone climate. In the long-term scale, after a statistical summary,
we performed a wavelets transformation to investigate the lagged effects and multi-year
periodic effects.

2.4. Wavelet Transformation

Wavelet transform aims to describe non-stationarities of time-scale signal change and
its transient phenomena [79]. We used a “waveletcomp” installed in Rstudio to process
this analysis [80]. The basic equation is:∫ +∞

−∞
ψ(t)dt = 0 (4)

where, ψ(t) is mother wavelet function, which consists of a means of continuous signal
functions ψ f (a,b),

ψ f (a,b) = |a|−
1
2 ∆t ∑N

k=1 f (k∆t)ϕ

(
k∆t− t

a

)
(5)

where a represents the scale, which reflects the periodic change; b refers to time location,
which reflects the change in time axis; f (k∆t) is a real signal with wavelet transform; ∆t
is a time change; k is the number of discrete points; and ϕ

(
k∆t−t

a

)
denotes the complex

conjugate of ϕ
(

k∆t−t
a

)
. The wavelet transform aims to determine the distribution of fire-

related climate factors at different time scales.

2.5. Geographically and Temporally Weighted Regression (GTWR) Model

Based on the most relevant climatic factors, we aimed to test models and predict the
lightning-fire-prone areas in our study region by applying the GTWR model [41]. The core
regression model is as follows:

yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)xik + εi i = 1, 2, 3, . . . , n (6)

where yi is the dependent variables, here being the lightning-fire-affected area; (ui, vi,
ti) is the space–time coordinates at point I; n is the number of observations (here as the
lightning-fire-affected area); β0(ui, vi, ti) is the intercept value; βk(ui, vi, ti) is the parameter
values of point i at the number k of independent variables; and εi is the residual at point i.
To provide the estimation β̂i for βk at point i, Equation (7) is proposed below.

β̂i =
(

β̂0 β̂1 . . . β̂d
)T

=
(

XTWiX
)−1

XTWiy (7)

The Wi denotes the spatiotemporal weight matrix at point i. It is assumed that the
closer points in space–time coordinate are, the greater the influence in estimation. The
space–time distance determines the Wi. dST

ij of observing point i and its nearby point j in an
ellipsoidal coordinate system.(

dST
ij

)2
= λ

[(
ui − uj

)2
+
(
vi − vj

)2
]
+ µ

(
ti − tj

)2 (8)
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λ is the spatial distance factor, and µ is the temporal distance factor. The selected
bandwidths are followed by a Gaussian kernel function, with its equation as follows:

wij = exp

−(dST
ij

hST

)2 (9)

Furthermore, it can be written as

wij = exp

{
−

λ
[
(ui−uj)

2
+(vi−vj)

2]
+µ(ti−tj)

2

(hST)

}

= exp
{
−
[
(ui−uj)

2
+(vi−vj)

2

(hS)
2 +

(ti−tj)
2

(hT)
2

]}
= exp

[
−
(

dS
ij

hS

)2

+

(
dT

ij
hT

)2
]

= exp

[
−
(

dS
ij

hS

)2
]
× exp

[
−
(

dT
ij

hT

)2
]

= wS
ij × wT

ij

(10)

where hST is spatiotemporal bandwidth. The spatiotemporal weight matrix can be ex-
pressed by the following equation. Due to a lack of prior knowledge, cross-validation (CV)
based on spatial bandwidth hS and temporal bandwidth hT was performed.

CV
(

hS, hT
)
=

1
n

n

∑
i=1

[
yi − ŷ 6=i

(
hS, hT

)]2
(11)

The spatiotemporal bandwidth was proposed by Fotheringham, et al. [81], the optimal
spatiotemporal bandwidth is determined when the CV is minimized, and a step-by-step
method was applied to reduce the spatial bandwidth and temporal bandwidth. Figure 2 is
the technical scheme chart for all the methods.
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3. Results
3.1. Lightning-Fire Spatiotemporal Distribution

According to the fire records in our study area (Figure 1), among all the 697 fire records,
684 fires are lightning fires, 1 fire is human-caused, 8 fires are of unknown reason, and
4 fires started outside the area then crossed the national borderline. Thus, lightning fire is
the primary forest fire type in this area. From all the historical records, there is only one
human-caused forest fire in our study area, and four cross-border fires happened in the
northern part of our study region. In addition to the four cross-border fires in the northern,
there is a slightly increasing trend of non-lightning fires occurring from north to south. We
also observed that lightning fires have fluctuated since 1986, especially in the last five years.
As for the spatial distribution, the statistical hotspots map showed an increasing trend from
south to north, and the density gradually increased from west to east.

Many severe forest fires occurred in the central and northern parts of the region. From
the fire-occurrence counts and fire-affected areas, we found that the northern part of our
region is most severely affected by the lightning fires.

Forest fires mainly occurred between April and October (Figure 3). The fire season
was concentrated between May and August, with June to August being the period with
them most frequently occurring, with the percentage of fires being 35.91% in June, 36.29%
in July, 14.06% in August, 8.01% in May, 4.61% in September, 0.45% in April, and 0.67% in
October. The earliest forest fire occurred on April 4 and the latest fire on October 7.
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Figure 3. Fire-occurrence monthly counts.

Twelve months were reclassified into four seasons based on the fire concentration.
The seasons were divided into December to the next February (December, January, and
February; DJF) in winter, March to May (March, April, and May; MAM) in spring, June to
August (June, July, and August; JJA) in summer, and September to November (September,
October, and November; SON) in autumn. JJA was defined as the fire season.

From the aspect of the affected area and the fire-occurrence frequency, the most fire-
prone parts of this region are the northern and eastern parts (Figure 4). Meanwhile, the
most fire-prone point in these two parts is far from human settlements. From the day of year
(DOY) statistics, the fire-occurrence date generally showed the same distribution pattern as
the density distribution. There is a slight trend that the fire-occurrence DOY is typically
delayed from south to north, indicating that the lightning fire tends to occur later in the
northern region. However, some regions in the southern part also show a late occurrence
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DOY, and an area in the northern part has an early occurrence DOY. This indicates that the
fire-occurrence date has a complicated regional-distribution pattern. Combined with the
fire density map, it can be found that the lightning-fire-occurrence DOY in the northern
and the south-central parts showed a strong correlation with fire-density distribution. In
general, the fire-prone parts (northern and eastern) had lightning fires that occurred late
and frequently. However, lightning fires occurred frequently in May and June in the north-
central region. The fire density gradually increased from south to north (Figure 4C). We
can characterize this region into three parts. The northern part is distributed with fires with
large affected areas and a high frequency, which are mostly occurring late. The central and
eastern parts are distributed with fires of medium affected areas and a medium frequency,
which are occurring early. The southern part is distributed with fires in the least affected
areas, which are occurring late and with the last occurrence.
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3.2. Reconstruction of the Lightning-Fire Climate
3.2.1. Exploring Results of the Forest Fire

Due to lightning fire occurring as a result of prolonged periods of fire-prone climate
conditions [77], existing studies [75,76] of the fire regime proved that precipitation had
a short-time-lagged effect on fuel moisture and soil moisture. We appointed the fire-
occurrence day conditions and three types of pre-fire time lengths in this study to acquire
more accuracy: 7 days before the fire (7d_pre), 14 days before the fire (15d_pre), and 30 days
before the fire (30d_pre).

The best performance models (or factor combinations) for different pre-fire time
lengths are listed in Table 2. The adjusted R2 of the regressions are all at a low value of
0.05 for four types (1d_pre, 7d_pre, 14d_pre, and 30d_pre), indicating that the causes of
lightning fires are relatively complex, and lightning fire occurrence is a natural hazard. It
should consider spatial and temporal variability. In conditions of VIF under 7.5, the VIF
varies across different pre-fire time lengths. The VIF of 7d_pre is the smallest, while the VIF
of 1d_pre is the largest, indicating an interaction among all factors. The VIF from 30d_pre
to 1d_pre showed an increase then a decrease, indicating that the pre-fire natural conditions
had a complex changing process and that there was a mutual influence and independence
among all the factors.
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Table 2. Exploring results of fire-affected area.

Time Factors’ Combination Adjust R2 VIF < 7.5 AIC

1d_pre
Aspect + climate water + elevation + surface pressure +

minimum air temperature + 10 cm volumetric soil water +
wind direction

0.05 2.45 9767.52

7d_pre Aspect + climate water + surface pressure + maximum air
temperature + minimum air temperature + wind direction 0.05 3.49 5542.69

14d_pre
Aspect + canopy evaporation + climatic water + elevation +

surface pressure + mean air temperature + maximum air
temperature + 10 cm volumetric soil water + wind direction

0.05 6.87 9765.01

30d_pre
Arid index + Aspect + climatic water + elevation + surface

pressure + surface runoff + mean air temperature + maximum
air temperature + wind direction

0.05 6.21 8382.2

It is worth noting that the optimal combination of factors for different pre-fire time
lengths is not the same. The four optimal exploratory models included climate water,
aspect, maximum air temperature, wind direction, and surface pressure. These five factors
had a more significant influence on lightning-fire occurrence than other factors.

As for different factors in the four different pre-fire lengths, the arid index and surface
runoff were included in the model for 30d_pre, but they disappeared in the model for
14d_pre. In their replacement, the canopy evaporation and 10 cm volumetric soil water
were included in the regression model. This indicated that before a lightning fire occurred,
the region experienced a prolonged drought due to increasing canopy evaporation and
decreased climate and soil water content. These situations later become the objective factor
for lightning-fire occurrence and can be regarded as lightning-prone weather.

Based on the AIC values, the model with a smaller AIC value proves a better model
exploration performance under the condition of a difference of the AIC greater than 3. In
general, the exploratory regression of the 7d_pre has smaller VIF values and lowest AIC
values, indicating that the 7d_pre model had better fitness in regression and predicting.
Therefore, we selected 7d_pre for GTWR regression to regress and predict the extent of
lightning-fire impact.

3.2.2. Fire-Season Climate Reconstruction

This region has experienced a 40-year trend of decreasing precipitation and increasing
air temperature from 1980 to 2019 (Figure 5). The decreasing precipitation trend had a
strong fluctuation or reversing change after 2007. Annual precipitation decreased from
635 mm in 1980 to 186 mm in 2019, with an average decrease of 4.65 mm per year. On the
other hand, the annual mean air temperature increased from −4.5 ◦C to −2.3 ◦C, with an
overall increase of 2.1 ◦C and an average increase of 0.05 ◦C per year.

To accurately reconstruct the fire season’s climate conditions, we arranged the different
meteorological conditions in different seasons. We first acquired the regional mean value
of each season in each year, then put it into a line chart. Moreover, we mainly observed the
difference between the fire season (JJA) and other seasons. The surface soil temperature
was higher in the fire season JJA when lightning fires were frequent (Figure 6), and it is the
hottest season of the year. Combined with the frequency of lightning fires [78], the years
frequently disturbed by lightning fires were 2003, 2010, and 2019. All experienced about
three years of high-temperature before the fire year (for example, the high-temperature
years 2000~2002 before the fire year 2003). There exists a significant increase in the JJA
surface soil temperature one year before the high fire-frequency years (2002, 2010, and
2019). Besides, Figure 6 also reveals that there has been a gradual decrease in DJF, MAM,
and SON 5 years before high fire-frequency years. The overall surface temperature after
the forest fires shows a slight downward trend.
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Figure 5. Regional yearly air temperature and precipitation change.
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Figure 6. Yearly change of seasonal surface soil temperature.

It can be seen from Figure 7 that the seasonal wind direction is mostly east, southeast,
and south in summer (JJA). Besides, the wind direction in summer varies significantly
with the time changes. Moreover, the southwestern and western winds are the main wind
directions in spring (MAM), autumn (SON), and winter (DJF). Very few years existed with
the northwestern and northern winds. From the high firefrequency years, 2003, 2010, and
2019, we found that the wind direction in the summer was dominated by the southeastern
wind, and the winter and spring were dominated by the western wind.

The climatic moisture content chart (Figure 8) reveals a long-term regional climatic
moisture deficit in the MAM, JJA, and SON seasons. However, this is not apparent for
the DJF season. Every MAM and JJA experienced a water deficit for a long time. The
spring moisture deficit is numerically higher than the summer moisture deficit. We can
find more severe moisture deficits for the high fire-frequency years in 2002, 2010, and 2019.
It is noteworthy that a more severe moisture deficit was observed in the next year after
each high fire frequency year.

The surface soil moisture content generally decreased over 40 years (Figure 9). Among
all the seasons, SON showed a steady declining trend, while JJA showed a steeper decreas-
ing trend. Usually, the surface soil moisture content was higher in MAM than in JJA. In
2003, 2010, and 2019, the surface soil water content showed a uniquely high level in MAM.
However, it was low in JJA. Moreover, in the next year after a significant fire year, there
was a large increase in spring surface soil water content.
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The surface pressure is stronger in SON and DJF than in JJA and MAM (Figure 10).
JJA has the lowest surface pressure. The surface pressure difference between MAM and
JJA is low. On the contrary, the surface pressure difference between SON and DJF largely
differs from between MAM and JJA. In the significant fire years of 2003, 2010, and 2019,
there was an increasing surface air pressure in MAM of the following year after a high
firefrequency year.
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From the statistical chart of the lightning-fire-occurrence aspect (Figure 11), it is easier
for lightning fires to occur on the southwestern slope, as reflected by the 101 fires, followed
by the southeastern slope with 100 fires. The least occurring slope is the northwestern
slope, with 64 cases. Lightning fires are more likely to occur on the sunny slopes, such as
the southwestern and southern slopes, and are less likely to appear on the northwestern or
shady slopes.
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3.2.3. Wavelet Transformation for Fire Occurrence and Climatic Conditions

We applied a wavelet analysis to the climatic conditions to further study the temporal
change. We drew Morlet wavelet transformations to analyze the lightning-fire occurrence
and the periodic changes of fire-related climatic indices. The Morlet wavelet transformation
diagram shows that the concentrated event of lightning fires is from 3 years to 7 years
(Figure 12). Lightning-fire occurrence has temporally local characteristics. The occurrence
of lightning fires has increased sharply in the last decade. There is an increasing trend after
2000, and, especially, the most recent 10 years show an excessively increasing trend.
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Figure 12. Wavelet transform of lightning-fire occurrence.

For the cyclical variability of fire-related climate conditions, the wind direction had a
15-year primary cycle and a 7-year subcycle (Figure 13a). The surface pressure had a strong
interannual periodicity of 15 years (Figure 13b). The surface air temperature (Figure 13c)
and soil temperature (Figure 13d) are significant in a 15-year cycle. In contrast to surface
air temperature, surface soil temperature periodicity varies a lot over time, showing a
gradually increasing trend over the whole study period. The total precipitation (Figure 13e)
and climate water deficit (Figure 13f) had a primary interdecadal cycle of 15 years and
a subcycle of 7 years. On the contrary, the surface soil water content (Figure 13g) had a
different quasiperiodic variation of 7 years, with a sub-cycle of 4 years.
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Figure 13. Morlet wavelet transformations of climate conditions.

The relationship between lightning-fire occurrence and climatic conditions showed
that the most recent outbreak of lightning fires in 2019 was associated with a change in
wind direction, while three high fire-frequency years (2003, 2010, and 2019) are associated
with the lagging phenomenon of surface pressure. It can also be found that an increase in
soil temperature accompanies the increased frequency of lightning fires in the study area.
Fires come after the precipitation interdecadal. Moreover, all years of high fire-frequency
show cyclical soil water fluctuations.

3.3. Lightning Fire Regression and Prediction

The GTWR model was used to regress and predict lightning-fire-affected areas and
forest fire risk. Based on the results of the exploratory regression in Section 3.2.1, we used
the combination of the 7d_pre factors to establish the model. The GTWR model allows us
to consider lightning fire simultaneously in terms of temporal and spatial variations. The
difference between the normal linear regression model and the GTWR model is that GTWR
does not merely regress and make predictions for a particular point but is integrated on a
regional scale.

Typically, before using a GTWR model, we should run the same variables in OLS
(ordinary least squares), TWR (temporally weighted regression), and GWR, to see if the
GTWR model has improved [41]. Thus, we applied the selected factors that have passed
the spatial autocorrelation test to the different regression models for comparison.

The OLS model has the lowest R2 at 0.04 and adjusted R2 at 0.031, while the GTWR
model has the highest R2 at 0.161 and adjusted R2 at 0.153 (Table 3). Interestingly, a
decreasing trend in AIC value changes was found from OLS to GWR, yet the R2 and
adjusted R2 prove that the GWR model is better than the OLS model. Usually, under an AIC
difference > 3, the lower AIC values have more accuracy than the AIC values [40,41,82,83].
Thus, among all four models, the GTWR model has the lowest AIC value, highest R2,
and adjusted R2, proving that compared with other models that only consider spatial or
temporal distribution, the GTWR model has better performance. It should be noticed
that the TWR model has lower AIC values than the GWR model, which proves that, in
our region, the lightning-fire occurrence has a certain time heterogeneity. Moreover, the
fire-affected areas have more temporal heterogeneity than spatial heterogeneity. All models
show a relatively low R2. The GTWR model has the best fitness among the four models.
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Table 3. Comparison of different models.

Model AIC R2 Adjusted R2

OLS 9884.312 0.040 0.031
GWR 9891.990 0.101 0.093
TWR 9881.810 0.114 0.106

GTWR 9858.800 0.161 0.153

We tried a large affected-area prediction based on the regression result of the GTWR
model result. Referring to previous experience [84], we used the kriging method [85] to
rasterize the large-scale lightning-fire-occurrence probability. The predictions are shown in
Figure 14. The images show the large-scale lightning-fire risk areas. The fire-prone areas
tend to increase from south to north and from west to east. In the future, lightning fires
will likely occur in the middle northern and eastern parts, as shown in Figure 14.
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4. Discussion

Since this region is low in population and has been experiencing population loss in
recent years [86], we can consider this region as a relatively natural region. The most fire-
prone area in our study region is located in the northern and eastern parts. The northern
forest conservation bureau governs the northern part, and the eastern part is governed
by the Hanma nature reserve bureau. Both are forest reserve regions far from human
settlements [87,88]. Chang, et al. [89] already discussed the probability of fire occurrence in
the northern part of the Great Xing’an Range.

Moreover, high fire frequency in the eastern part proves that lightning fires are more
likely to occur alongside the ridge of the Great Xing’an Range, which matches the re-
search by Liu, Yang, Chang, Weisberg and He [75] and Chang, et al. [90]. However, the
southern part in Figure 4B,C clearly shows that there exists a fire-prone region near the
region’s largest settlement, Genhe. This suggests that human activities will increase the
fire frequency and alter the fire-occurrence date, yet will partially decrease the affected
area [75]. The fire-occurrence DOY statistic shows that the same distribution pattern with
fire density can prove that the forest fire region has early DOY patterns. There is a seasonal
trend/pattern of lightning fires mostly occurring between May and June, accompanied by
larger burned areas and more frequent fires where fire occurs earlier, which in line with
those of previous studies done by Wei, et al. [91] and Zhao, et al. [92].
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The exploratory regression results show that the main factors associated with lightning-
fire activities are air moisture content, ground slope, surface air temperature, wind direction,
and surface pressure, as supported by former observations [2,93]. The data from seven
days before a fire was more accurate in establishing the regression models, thus predicting
the lightning-fire occurrence. The different factor [94] combinations for the 1d_pre, 7d_pre,
14d_pre, and 30d_pre cases indicated that the climate impacts forest-fire occurrence under a
specific process. This process intensifies the loss of forest fuel water content and air dryness,
resulting in a lagged moisture impact [95]. Among the four types of fire-pre length, 7d_pre
shows the lowest AIC values and the second-lowest VIF values, while 1d_pre shows the
highest AIC values and the lowest VIF values. It can be seen that the 1d_pre conditions
are closer to the real conditions but are hard to predict, which also potentially proves that
there is a time-lag effect of climate conditions on fire-affected areas. Of the four categories
of influential factors, the topographical factors and climatical factors existed in all four
pre-fire length types, which potentially indicates that these two categories are strongly
associated with the fire-affected area. In general, therefore, it seems that in our study region,
lightning-fire-affected areas are contributed to by abnormal hydrothermal cycles rather
than by vegetation and cloud-top properties.

For the exploratory regression results, all the selected factors (Table 2) of the different
pre-fire time lengths were non-related to vegetation conditions and lightning parameters.
This result is somewhat counterintuitive.

This region is in high vegetation coverage [96]. Therefore, we cannot identify the
vegetation conditions’ contribution to the fire-affected areas. One reason why the lightning
parameters show a low influence on lightning-induced forest fires is that we used the
fire-affected area as our independent variable; lightning is the driving factor influencing fire
frequency (or fire occurrence) [92,97], but once a fire starts, the climatic conditions together
with topological conditions are the main drivers to the fire-affected areas [98–100]. Another
reason is that while we used cloud-top properties and simulated lightning-flash density,
we did not differentiate cloud-to-cloud lightning flash from cloud-to-ground lightning
flash, which might explain why the lightning parameters show a low correlation with the
fire-affected areas.

To test whether the cloud properties correlated with the fire frequency, we also tested
the correlations between the fire frequency and the influential factors (Figure 15). We
chose the fire-occurrence times in each month of the year to represent the fire frequency
(only count the month that occurred fire, i.e., there is no fire in December, we don’t
count this month.), and their corresponding monthly mean values for each factor of the
exploratory regression results were set to be the influential factors. All the factors passed the
significance test (p-values < 0.01) run in a Pearson correlation test. As shown in Figure 15,
the correlation between fire frequency and other factors ranked as CTT>Ta>NDVI>LAI.
Since CTT represents cloud activities, cloud activities may have been an important factor
in fire frequency or fire occurrence. Figure 15 also illustrates that the relation between fire
frequency and other factors is not just a simple linear correlation, so there exists a threshold
between the influential factors and the fire frequency. This finding is further supported
by the study of Ying, Han, Du and Shen [27]. Among all the factors, temperature plays a
dominant role both in the fire frequency and the fire-affected areas, and this result is in
accord with recent studies [101].

A time-series study of climatic factors was conducted to investigate further how cli-
matic factors influence lightning-fire occurrence. Following the earlier studies [94,102,103],
perennial high temperatures preceded the high fire-frequency years. Moreover, there were
thermal anomalies in the high fire-frequency years. Since our region is located at the eastern
end of Eurasia, there exists a phenomenon that the fire-prone years have a large climatic
moisture deficit in the study area due to the prevailing winter and spring westerly winds,
which carry away climate moisture before the arrival of summer, thus dehydrating the
study area. In contrast to the study of Lutz, et al. [104], regional snow melting supplies a
higher soil moisture content in spring; combined with the higher temperatures, it promotes
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vegetation growth and lightning-fire occurrence. The thermal anomalies follow with the
coming summer. The prevalent southeastern wind brings many humid clouds, the low
pressure in spring and summer makes the surface heat exchange frequent, and the air
molecules move actively.

Forests 2022, 13, x FOR PEER REVIEW 21 of 27 
 

 

 

 

Figure 15. Scatter plot matrix between fire frequency and influential factors (Fires represents fire 

frequency, Ta is the mean air temperature at 2 m, and other abbreviated names can be found in 

Table 1, number refers Pearson correlation values, ** means p-values < 0.01, *** means means p-

values < 0.001). 

A time-series study of climatic factors was conducted to investigate further how 

climatic factors influence lightning-fire occurrence. Following the earlier studies 

[94,102,103], perennial high temperatures preceded the high fire-frequency years. 

Moreover, there were thermal anomalies in the high fire-frequency years. Since our region 

is located at the eastern end of Eurasia, there exists a phenomenon that the fire-prone years 

have a large climatic moisture deficit in the study area due to the prevailing winter and 

spring westerly winds, which carry away climate moisture before the arrival of summer, 

thus dehydrating the study area. In contrast to the study of Lutz, et al. [104], regional snow 

melting supplies a higher soil moisture content in spring; combined with the higher 

temperatures, it promotes vegetation growth and lightning-fire occurrence. The thermal 

anomalies follow with the coming summer. The prevalent southeastern wind brings many 

humid clouds, the low pressure in spring and summer makes the surface heat exchange 

frequent, and the air molecules move actively. 

Clouds of this kind, for warm and dry ground conditions, carry large amounts of 

precipitation that evaporate before falling to the ground. The hot, dry ground will raise 

the water vapor to reach saturation. This convective situation promotes lightning 

occurrences [105]. Conjointly, such weather conditions are highly susceptible to forest 

fires because there is insufficient precipitation across the canopy layer. Our study region 

is distributed with a thin soil layer [106]. The water content of the surface soil plays a 

crucial role in vegetation growth. The increasing soil water content in the spring allows 

vegetation to grow abundantly. For the topology factors, lightning fires occur more easily 

on sunny slopes, further supporting the topological impact of fire occurrence by Paulucci, 

et al. [107]. Only the surface soil water content shows a different periodic trend from the 

other climate data, among all the fire-related climate conditions. It is more stable than the 

Figure 15. Scatter plot matrix between fire frequency and influential factors (Fires represents fire
frequency, Ta is the mean air temperature at 2 m, and other abbreviated names can be found in Table 1,
number refers Pearson correlation values, ** means p-values < 0.01, *** means means p-values < 0.001).

Clouds of this kind, for warm and dry ground conditions, carry large amounts of
precipitation that evaporate before falling to the ground. The hot, dry ground will raise
the water vapor to reach saturation. This convective situation promotes lightning occur-
rences [105]. Conjointly, such weather conditions are highly susceptible to forest fires
because there is insufficient precipitation across the canopy layer. Our study region is
distributed with a thin soil layer [106]. The water content of the surface soil plays a crucial
role in vegetation growth. The increasing soil water content in the spring allows vegetation
to grow abundantly. For the topology factors, lightning fires occur more easily on sunny
slopes, further supporting the topological impact of fire occurrence by Paulucci, et al. [107].
Only the surface soil water content shows a different periodic trend from the other climate
data, among all the fire-related climate conditions. It is more stable than the other condi-
tions, with a lower periodic change. This could result from high fuel coverage adjusting
the surface water content [108]. The fire occurrence shows a lagged trend with surface
pressure. This region is experiencing a trend of decreasing precipitation accompanied by
increasing temperature, which is in line with a previous study [109]. The fluctuating trend
of increasing temperature and decreasing precipitation, in recent years, also indicates that
the climate stability of the study area is weakening. Compared with the global data, the
study area has a higher temperature-increasing speed than in East Asia, higher by about
1 ◦C. At the same time, the precipitation decreasing trend is similar to the decrease in East
Asia [110].
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The GTWR model considers both temporal and spatial heterogeneity by comparing
the regression results of different models. We think the low fitness is because our lightning
fire records are purely natural (in situ survey), but the independent values are extracted
from the satellite data. We used the affected area as a dependent variable, while the
lightning occurrence has uncertainty. The R2 and the adjusted R2 do not fit the lightning-
fire occurrence perfectly, yet our study could utilize the GTWR model to study only the
lightning-fire occurrence. Our results could be a reference for other studies.

Nevertheless, we do observe that the GTWR model improved model fitness. The
lightning-fire potentiality in this region is concentrated in the northern and central regions.
The fire-prone area overlaps with nature reserves, indicating that lightning fires occur more
frequently in areas with better vegetation coverage.

It is suggested that the local bureau of forest management should make a policy based
on the spatiotemporal variation. Fuel-cleaning activities in non-fire-prone seasons may be
organized to lower the fire possibility in fire-prone seasons. In those fire-prone regions, a
fast-response firefighting force should be deployed in the fire-prone season. Fire-prevention
measures should be taken when the local climate shows long-time fire-prone characteristics.

5. Conclusions

In this paper, by using the GEE platform to assign the historical climate and vegetation
data for the 34 years of historical fire records, we analyzed the fire regime in the northern
forests of the Great Xing’an Range of Inner Mongolia. We investigated the lightning fire-
related climate conditions and compared different models to predict the fire-prone area in
our study region. The conclusions are as follows:

(1) The lightning-fire occurrence in our study region shows an increasing trend of fires
more frequently occurring in more affected areas. The fire season is from June to
August, with a slightly increasing frequency from south to north. Those regions where
fires occur late are more likely to have fires occur frequently.

(2) The main natural factors affecting the lightning-fire occurrence are air moisture con-
tent, slope, maximum surface air temperature, wind direction, and surface pressure.
Perennial high temperatures precede the fire-prone years. Thermal anomalies exist
in fire-prone years. The climate in the fire-prone years shows lightning weather:
irregular high regional temperatures, the prevailing southeastern wind bringing lots
of precipitation, and intense surface pressure. The abnormal soil water content in
the spring led to vegetation growth and increased the storage of fuels. The low
air water content caused a long-term water deficit and made the local air dry. In
a lightning-induced forest fire region, climatic factors also play a dominant role in
fire activities. Lightning strikes are an influential factor in fire frequency, while the
climatic conditions are the shaping factors for the fire-affected area.

(3) The seven days of pre-fire data are more accurate for studying lightning-fire occur-
rence. The GTWR model shows a better model fitness than the other models. Fire-
prone areas show a trend of increasing from south to north. In the future, lightning
fires will likely occur in this region’s middle northern and eastern parts.
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