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Abstract: Rocky slopes are vulnerable to landslides and mudslides, which pose a major threat
to human life and property. Research is being conducted to improve the adhesion between soil
and minerals by mineral-solubilizing bacteria to manage slopes scientifically and develop novel
methods for slope greening. From the soil of Nanjing Mufu Mountain’s weathered rock walls, we
isolated various soil mineral-solubilizing soil bacteria. During the soil bacterial solubilization test,
we discovered that some soil bacteria could enhance the adherence of soil to minerals; therefore, we
selected three soil bacteria (NL-7, NL-8, and NL-11) with higher performance for further investigation.
Controlled experiments were used to investigate the effects of soil bacteria on soil characteristics
(soil moisture content, soil pH, and soil exchangeable metal content) and soil adhesion to minerals.
According to the findings, soil bacteria can improve the soil’s adhesion to minerals, improve the soil’s
capacity to hold water, regulate soil pH, and solubilize and release exchangeable calcium, magnesium,
sodium, and potassium ions. A structural equation modeling analysis was performed to thoroughly
examine the relationship between soil characteristics and soil adherence to minerals. The analysis
findings showed that soil moisture had the greatest total and direct positive impact on soil adherence
to minerals. The most significant indirect impact of soil pH on soil adhesion to minerals is mainly
caused by the exchangeable sodium and magnesium ions. Additionally, soil exchangeable sodium
ions can only indirectly affect the adhesion of soil to minerals, which is accomplished by controlling
soil exchangeable magnesium ions. Therefore, mineral-solubilizing soil bacteria primarily work by
enhancing the soil’s water retention capacity to improve the soil’s adherence to minerals. Our study
on the effect of mineral-solubilizing bacteria on the adhesion of soil and minerals demonstrates the
significant potential of mineral-solubilizing bacteria in spray seeding greening, which will provide
data and theoretical support for the formation, application, and promotion of mineral-solubilizing
bacteria greening methods and gradually form a new set of scientific and efficient greening methods
with Chinese characteristics.

Keywords: scientific slope management; mineral-solubilizing bacteria greening method; adhesion of
soil to minerals; structural equation modeling

1. Introduction

Mining contributes significantly to global, social, and economic development. How-
ever, it also causes many negative ecological and environmental effects [1,2], including
eradicating natural flora, irreversible deterioration of soil quality, and the subsequent ap-
pearance of many slopes of bare rock [3]. There is a risk to human life and property when
bare rock slopes deteriorate in the microclimate, resulting in landslides and mudslides [4].
Therefore, experts and scholars are increasingly focusing on the ecological restoration of
bare rock slopes. Currently, the technologies for ecological restoration of bare rock slopes
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domestically and internationally are generally composed of spray greening, vegetation
blanket, green bag, crop trough greening, planting hole greening, and thick substrate tech-
nologies [5–7]. The most widely used technology is spray greening. Still, it is easy to peel
off because it is difficult to maintain the greening effect for a long time and the substrate is
poorly adapted to the building surface of rocky slopes. It may be necessary to strengthen
the adherence of the sprayed substrate to the surface of the rocky slope construction in
order to maintain the stability of the slope ecology and achieve permanent greening of the
rocky slopes.

Currently, most soil adhesion research is focused on agriculture [8] to enhance the
efficiency of agricultural machinery operations by lowering the adhesion and resistance of soil
to tools through morphological modifications, surface engineering, and bionics [9–11]. The
characteristics of the solid surface, soil characteristics, and environmental factors all play a
major role in the adherence of soil to solids [12]. Soil parameters are typically correlated
with the bulk density, moisture content, soil solution quality, and mineral composition of
the soil. Numerous studies have demonstrated that soil moisture content plays a significant
role in determining the adherence of soil to solids [12–14]. Soil adhesion is greatest when
the soil water content is between the liquid limit and the soil plastic limit. Additionally, the
frictional, geometrical, and other characteristics of the solid surface all affect the adherence
of soil to solids. Several studies have shown that solid materials with high surface free
energy and good hydrophilicity strongly adhere [15–17]. The adherence of soil to solids
can also be influenced by environmental factors such as process pressure, temperature,
etc. There is little literature on the role of soil adhesion in ecological restoration, and its
significance in this process has yet to be fully understood [18,19].

It is well known that using bacteria to restore the environment is both economical and
eco-friendly. Many bacteria have been shown to promote plant growth [3,5,12,20–22] by
enhancing soil structure and nutrient cycling [23–25]. According to Ortiz et al., bacteria
also help to mitigate the impacts of salinity and drought stress [26,27]. Additionally, by
utilizing the metabolic and antagonistic characteristics of bacteria, efforts have been made
to reduce the prevalence of plant pests and diseases in slope management [17,28–32]. In
previous studies [33–38], we isolated many bacteria from the soil along weathered dolomite
rock walls in the Nanjing Mufu Mountains. These bacteria can alter soil nutrient levels,
plant growth characteristics, and the solubilization and release of metal ions from minerals.
There are no studies on the impact of soil characteristics on soil adhesion to minerals under
the action of bacteria, and it has been reported that bacteria affect soil adhesion to minerals.

Therefore, based on previous studies’ findings, we conducted a comprehensive analy-
sis of a series of soil bacteria’s solubilization, plant growth promotion, and soil nutrient
regulation abilities. Based on this, three indigenous dominant soil bacteria with better-
combined effects and tolerance were selected for this study’s controlled indoor and outdoor
experiments. The objectives were to (1) determine how mineral-solubilizing soil bacteria
affected soil adhesion to minerals; (2) look into how they affected soil characteristics; and
(3) determine how soil characteristics affected soil adhesion to minerals when mineral-
solubilizing soil bacteria were present.

The findings of this study will investigate new areas of soil adhesion research and
add to the existing information on the effects of soil bacteria on soil adhesion to minerals.
Findings that suggest that soil bacteria can enhance the adhesion of soil to minerals may
offer a new direction for the advancement of slope greening methods. Furthermore, such
a finding could potentially resolve the issue of traditional greening effectiveness being
difficult to maintain over the long term and develop a new spray greening method adapted
to the unique climate and environment of China.

2. Materials and Methods
2.1. Sample Preparation

The strains (NL-7, NL-8, and NL-11) used in this experiment were selected through
comprehensive analysis from numerous soil strains isolated from the weathered rock wall
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soil of Nanjing Mufu Mountain. The three bacterial strains were identified by 16S rRNA
as Bacillus megaterium [39], Bacillus cereus, and Bacillus thuringiensis [40] (preserved in the
China Center for Type Culture Collection (CCTCC): M2012452 and CCTCC: M2012453).
The well-preserved strains (NL-7, NL-8, and NL-11) were inoculated on Nutrient Agar
medium (peptone 10.0 g/L, beef extract 3.0 g/L, sodium chloride 5.0 g/L, and agar
18.0 g/L) and cultured at 30 ◦C for 24–48 h. The more developed colonies of each strain
were selected, transferred to Nutrient Broth medium, shaken at 30 ◦C for 24 h, filtered, and
then placed in sterile water to make a bacterial solution (adjusted to a concentration of
5 × 108 cfu/mL).

The soil and rock samples used were: (1) Soil sample #1: Mufu Mountain soil samples
were collected, air dried, filtered through a 100 mesh (150 µm) screen, and autoclaved
before use; (2) Soil sample #2: Soil sample #1 sieved through a 1340 mesh (10 µm) screen,
and the selected soil particles were autoclaved before use; (3) Mineral sample #1: Mineral
samples from carbonate mines were extracted and progressively sanded with 16, 40, 100,
150, 220, 400, 600, 800, 1200, and 1500 grain sandpaper before being cut into 5 cm × 5 cm
× 1 cm (L × W × H) and autoclaved before use; (4) Mineral samples #2: Mineral samples
from carbonate mines were extracted and progressively sanded with 16, 40, 100, 150, 220,
400, 600, 800, 1200, and 1500 grain sandpaper before being cut into 20 cm × 20 cm × 1 cm
(L × W × H) and autoclaved before use.

2.2. Experimental Design
2.2.1. Indoor Experiment

Equal volumes of the bacterial solutions NL-7, NL-8, and NL-11 were sprayed onto the
surface of minerals (mineral sample #1), and equal amounts of soil particles (soil sample #2),
treated with sterile water as a control, were sprayed over them. The adhesion capabilities
between soil particles and minerals were assessed after seven days of aseptic management.

2.2.2. Pot Experiment

Equal amounts of each bacterial solution (NL-7, NL-8, and NL-11) were thoroughly
mixed with equal amounts of soil sample #1, while sterile water treatment served as the
control group. The pull ring was attached to the outside of the mineral sample above, and
they were filled in between two horizontally positioned mineral samples #2 (as shown in
Figure 1). Soil moisture sensors (EC-5) were connected to the METER Em50/G 5-channel
data collector where they were placed at the interface of soil and minerals. Blank controls
and treatments using additional strains NL-7, NL-8, and NL-11 were labeled as P1, P2, P3,
and CK, respectively. Each treatment was given an initial moisture content of 0.3 m3/m3

(v/v) and was incubated aseptically for 28 days. Moisture content was measured every
hour, and adhesion was measured every four days. Every four days, soil samples from
the mineral surface were collected to determine the soil’s pH and exchangeable calcium,
magnesium, sodium, and potassium.
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Figure 1. The design of the pot experiment. #2 is filled with a soil sample between two mineral
samples. The upper mineral sample has a pull ring on the outer side. The soil moisture sensor (EC-5)
is inserted at the interface between the lower mineral sample and the soil sample. The samples are
placed in a pot and aseptically incubated.
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2.3. Evaluating the Adhesion of Soil Particles to Minerals

In the indoor experiments, Atomic Force Microscopy (AFM) was used to assess the soil
particles’ adherence to minerals. AFM, scanning force microscopy, was used to see how the
probe and the sample interacted. It was composed of five components: a microcantilever
with a tip, a piezoelectric scanner, a laser, a photoelectric detector, and a feedback control
system. AFM scans the samples measured by a fixed tip on the micro-cantilever, using the
optical or tunnel current detection method to retrieve the micro-cantilever position changes
and gather information such as the sample surface topography, mechanical characteristics,
and other details. The near sample stage and the withdrawal process stage are included in
each tip scan.

The experiment used the Dimension Icon/Multimode 8 AFM developed by Bruker
Company. The resolution was 0.15 nm in the lateral direction and 0.04 nm in the vertical
direction, with the maximum scanning range being 90 µm × 90 µm × 10 µm. The tests were
conducted at 25 ± 0.5 ◦C and relative humidity of 45 ± 2%. The AFM was set to contact
mode in this experiment. Probes were used with voltages of 0 V, 0.1 V, 0.3 V, 0.5 V, 0.7 V, and
0.9 V. Fifty soil particle samples were randomly selected from the mineral sample’s surface
to observe the state of change for a specific voltage and count the number of displacements
that occurred. Each treatment was performed in triplicate (Figure 2) [41,42].
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Figure 2. Schematic diagram of a probe approaching uniformly close soil particles on a mineral
surface. Changes in the morphology of the mineral surface was observed and recorded by tapping
the soil particles with an atomic force microscope probe.

2.4. Measurements of Soil Characteristics and Adhesion of Soil to Minerals

Plotting experiments measure the soil’s adherence to minerals and other soil char-
acteristics. The adhesion of soil to the mineral was measured as the difference between
the maximum value exhibited by the tensiometer when the mineral sample is moved, and
the value after the mineral is detached from the soil surface (Figure 1) using an ELECALL
tensiometer. Soil moisture content was determined using an Em50/G 5−channel data
collector. Atomic absorption spectroscopy was used to calculate the exchangeable calcium
and magnesium in the soil, while ammonium acetate flame spectrophotometry was used
to calculate the exchangeable sodium and potassium.

2.5. Statistical Evaluation

Nanoscope analysis software, version 1.8, was used to analyze scanned images. The
IBM statistical package for social sciences software, version 20.0, was used for statistical
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analysis of the data. Significant differences between different treatments were identified
using one-way analysis of variance and least significant difference tests (LSD, p < 0.05).
Data were plotted using Origin 2021. Images were created with Photoshop CS6.

3. Results
3.1. The Adhesion of Soil to Minerals

Figure 3 displays the results of the indoor experiment on the adherence of soil to
minerals. The number of soil particles that were gradually displaced increased with the
applied voltage, with the voltage at which the peak occurred being significantly larger in
the added bacteria group than in the control group (CK) (Figure 3). The average voltages of
soil particles displaced on the mineral surface in the P1, P2, and P3 treatments were 0.44 V,
0.38 V, and 0.53 V, respectively, which increased by 51.72%, 31.03%, and 60.49% compared
to the CK.
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Figure 3. The number of soil particles displaced on mineral surfaces of indoor experiments.
(A) The number of soil particles displaced at different voltages for the control group; (B) The number
of soil particles displaced at different voltages for P1; (C) The number of soil particles displaced at
different voltages for P2; and (D) The number of soil particles displaced at different voltages for P3.
Different capital letters denote significant differences (p < 0.05) between various treatments based on
a one-way analysis of variance and the Duncan test. Different lowercase letters denote significant
differences (p < 0.05) between different voltages applied to the same bacteria.

Figure 4 displays the results of the pot experiment on the soil’s adherence to minerals.
The treatments that included bacteria significantly increased the soil’s adherence to the
minerals, with P3 having the most dramatic effect (Figure 4).
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Figure 4. Soil’s adherence to the minerals in the pot experiment. Different capital letters indicate
a significant difference (p < 0.05) across treatments simultaneously based on a one-way analysis of
variance and the Duncan test. Different lowercase letters denote significant differences (p < 0.05)
between different timepoints applied to the same bacteria.

3.2. Soil Characteristics

Although the soil’s moisture content gradually dropped, the treatments consistently
added more bacteria than CK (Figure 5). The CK would reach a severe drought on day 4
(8% soil volumetric water content), whereas P1, P2, and P3 would reach a severe drought
on days 8, 8, and 9, respectively.
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Figure 5. Soil moisture content with various soil bacteria. (A) Soil moisture content from 0 to 28 days;
(B) Soil moisture content from 0 to 4 days.

The bacteria treatments caused the soil pH to be significantly lower than the CK
(Figure 6). In contrast to CK, where there was no significant change in soil pH, P3’s soil pH
initially decreased, then increased over time, and finally stabilized at 7.0.

The amount of exchangeable metal (calcium, magnesium, sodium, and potassium)
ions in the soil of the treatments with added bacteria gradually decreased over time, mostly
between 0 and 16 days, in contrast to the CK, where there was no significant change in
exchangeable metal ion concentration over time (Figure 7). Moreover, the P3 had the
greatest impact compared to the added bacteria treatments.
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Figure 6. Soil pH with various soil bacteria. According to a one-way analysis of variance and
the Duncan test, different capital letters indicate a significant difference (p < 0.05) across different
treatments. Different lowercase letters denote significant differences (p < 0.05) between different
timepoints applied to the same bacteria.
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Figure 7. Soil exchangeable metal ion content with different soil bacteria. (A) Changes in exchange-
able calcium ions in soil for various treatments; (B) Changes in exchangeable magnesium ions in
soil for various treatments; (C) Changes in exchangeable sodium ions in soil for various treatments;
(D) Changes in exchangeable potassium ions in soil for various treatments. Different capital letters
denote significant differences (p < 0.05) between treatments simultaneously based on a one−way
analysis of variance and the Duncan test. Different lowercase letters denote significant differences
(p < 0.05) between different times applied to the same bacteria.

3.3. Effects of Soil Characteristics on the Adhesion of Soil to Minerals

There were highly significant positive correlations between soil adhesion to minerals,
soil pH, soil moisture, and soil exchangeable magnesium and sodium ion concentrations.
Significant positive correlations were found between the soil’s adhesion to minerals and
exchangeable calcium and potassium ion concentrations in the soil (Figure 8).
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Figure 8. Correlation analysis of soil characteristics and soil adherence to minerals. The numbers in
the circles represent the correlation coefficients between the parameters. ** and * indicate significant
differences at p < 0.01 and p < 0.05, respectively. A, soil adhesion to minerals; B, soil pH; C, soil
moisture content; D, soil exchangeable calcium ions; E, soil exchangeable magnesium ions; F, soil
exchangeable sodium ions; G, soil exchangeable potassium ions.

The effect of soil characteristics on the adhesion of the soil to minerals was mainly
achieved through soil moisture content (0.992), soil pH (−0.074), exchangeable magnesium
ions (0.261) and sodium ions (0.034), of which soil moisture content had the greatest total
effect (Figure 9; Table 1). Additionally, soil moisture content (0.901), soil pH (−0.271), and
soil exchangeable magnesium ions (0.261) can all have a direct or indirect impact on soil
adhesion to minerals (Figure 9). However, soil-exchangeable sodium ions (0.034) can only
indirectly affect the soil’s adhesion to minerals by affecting magnesium ions. The strongest
indirect influence on soil adhesion is caused by soil pH (0.143), which primarily changes
the soil’s exchangeable metal ions, particularly sodium ions.
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Figure 9. Structural equation model of soil characteristics affecting the soil adhesion to minerals.
p = 0.324 > 0.05, GFI = 0.952 > 0.900, RMSEA < 0.08. Standardized path coefficients are shown as
numbers on arrows. Solid lines indicate the direct influence of each parameter on the adhesion of
soil to minerals, and dotted lines indicate the indirect influence of each parameter on the adhesion
of soil to minerals. ***, **, and * indicate significant differences at p < 0.001, p < 0.01, and p < 0.05,
respectively. AD: adhesion of soil to mineral; pHs: soil pH; MC: soil moisture content; EMg: soil
exchangeable magnesium ions; and Ena: soil exchangeable sodium ions.
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Table 1. The direct, indirect, and total effects of soil moisture content, pH, and exchangeable metal
ions on soil adhesion to minerals based on structural equation models.

Factors Soil Moisture Content
(MC) Soil pH (pHs) Exchangeable Sodium

Ions (ENa)

Exchangeable
Magnesium Ions

(EMg)

Total 0.992 −0.074 0.034 0.261
Direct 0.901 −0.271 —— 0.261

Indirect 0.091 0.143 0.034 ——

4. Discussion

China has recently intensified the construction of ecological civilization, and to im-
plement the policy systems of carbon peaking, carbon neutrality, and “1 + N” [43–45],
it is necessary to continually improve the scientific restoration of significant ecosystems
and increase the capacity of ecosystems to store carbon [46,47]. Therefore, we extracted a
range of efficient soil bacteria from the weathered surface of rocky slopes in Nanjing to
treat rocky slopes scientifically and address the issue of difficulty in maintaining greening
efficiency. However, most of the microorganisms used for ecological remediation in earlier
investigations [48,49] were derived from soil or root systems. These isolated strains can
be employed to enhance the traditional greening technology and to create a greening
technique suitable for the fragile habitat of rocky slopes and, more importantly, possess
Chinese characteristics, namely indigenous soil bacteria spraying greening.

In previous studies, we analyzed the tolerance of various strains using culture condi-
tion control experiments; we evaluated the impact of solubilization of various strains using
fermentation culture tests, detecting the changes in the mixture’s ion concentration and
composition, etc. [33–35]. We used 16S rRNA to identify strains with improved behavior
and filed patent applications for four strains [39,40,50,51]. Previous studies revealed that
soil bacteria could enhance soil nutrients and promote plant growth [36,41]. It is important
to note that during the test, we were surprised to discover that the treatment involving the
addition of soil bacteria appeared to increase the soil’s adhesion to minerals.

As a result, we selected bacteria (NL-7, NL-8, and NL-11) with high adaptability
and improved applicability for our study into how soil bacteria affect soil adherence to
minerals. The findings of this study adds to the knowledge in many fields, including the
impact of mineral-solubilizing soil bacteria on soil adhesion capacity and the application
of soil bacteria in slope ecological restoration. This bridged the knowledge gap on soil
adhesion in ecological slope restoration and complemented the role of mineral-solubilizing
soil bacteria in slope restoration. Permanent greening of rock slopes was made possi-
ble by a new greening method that combines native mineral-solubilizing soil bacteria
with traditional spraying technology. This technique is safe, efficient, economical, and
environmentally friendly.

Since soil bacteria were found to impact soil adhesion to minerals in our previous study,
we hypothesized that NL-7, NL-8, and NL-11 helped improve soil adhesion to minerals. The
findings of this study supported our hypothesis. When mineral-solubilizing soil bacteria
were added, we discovered that the soil’s adhesion to minerals was significantly improved
(Figures 3 and 4). This could be attributed to the significant amounts of organic material
that soil bacteria produce during their growth and metabolism [52–54], which alters the
characteristics of the soil and minerals at the interface. It is possible that the P3 treatment
(NL-11 supplementation) had a greater effect on promoting soil adherence to minerals than
the P1 (NL-7 supplementation) and P2 (NL-8 supplementation) treatments because the
addition of different bacteria produced distinct secreted chemicals and had varied effects
on soil characteristics [52,55]. Moreover, we noted that the slope of the connection between
adhesion to minerals and time varied across soil treatments with and without the adhesion
of bacteria. This suggests that adding soil bacteria enhances soil’s ability to adhere to
minerals while delaying the decline of adhesion. This finding could help slopes become
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more stable over time and better able to withstand extreme weather conditions by using
innovative greening methods [56].

In this study, the treatments that included mineral-solubilizing soil bacteria, compared
to the control, improved water retention in the soil (Figure 5). It was exciting to observe
that, compared to the control, the P3 treatment with the best water retention may delay the
onset of a severe drought in the soil by nearly six days. This would significantly increase
the ability of slope ecosystems to withstand severe drought.

This can be attributed to several reasons. First, mineral-solubilizing soil bacteria
improve soil quality by increasing the organic matter in the soil and improving the pore
conditions and aggregate structure of the soil. Several studies have reported that bacteria
positively impact soil organic matter and soil structure [57–59]. When there is a water
shortage, the soil’s surface particles shrink and the capillaries that connect them to the
underlying aggregates break, which helps the soil retain water [60,61].

Second, the results of several studies have shown that a variety of Bacillus spp. can
release extracellular polymeric substances (EPS) and form biofilms [62–66]. According
to several studies, EPS has a high water absorption capacity and can even absorb up to
15–20 times its mass in water. This is mostly because soil absorbs moisture and has
electrostatic and hydrogen bonds that act as a bonding mechanism. EPS will adhere to the
dry surface without moisture and release water. Additionally, some studies have suggested
that EPS can form fine filaments and two-dimensional structures in the soil to keep liquids
connected; in the event of a water shortage, the network of two-dimensional structures will
slow the diffusion of water vapor and hold the water in the soil [67,68].

In our study, we also discovered that adding mineral-solubilizing soil bacteria caused
a significant decrease in soil pH compared to the control. This is consistent with findings
of some previous studies [69–71]. The bacteria’s ongoing carbon dioxide emission during
daily activity, which combines with water to produce carbonic acid and dissociate hydrogen
ions, may contribute to soil acidification. Additionally, the decrease in pH can be as a result
of the numerous acidic chemicals produced, bacterial growth and metabolism, as well as
the accelerated decomposition of organic materials by the bacteria [72,73].

Additionally, we found that mineral-solubilizing soil bacteria significantly reduce
the number of exchangeable metal ions in the soil significantly more than the control
(Figure 7). The structural equation modeling analysis results verified our hypothesized
connection between this and the alteration in soil pH (Figure 9, Table 1). Large amounts of
free hydrogen ions, which have a stronger adsorption capacity than calcium, magnesium,
sodium, and potassium ions, are produced when soil bacteria are added. As a result,
these soil nutrient ions are pushed out of the soil solution. The results of several earlier
investigations also corroborate our hypothesis [74]. Hydrogen ions transport nutrient ions
from the soil colloid into the soil solution and the plant through the root system. This may
also explain the plant-promoting impact of mineral-solubilizing soil bacteria described in
earlier investigations [75–77].

The results of structural equation modeling analysis demonstrated that soil moisture
content, soil pH, and exchangeable magnesium and sodium ions could all affect how well
soil adheres to minerals (Figure 9, Table 1). Notably, the results of the water tension theory,
capillary theory, and ensemble theory proposed by Fountaine, Toyo Akiyama et al. are
consistent with the observation that soil moisture content has the greatest direct and total
positive effect on the adherence of soil to minerals [42,78–80]. Additionally, soil pH can
have a direct negative effect on the adherence of soil to minerals, meaning that the stronger
the adhesion of soil to minerals, the lower the soil pH, which is inconsistent with previous
findings [12,14]. The significant amount of acid produced by adding soil bacteria and the
water management conditions used in the experiment may have caused this disparity. In
addition, this study discovered a significant indirect influence of soil pH on the adherence
of soil to minerals, which was mostly achieved by influencing the exchangeable sodium
and magnesium ions. Soil pH, in particular, has a significant effect on soil exchangeable
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sodium ions. This is in compliance with Coulomb’s law that higher valence ions have
greater adsorption capacity than lower valence ions.

5. Conclusions

This study revealed that the three soil bacteria selected for this study with mineral-
solubilization significantly increased soil adherence to minerals and reduced the rate at
which soil adhesion decreased over time. Additionally, adding soil bacteria can change
the soil’s pH, improving soil fertility. It can also dissolve and release exchangeable metal
ions (calcium, magnesium, sodium, and potassium) into the soil as nutrients, improving its
capacity to hold water and delaying the occurrence of a soil water deficit. It is important
to note that the P3 treatment (NL-11 added) significantly impacted the soil’s adherence to
minerals and soil characteristics.

(1) Soil moisture content has the greatest total and direct positive influence on the
adherence of soil to minerals. This is because the soil moisture content is directly related
to mineral-solubilizing soil bacteria. (2) The soil pH primarily affects the soil’s exchangeable
sodium ions, which in turn affects the adherence of soil to minerals.
(3) Soil-exchangeable sodium ions can only somewhat influence soil adhesion to min-
erals by altering soil-exchangeable magnesium ions.

In conclusion, increasing the soil’s ability to retain water can improve soil adherence
to rock walls. This is done by introducing native, mineral-solubilizing soil bacteria into the
substrate. With the help of a new modified soil greening method, slopes can be permanently
greened while fostering a stable habitat for plant development and ecological restoration.

6. Patents

Jinchi Zhang, Guanglin Wang, Jiayao Zhuang, Qun Wang: An efficient limestone
erosion bacterium Bacillus megaterium NL-7 and its application. CN103087953B; Jinchi
Zhang, Guanglin Wang, Bo Zhang, Yanwen Wu: An efficient limestone erosion bacterium
Bacillus thuringiensis NL-11 and its application. CN103087954B; Jinchi Zhang, Guanglin
Wang, Li Wang, Bo Zhang: An efficient limestone erosion actinomycetes Streptomyces
thermocarboxydus NL-1 and its application. CN103103151B; Guanglin Wang, Jinchi Zhang,
Jie Lin, Rong Cao: An efficient limestone erosion fungus Gongronella butleri NL-15 and its
application. CN103087926B.
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