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Abstract: The exogenous plant growth regulators (PGRs) represent a useful strategy for reducing the
adverse effects of salt stress in plants. In order to investigate the regulatory effect of exogenous PGRs
on the salt tolerance of Populus talassica × Populus euphratica seedlings, in this study, the effects of
different foliar spray concentrations of ABA (5 mg·L−1, 15 mg·L−1, 25 mg·L−1), PP333 (300 mg·L−1,
900 mg·L−1, 1500 mg·L−1), and SA (40 mg·L−1, 120 mg·L−1, 200 mg·L−1) on P. talassica× P. euphratica
seedlings under salt stress (soil salt concentration of 2%) were determined. The results showed that
the dry weight, total root length, root surface area, root volume, total Chl content, and photosynthetic
parameters of P. talassica × P. euphratica seedlings significantly decreased under salt stress and
increased their contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide anion
(O2
−), free proline (Pro), superoxide dismutase (SOD), and peroxidase (POD). However, ABA, PP333,

and SA can mitigate the adverse effects of salt stress on these indicators. Especially, the 15 mg·L−1

ABA, 900 mg·L−1 PP333, and 120 mg·L−1 SA treatments had the best effect on alleviating salt stress,
with significant increases in dry weight, root parameters, total Chl content, and the photosynthetic
parameters of the P. talassica × P. euphratica seedlings, improving their photosynthetic characteristics;
meanwhile, increased Pro content and enzyme activity and decreased MDA, H2O2, and O2

− content
protected the integrity of membrane system and enhanced the salt tolerance of the seedlings. SA
resulted in a better ameliorative effect on salt stress compared to ABA and PP333.

Keywords: plant growth regulators; foliar spray; soil salt concentration; salt tolerance

1. Introduction

The worsening of soil salinization is one of the main factors that restrict the growth and
development of plants, endangers the ecological environment, and affects the sustainable
development of the global agricultural and forestry economy and ecosystems. Soil saliniza-
tion is a global environmental problem. The land worldwide that contains saline-alkali soils
exceeds 8.3 × 108 hm2, including 53% alkaline soils and 47% saline soils [1]. The problem
is particularly severe in semiarid and arid areas and is predicted to be more drastic in the
future [2]. It is estimated that the area of saline-alkali soil is growing at a rate of 1 × 107 to
1.5 × 107 hm2 annually worldwide, resulting in serious salinization hazards and water and
soil loss [3]. Countries seriously affected by saline soil mainly include Australia, Thailand,
Syria, the United States, and China [4]. According to data from previous work, the area
of saline soil in China is about 3.6 × 107 hm2, accounting for 4.88% of the available land
area in the country [5]. Xinjiang, located in the arid and semiarid areas of Northwest China,
contains the largest area of salinized soil in China [6], which severely inhibits plant growth
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and hinders sustainable forestry development. Therefore, the development and utilization
of saline-alkali land is the primary task for the development of agricultural and forestry
production. It is particularly important to vigorously promote salt-tolerant tree species and
improve the adaptability of plants grown on saline-alkali land.

In general, excessive soil salt accumulation produces osmotic stress and specific ion
toxicity in plants, which leads to secondary oxidative stress, membrane permeability, and
plant death in severe cases [7]. It impairs all aspects of plant growth and development,
manifesting as the inhibition of plant rooting, photosynthesis, physiology, biochemistry, and
other aspects, which further adversely affect plant growth [8]. Maintaining a high cytosol
K+/Na+ ratio can mitigate stress-induced deleterious changes, which is an important
aspect of maintaining physiological cellular functions [9]. However, under salt stress, a
large amount of Na+ and Cl− increases the osmotic pressure of soil water, causing the
osmotic pressure in plants to be lower than that in the soil. Meanwhile, because of the
antagonistic relationship with Na+, the high accumulation of Na+ also inhibits the uptake
of K+, Ca2+, and P by plants [10,11]. Therefore, the uptake of large amounts of salt ions
by plant roots can disrupt the original K+/Na+ balance in the cell, disrupting the plant’s
ability to maintain the ionic balance inside and outside the cell, and ultimately affecting
the plant’s entire metabolism. As the first plant organ under stress [12], when the water
absorption capacity of roots becomes greatly inhibited, and physiological drought occurs,
the plant root architecture changes accordingly [13], thereby slowing plant growth rate.
When a large amount of Na+ is absorbed by plants and accumulates in the body, it destroys
cell membranes, hinders biosynthesis in the cytoplasm, and causes lipid peroxidation
damage [14]. Moreover, it inhibits the activity of photosynthesis-related enzymes, limits
the photosynthetic rate, and damages the photosynthetic system [15].

In recent years, plant growth regulators have been used to alleviate salt-stress-induced
plant damage, and their relationship with plant salt tolerance has been widely studied.
Abscisic acid is a small sesquiterpene molecule and has an important regulatory function on
plant growth and development and stress resistance, which is a common plant growth regu-
lator [16]. Under salt stress, ABA can effectively improve the antioxidant capacity of tomato
seedlings, reduce the levels of reactive oxygen species (ROS) and malondialdehyde (MDA),
increase the content of proline, and reduce stomatal conductance, which is conducive to
promoting the growth of tomato seedlings [17]. Spraying ABA can adjust the levels of
ions and organic solutes of wheat seedlings under salt stress, increasing their aboveground
biomass and promoting growth [18]. PP333 is a stress protectant with growth regulating
properties, which is now extensively used in regulating plant development under normal
or stressed conditions. It can promote plant growth, photosynthesis, and other functions by
improving the level of osmolytes, antioxidant activity, maintaining membrane stability, and
photosynthetic pigments [19,20]. PP333 increases the fresh and dry weight of the shoots and
roots of tomato plants and enhances Chl content, Pro content, and SOD activity, reducing
the adverse effects of salt stress and enhancing the salt tolerance of their plants [21]. PP333
has been shown to promote plant height, dry and fresh weight, and improve the antioxidant
defense system of Vigna unguiculata [22] and Catharanthus roseus [23], which significantly
ameliorated the adverse effects of salt stress. SA was first separated from willow bark by
the German scientist Johann Buchner in 1828, and it has been shown to be an important
hormone involved in regulating plant photosynthesis, the antioxidant defense system, and
other physiological processes [24]. For example, the application of SA has been reported
to markedly reduce the content of malondialdehyde (MDA) and increase the activity of
antioxidant enzymes in P. euphratica grown under salt stress, alleviating oxidative damage
to the plasma membrane [25]. The application of SA can also significantly improve osmotic
potential, the Chl content, and photosynthetic capacity of tomato plants under salt stress
while reducing the content of MDA and Pro, preventing membrane damage and promoting
the accumulation of dry matter [26]. However, the effective concentration of ABA, PP333,
and SA for alleviating salt damage depends on multiple parameters. Especially in trees, the
mechanism of abiotic stress response and tolerance of ABA, PP333, and SA, still needs to be
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investigated. Tomato seeds with 1 mM SA could enhance the seed vigor index, increase
the germination rate, and increase the activities of CAT, POD, and SOD, thus reducing the
adverse effects of salinity [27]. At the same time, it can also increase the germination rate of
wheat seeds and seedling growth, increase the content of photosynthetic pigments, and
improve salt tolerance [28].

P. talassica × P. euphratica, an excellent tree variety, is crossbred with P. talassica as the
female parent and P. euphratica as the male parent by the Xinjiang Academy of Forestry
Sciences and Jimusar County Forest Variety Test Station (Xinjiang, China) [29,30]. It has the
characteristics of rapid growth, a strong asexual reproduction ability, and a high survival
rate for cuttings. In addition, it has an excellent appearance and offers good landscaping
material, with good stress resistance to salt alkali, cold, drought, wind, and sand. It is
widely planted in the saline-alkali areas of Northwest China [31]. Our research team has
made some progress in unraveling salt stress physiology and in undertaking salt tolerance-
related gene mining in P. talassica × P. euphratica [29], but the salt tolerance mechanism of
P. talassica × P. euphratica is very complex and needs further research. In order to study and
improve the salt tolerance of P. talassica × P. euphratica and promote large-scale planting
and promotion, the mitigating effects of ABA, PP333, and SA on different plants under
salt stress have been used as a reference in previous studies. In this study, the optimal
concentrations of these exogenous plant growth regulators for P. talassica × P. euphratica
seedlings under salt stress were investigated to clarify the regulatory mechanism of salt
tolerance and provide a reference and theoretical basis for the use of plant growth regulators
in alleviating growth inhibition in seedlings under salt stress.

2. Materials and Methods
2.1. Overview of the Study Site

The study site is located in the P. talassica × P. euphratica nursery (81◦18′08′′ E,
40◦36′13′′ N and altitude of 1014 m) of the seedling base of the 10th Regiment of the
1st Division of the Xinjiang Production and Construction Corps. The area has an extreme
continental arid desert climate in a warm temperate zone. The average annual sunshine
hours are 2556.3–2991.8 h; temperatures are 10–12 ◦C; the evaporation is
1876.6–2558.9 mm, with average annual precipitation of 40.1–82.5 mm. There is suffi-
cient light, large temperature differences between day and night, scarce annual rainfall,
and strong surface evaporation.

2.2. Plant Material and Experimental Treatments

Two-year-old potted P. talassica × P. euphratica seedlings were used to study the
alleviating effects of different plant growth regulators on salt stress using open-air potted
soil culture. Each pot (30 cm in upper diameter, 20 cm in lower diameter, and 25 cm in
height) was filled with 8 kg of experimental soil with pH, organic matter, total nitrogen,
alkaline nitrogen, available phosphorus, available potassium, Na+, K+, and Ca2+ of 7.56,
26.55 g·kg−1, 0.92 g·kg−1, 22.11 mg·kg−1, 24.02 mg·kg−1, 124.68 mg·kg−1, 0.14 mg·g−1,
0.03 mg·g−1, and 0.11 mg·g−1, respectively. The initial soil salt content was 0.11%. Referring
to previous research of this research group [30], the treatment groups were watered with
350 mmol·L−1 NaCl solution once every 3 d, until the soil salt content (SSc) reached 2%.
The CK group was irrigated with deionized water each time.

After salt treatment, ABA, PP333, and SA were sprayed onto the front and back of
the leaves every morning and evening for four consecutive days, with distilled water
as a control. All seedlings were randomly divided into 11 groups of 6 plants each. The
experimental design was as follows: (i) CK (control): foliar spray with water and no NaCl
treatment; (ii) NaCl: foliar spray with deionized water and 2% SSc; (iii) A1: 5 mg·L−1

ABA + 2% SSc; (iv) A2: 15 mg·L−1 ABA + 2% SSc; (v) A3: 25 mg·L−1 ABA + 2% SSc;
(vi) P1: 300 mg·L−1 PP333 + 2% SSc; (vii) P2: 900 mg·L−1 PP333 + 2% SSc;
(viii) P3: 1500 mg·L−1 PP333 + 2% SSc; (ix) S1: 40 mg·L−1 SA + 2% SSc;
(x) S2: 120 mg·L−1 SA + 2% SSc; and (xi) S3: 200 mg·L−1 SA + 2% SSc (Table 1).
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Table 1. Settings for various treatment combinations.

Treatment Soil Salt Content(SSc) Plant Growth Regulators(PGRs)

CK 0.11% -
NaCl 2% -

A1 2% 5 mg·L−1 ABA
A2 2% 15 mg·L−1 ABA
A3 2% 25 mg·L−1 ABA
P1 2% 300 mg·L−1 PP333
P2 2% 900 mg·L−1 PP333
P3 2% 1500 mg·L−1 PP333
S1 2% 40 mg·L−1 SA
S2 2% 120 mg·L−1 SA
S3 2% 200 mg·L−1 SA

After 45 days of culture, all indices were determined to analyze dry mass, root structure
parameters, Chl content, photosynthetic parameters, concentrations of MDA, H2O2, O2

−,
Pro, and antioxidant enzyme activity. The leaves used for the MDA, H2O2, O2

−, Pro, and
antioxidant enzyme activity analyses were frozen in liquid nitrogen after collection and
stored at −80 ◦C. Each treatment contained three biological replicates.

2.3. Measurement of Growth Index

Three plants were randomly selected from each treatment and taken to the laboratory.
After cleaning with deionized water, the seedlings were placed in Kraft paper bags. The
samples were then dried in an electrothermal constant temperature drying oven at 105 ◦C
for 15 min and at 75 ◦C until a constant mass was attained and weighed. Root images were
obtained using a Microtek scanmaker i800 Plus (Shanghai Microtek Technology Co., Ltd.,
Shanghai, China) and total length, surface area, and volume were measured using a Wanshen
LA-S series plant image analyzer system (Hangzhou Wanshen Testing Technology Co., Ltd.,
Hangzhou, China).

2.4. Measurements of Photosynthetic Parameters and Total Chlorophyll Content

The leaf photosynthetic parameters were measured from 11:00–13:00. Net photosyn-
thetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) were measured under
a photosynthetically active radiation (PAR) of 1200 µmol·m−2·s−1 and a CO2 concentration
of 390 µmol·m−2·s−1 at 25 ◦C using a Portable Photosynthesis System (LI-6400). Ten leaves
from each sampling point were measured, with three replicates.

We took 0.05 g of fresh leaves, cut them into filaments and put the samples into
5 mL of 95% ethanol in the dark for 24 h. Then, the extracted solution was analyzed. We
used 3 mL of extract to measure the Chl absorbance at 649 and 665 nm. The Chl contents
(mg·g−1) were determined by applying the absorbance values to the equations reported by
Lichtenthaler and Wellburn for ethanol [32]. Total Chl content was calculated as follows:

Chl mg·g–1 FW =
(6.63A665+18.08A649) × V

W × 1000

where A = optical density at 665 and 649 nm, V = final volume (mL), and FW = leaf tissue
fresh weight (g).

2.5. Measurements of Biochemical Indexes

The amount of MDA was determined by the thiobarbituric acid (TBA) reaction [33],
and the absorbance of the reaction system was determined at 532 nm and 600 nm. H2O2
was determined by titanium sulfate colorimetry [34], and the absorbance of the reaction
system was determined at 415 nm. The superoxide anion content was determined with
the hydroxylamine oxygen method [35], and the absorbance of the reaction system was



Forests 2022, 13, 1864 5 of 17

determined at 530 nm. The content of free proline was determined by ninhydrin colorime-
try [36], and the absorbance of the reaction system was determined at 520 nm. The levels of
SOD were determined using the nitroblue tetrazolium method [37], and the absorbance of
the reaction system was determined at 560 nm. The SOD enzyme activity in the reaction
system was defined as one enzyme activity unit at 50% inhibition in the xanthine oxidase
coupled reaction system. The amount of POD was determined by guaiacol colorimetry [38],
and the absorbance of the reaction system was determined at 470 nm. The A470 change of
0.005 per minute per g of tissue in each mL reaction system is defined as an enzyme activity
unit. All of the above were measured using an enzyme activity assay kit from Comin
Biotechnology Co., Ltd., (Suzhou, China). All the physiological index measurements were
repeated three times, and the statistical results were averaged.

2.6. Statistical Analysis

The experimental data obtained were processed in SPSS 25.0 with one-way ANOVA,
Duncan’s method for multiple comparisons (p < 0.05 significance level), and principal
components analysis. All data showed normal distributions. Origin 2022 was used for
creating graphs. The data were expressed as means ± SE. The comprehensive evaluation of
salt tolerance in P. talassica × P. euphratica under different treatments was carried out using
term weighting and membership function methods [39]. The membership function method
formulas were as follows:

F(Xi) =
Xi – Xmin

Xmax – Xmin
(1)

F(Xi)= 1 –
Xi– Xmin

Xmax – Xmin
(2)

where F(Xi) represents the membership function value of each main factor, Xi represents the
ith comprehensive index value of each variety, and Xmax and Xmin are the maximum and
minimum values of the same index in each treatment, respectively. If there was a positive
correlation between the measured index and salt tolerance, formula 1 was used; otherwise,
formula 2 was used.

3. Results
3.1. Effects of ABA, PP333, and SA Application on the Whole Plant Dry Weight of
P. talassica × P. euphratica under Salt Stress

The 2% SSc treatment reduced the whole plant dry weight of P. talassica × P. euphratica
seedlings (relative to the control) by 75.07% (Figure 1). After spraying exogenous ABA,
PP333, and SA (at different concentrations) onto the leaves (except for P1), the effect of salt
stress on the dry weight of the seedlings was significantly alleviated, and the difference
between those treatments using different concentrations of the same exogenous regulator
reached a significant level. The dry weight, after using the 15 mg·L−1 ABA, 900 mg·L−1

PP333, and 120 mg·L−1 SA treatments, reached a maximum, which increased 2.57-, 2.35-
and 2.59-fold, respectively, compared with that found for 2% SSc alone.
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Figure 1. Effect of ABA, PP333, and SA on the whole plant dry weight of P. talassica × P. euphratica
under controlled and 2% SSc stress conditions. Different letters represent statistically significant
differences (p < 0.05).

3.2. Effects of ABA, PP333, and SA Application on the Root Structure of P. talassica × P. euphratica
under Salt Stress

The 2% SSc treatment significantly reduced the root architecture of the
P. talassica × P. euphratica seedlings relative to the control (Figure 2). After spraying the
seedlings with different concentrations of exogenous ABA, PP333, and SA, the effects of salt
stress on the root architecture of P. talassica × P. euphratica was alleviated. With increasing
ABA, PP333, and SA concentrations, the root architecture of the seedlings showed a trend of
first increasing and then decreasing.

The P. talassica× P. euphratica seedlings, when subjected to salt stress, showed significantly
reduced total root length (77.06%), root surface area (72.57%), and root volume (68.93%)
compared with the control (Figure 2). The reduction in root growth in the seedlings was
alleviated by the exogenous application of ABA, PP333, and SA. The reductions in root length
were only 63.85, 29.06, and 46.67% following treatments A1, A2, and A3, respectively, 47.53,
19.27, and 35.09% following treatments P1, P2, and P3, respectively, and 46.14, 11.26, and
33.92% following treatments S1, S2, and S3, respectively, when compared to the control
(Figure 2a). The reductions in root surface area were only 64.60, 28.29, and 46.72% following
treatments A1, A2, and A3, respectively, 46.10, 12.89, and 40.39% following treatments P1,
P2, and P3, respectively, and 36.65, 0.35, and 16.46% following treatments S1, S2, and S3,
respectively, when compared to the control (Figure 2b). Finally, the reductions in root volume
were only 54.27, 19.78, and 38.95% following treatments A1, A2, and A3, respectively, 44.36,
15.08, and 30.45% following treatments P1, P2, and P3, respectively, and 50.23, 6.18, and 25.79%
following treatments S1, S2, and S3, respectively, when compared to the control (Figure 2c).
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Figure 2. Effect of ABA, PP333, and SA on the root length (a), root surface area (b), and root volume
(c) of P. talassica × P. euphratica under control and 2% SSc stress conditions. Different letters represent
statistically significant differences (p < 0.05).
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3.3. Effects of ABA, PP333 and SA Application on Total Chl Content and Photosynthetic Variables
of P. talassica × P. euphratica under Salt Stress

After the addition of exogenous ABA, PP333, and SA, the total Chl content of
P. talassica × P. euphratica seedlings showed differences according to the type and con-
centration of exogenous hormones applied (Figure 3). The 2% SSc stress reduced the Chl
content relative to the control by 65.01%. The three regulators produced similar trends in
the total Chl contents, first increasing and then decreasing with an increase in hormone
concentration. Spraying 15 mg·L−1 ABA, 900 mg·L−1 PP333, and 120 mg·L−1 SA had the
best effect on relieving the stress induced by 2% SSc, resulting in only 7.66, 7.92, and 9.36%
reductions in total Chl content, respectively. The rates of photosynthetic inhibition were
57.35, 57.09, and 55.65%, respectively, which was lower than under salt stress alone.

Figure 3. Effect of ABA, PP333, and SA on total Chl content in P. talassica × P. euphratica under control
and 2% SSc stress conditions. Different letters represent statistically significant differences (p < 0.05).

The Pn, Gs, and Tr directly reflected the differences in the photosynthetic characteristics
of P. talassica × P. euphratica under various treatments (Figure 4). In this study, the Pn, Gs,
and Tr of P. talassica × P. euphratica were significantly reduced under 2% SSc stress and
were 43.94, 65.27, and 39.20% lower than the control, respectively. However, the Pn of
the seedlings increased by 30.04, 63.10, and 35.39% following treatments A1, A2, and A3,
respectively, 18.80, 73.03, and 43.80% following treatments P1, P2, and P3, respectively, and
26.69, 71.43, and 48.03% following treatments S1, S2, and S3, respectively, when compared
with that observed under salt stress alone (Figure 4a). The increases in Gs were 33.36, 163.64,
and 69.73% following treatments A1, A2, and A3, respectively, 78.82, 166.64, and 106.10%
following treatments P1, P2, and P3, respectively, and 51.55, 178.82, and 127.28% following
treatments S1, S2, and S3, respectively, when compared to salt stress alone (Figure 4b). The
Tr values for P. talassica × P. euphratica increased by 20.00, 56.57, and 35.67% following
treatments A1, A2, and A3, respectively; 13.43, 60.90, and 28.81% following treatments P1,
P2, and P3, respectively, and 16.42, 57.61, and 37.61% following treatments S1, S2, and S3,
respectively, when compared with salt stress alone (Figure 4c).
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Figure 4. Effects of ABA, PP333, and SA on Pn (a), Gs (b), and Tr (c) in P. talassica × P. euphratica under
control and 2% SSc stress conditions. Different letters represent statistically significant differences
(p < 0.05).

3.4. Effects of ABA, PP333, and SA Application on MDA, H2O2 and O2
− of P. talassica× P. euphratica

under Salt Stress

The 2% SSc treatment significantly increased the content of MDA, H2O2, and O2
− in

the P. talassica × P. euphratica seedlings by 70.35, 86.35, and 33.50%, respectively, relative
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to the control (Figure 5). The increased contents of MDA, H2O2, and O2− were alleviated
with the application of ABA, PP333, and SA. The contents of MDA were 28.56, 41.93, and
29.09% higher in the control than those measured in seedlings under the A2, P2, and S3
treatments, respectively (Figure 5a). Moreover, under the A2, P2, and S2 treatments, the
H2O2 and O2

− contents were significantly different from those under 2% SSc treatment,
showing decreases of 42.09, 34.65, and 39.01% (H2O2 content) and 22.04, 23.18, and 22.45%
(O2
− content), respectively (Figure 5b,c).

Figure 5. Effect of ABA, PP333, and SA on MDA (a), H2O2 (b), and O2
− (c) in P. talassica × P. euphratica

under control and 2% SSc stress conditions. Different letters represent statistically significant differences
(p < 0.05).
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3.5. Effects of ABA, PP333, and SA Application on Pro of P. talassica× P. euphratica under Salt Stress

The 2% SSc stress increased the Pro content in P. talassica × P. euphratica (Figure 6).
Compared with the control, the Pro content in the leaves of the seedlings increased by
31.10% under salt stress. Compared with salt stress, under treatments A1, A2, and A3, the
Pro content increased by 10.00, 26.71, and 15.68%, respectively; treatments P1, P2, and P3
increased the Pro content by 12.40, 31.93, and 21.55%, respectively, and treatments S1, S2,
and S3 increased the Pro content by 14.10, 37.15, 22.43%, respectively. Among them, the
Pro content of the 120 mg·L−1 SA treatment accumulated the most.

Figure 6. Effect of ABA, PP333, and SA on Pro in P. talassica × P. euphratica under control and 2% SSc
stress conditions. Different letters represent statistically significant differences (p < 0.05).

3.6. Effects of ABA, PP333, and SA Application on Antioxidant Enzyme Activity of
P. talassica × P. euphratica under Salt Stress

The 2% SSc stress increased the SOD and POD activities in P. talassica × P. euphratica
(Figure 7). Compared with the control, the activities of SOD and POD in the leaves of the
seedlings increased by 98.79 and 66.49%, respectively. Compared with salt stress, under
treatments A1, A2, and A3, SOD activity increased by 10.54, 30.30, and 19.45%, and POD
activity by 12.13, 46.79, and 33.03%, respectively; treatments P1, P2, and P3 increased
SOD activity by 11.50, 33.48, and 21.77%, and POD activity by 6.24, 46.54, and 32.36%,
respectively, and treatments S1, S2, and S3 increased SOD activity by 12.88, 34.06, and
23.47%, and POD activity by 26.05, 52.01, and 42.72%, respectively. The PP333 treatment at
300 mg·L−1 did not impact POD gene expression.
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Figure 7. Effect of ABA, PP333, and SA on SOD (a) and POD (b) in P. talassica × P. euphratica under
control and 2% SSc stress conditions. Different letters represent statistically significant differences
(p < 0.05).

3.7. Comprehensive Evaluation and Analysis of the Effects of the Three Plant Growth Regulators on
the Growth, Photosynthesis, Physiological, and Biochemical Indexes of P. talassica × P. euphratica
under Salt Stress

To avoid the limitation of a single index evaluation, a comprehensive evaluation of
14 indexes, including the dry weight, root length, and root surface area of the
P. talassica × P. euphratica seedlings under the treatment of three plant growth regula-
tors, were measured to judge the impact of different external regulators on the salt tol-
erance of P. talassica × P. euphratica under 2% SSc stress (Table 2). The order of eval-
uation for the different treatments was S2 > P2 > A2 > S3 > P3 > A3 > S1 > P1 > A1.
In summary, 120 mg·L−1 SA had the best effect on enhancing the salt tolerance of the
P. talassica × P. euphratica seedlings.

Table 2. Comprehensive evaluation of the salt tolerance of P. talassica × P. euphratica after spraying
seedlings with different exogenous regulators.

Index
Membership Function Value Weight of

Indicators %CK NaCl A1 A2 A3 P1 P2 P3 S1 S2 S3

Dry weight 0.88 0.01 0.25 0.75 0.45 0.24 0.69 0.49 0.33 0.76 0.56 8.96%
Root length 0.99 0.05 0.21 0.63 0.42 0.41 0.75 0.56 0.43 0.85 0.57 8.70%

Root surface area 0.79 0.07 0.15 0.51 0.33 0.33 0.66 0.39 0.43 0.79 0.63 8.37%
Root volume 0.98 0.03 0.23 0.71 0.44 0.37 0.77 0.56 0.29 0.89 0.62 8.93%

Chl 0.78 0.03 0.30 0.69 0.51 0.19 0.69 0.45 0.23 0.67 0.48 8.82%
Pn 0.84 0.09 0.38 0.69 0.43 0.27 0.79 0.51 0.34 0.77 0.55 8.92%
Gs 0.87 0.07 0.21 0.77 0.38 0.40 0.78 0.53 0.29 0.83 0.61 8.90%
Tr 0.95 0.11 0.37 0.85 0.58 0.28 0.90 0.48 0.32 0.86 0.60 8.88%

MDA 0.91 0.16 0.38 0.68 0.61 0.61 0.93 0.55 0.34 0.67 0.69 8.19%
H2O2 0.92 0.20 0.41 0.85 0.59 0.39 0.74 0.58 0.40 0.80 0.55 8.80%
O2
− 0.97 0.27 0.44 0.89 0.61 0.37 0.92 0.63 0.41 0.90 0.65 8.89%

Pro 0.02 0.35 0.49 0.72 0.57 0.52 0.80 0.65 0.55 0.87 0.66 1.86%
SOD 0.08 0.58 0.69 0.89 0.78 0.70 0.92 0.80 0.71 0.93 0.82 0.06%
POD 0.05 0.45 0.57 0.91 0.77 0.51 0.91 0.77 0.71 0.96 0.87 1.73%

Weighted
average 0.87 0.11 0.31 0.73 0.49 0.36 0.79 0.53 0.36 0.80 0.60

Ranking 1 11 10 4 7 8 3 6 8 2 5
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4. Discussion

Proper soil salinity can promote the growth of many halophytes [40]. However,
excessive soil salinity will cause salt damage to plants and inhibit their growth. Therefore,
plants must establish a variety of regulatory mechanisms to respond to salt stress and
maintain growth [41]. The rational use of plant growth regulators in the form of foliar
sprays can mitigate the adverse effects of salt stress [42]. Research shows that ABA can
improve photosynthetic capacity and biomass accumulation and alleviate the physiological
damage caused by stress to plants [43]. Paclobutrazol can improve the stress resistance
of Sequoia sempervirens seedlings by improving their photosynthetic characteristics [44].
SA can improve the antioxidant capacity and salt tolerance of potato [45]. This study
clarified the physiological response mechanism of spraying plant growth regulators onto
P. talassica × P. euphratica under soil salt stress, which is necessary to alleviate soil salt stress
and improve the utilization of saline soils in forestry.

In this study, we evaluated the effects of soil salinity and plant growth regulators
on the growth indicators of P. talassica × P. euphratica. The whole plant biomass and root
parameters of P. talassica × P. euphratica were significantly reduced at 2% SSc treatment.
The osmotic stress and ion toxicity of soil salinity were the main reasons for the growth
decline. Roots provide fixation and support for plants while absorbing nutrients and water
from the soil and transmitting it to supply its growth and development needs [46]. Its
morphological structure reflects the degree of development of the plant root system and
also the growth state of the whole plant. Therefore, when the salt content of soil increases,
the root architecture is inhibited by the stress, which restricts the growth and development
of plants and even leads to their death [47]. However, when foliar spraying ABA, PP333, and
SA onto P. talassica × P. euphratica, its biomass, total root length, root surface area, and root
volume showed a trend of first increasing and then decreasing with increasing regulator
concentrations. Both 900 mg·L−1 PP333 and 120 mg·L−1 SA had the most obvious positive
regulatory influence on the root parameters of the P. talassica × P. euphratica seedlings and
the best mitigating effects. Plant growth regulators played a great role in restoring the
salt resistance of the P. talassica × P. euphratica roots, making them stronger, enhancing
their ability to absorb nutrients and water, and alleviating the stressful effects of the salt
environment on P. talassica × P. euphratica to some extent.

Chl enables plant cells to absorb and convert light energy and is the main pigment
involved in photosynthesis. Its content can be used as a parameter for physiological
metabolism, nutritional status, and aging in the leaves [48]. Researchers have discovered
that SA stimulates the synthesis of Chl and slows the rate of Chl reduction, thus delaying
a decline in Chl content [49,50]. Our investigation demonstrated a reduction in total Chl
content in the leaves of P. talassica × P. euphratica under salt stress and a decline in its
ability to assimilate light energy, which may be related to the enhancement of Chl enzyme
activity under salt stress to promote Chl decomposition. The electron transport chain
and energy transport in the photosynthetic system may also be impacted [51], causing the
inhibition of photosynthesis. In addition, salt stress can inhibit Pn, Tr, and Gs in the leaves of
P. talassica× P. euphratica, thereby reducing photosynthetic efficiency, which is similar to the
results for Ulmus pumila [52] and Populus cathayana [53]. This may occur because salt stress
leads to a decrease in Gs in the leaves, making it difficult to supply the CO2 concentration
required for photosynthesis and leading to a decrease in the rate of photosynthesis. After
spraying exogenous ABA, PP333, and SA on the leaves of P. talassica × P. euphratica, the Pn,
Tr, and Gs increased first and then decreased with increasing hormone concentration, but
all increased to varying degrees. Foliar sprays of 15 mg·L−1 ABA, 900 mg·L−1 PP333, and
120 mg·L−1 SA had the most obvious positive regulatory influence on the photosynthetic
parameters of P. talassica × P. euphratica seedlings and the best mitigating effects. Spraying
exogenous hormones on the leaves can adjust the Gs, accelerate carbon carboxylation, slow
stomatal restriction, and enhance the photosynthetic capacity of plants [54,55]. ABA, PP333,
and SA have been shown to alleviate the adverse effects of abiotic stress on plants and
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improve photosynthetic performance [56]. The results found in this study were similar to
those reported for Populus [57], Curcuma longa [58], and Perennial Ryegrass [59].

MDA is one of the main products of membrane lipid peroxidation. It is combined with
H2O2 and O2

−, which are a measure of oxidative damage to plants. Excessive reactive oxygen
species and MDA lead to membrane peroxidation, increased membrane permeability, and
damage to the plant’s defense systems, affecting physiological and biochemical metabolism [60].
In this study, the contents of MDA, H2O2, and O2

− in P. talassica × P. euphratica seedlings
under salt stress increased significantly, which damaged the cell membrane system and led to
the continuous accumulation of membrane lipid peroxides. The spraying of ABA, PP333, and
SA can significantly reduce the content of MDA, H2O2, and O2

−, and alleviate the damage
of membrane lipid peroxide, which is induced by salt injuries to plants. Pro can regulate
the osmotic potential of plant cells. The accumulation of its content can enhance osmotic
adjustment ability, reduce the inhibition of antioxidant enzyme activity under salt stress, and,
thus, improve the salt tolerance of plants [61]. In this study, Pro content tended to increase
under salt stress, indicating that salt stress promotes the accumulation of proline to mitigate
salt damage. ABA, PP333, and SA treatments increased the content of proline, indicating that
they had the function of regulating proline metabolism and could alleviate the damage of the
P. talassica × P. euphratica seedlings under salt stress. The results found in this study were
similar to those reported for rice seedlings [62] and Mentha simplex [63].

SOD and POD are two important antioxidant enzymes for scavenging active oxygen
from plants. Improving the activity of these enzymes can alleviate growth inhibition
under salt stress and improve the resistance of the plant seedlings. SOD can catalyze the
conversion of O2

− to H2O2 [64], and POD can convert H2O2 to H2O. Exogenous ABA, PP333,
and SA enhanced the activity of SOD and POD in the leaves of P. talassica × P. euphratica
and reduced the increase in MDA, H2O2, and O2

− contents under salt stress, indicating that
these three exogenous plant growth regulators can alleviate the oxidative stress caused by
abiotic stress. ABA is involved in the restoration of osmotic and antioxidant mechanisms
of rice under salt stress [65]. PP333 can improve the antioxidant capacity of sweet sorghum
under salt stress [66]. This is similar to the results obtained in Phoenix dactylifera [67],
Punica granatum [68], and Platycladus orientalis [69].

In conclusion, our results showed that the foliar spraying of exogenous ABA, PP333, and
SA at a certain concentration could adjust the osmotic capacity of P. talassica × P. euphratica
seedlings, reduce the degree of membrane lipid peroxidation, enhance cell membrane stability
and the antioxidant defense system, promote root growth and development and biomass
accumulation, reduce chlorophyll decomposition, and improve photosynthetic performance,
thereby reducing the adverse effects of salt stress on P. talassica × P. euphratica seedlings.
However, how exogenous ABA, PP333, and SA affect the molecular mechanisms of salt
resistance and endogenous hormone interactions on P. talassica × P. euphratica seedlings
remains to be further researched in the future.

5. Conclusions

Our results revealed that 2% SSc stress significantly inhibited the growth, root struc-
ture, photosynthetic characteristics, and physiological and biochemical characteristics of
P. talassica × P. euphratica. Foliar spraying with ABA, PP333, and SA in appropriate concen-
trations significantly promoted root morphological development, which was conducive
to the accumulation of dry matter in the plants, alleviating the damage caused by salt
stress and promoting the growth of leaves and, thus, increasing chlorophyll content and
photosynthetic capacity. Meanwhile, ABA, PP333, and SA could inhibit increases in MDA,
H2O2, O2

−, and proline contents, protecting the stability of the cell membrane structure
and improving the activity of SOD and POD antioxidant enzymes, which could increase
cold resistance and reduce the production of reactive oxygen species. The optimal con-
centrations of ABA, PP333, and SA for alleviating salt stress were 15 mg·L−1, 900 mg·L−1,
and 120 mg·L−1, respectively. Among them, 120 mg·L−1 SA was the most effective for
protecting P. talassica × P. euphratica against salt stress.
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