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Abstract: Understanding hybridization is important for practical reasons, as the presence of hybrid
trees in seed stands can influence the success of natural regeneration and reforestation. Hybridization
creates new gene combinations, which can promote or enhance adaptation to new or changing
environments. In the present research, we aimed, for the first time, to evaluate and compare the
growth and survival of 541 putative hybrid seedlings and 455 seedlings of the pure parental trees
of Pinus arizonica, P. durangensis, P. engelmannii, P. leiophylla, and P. teocote, in two reciprocal trials of
duration 27 months in the Sierra Madre Occidental (SMO), Durango, Mexico. We also examined the
possible correlation between needle stomatal density and seedling growth and survival. The overall
analysis of the data showed that the mean height to the apical bud was significantly higher (p = 0.01)
in the hybrids than in the pure trees. Considering both trials, the survival rate of P. arizonica (p = 0.002)
and P. durangensis (p = 0.01) hybrids was significantly higher than that of the pure trees. The growth
parameters were significantly correlated with the mean stomatal density (p < 0.01). Stomatal density
and survival at the seed stand level were significantly and positively correlated in the hybrids, but not
in the pure trees. In summary, Pinus hybrids generally exhibited the same ability as the pure species
(or sometimes a greater ability) to withstand weather conditions, survive, and grow effectively in both
growth trials. The systematic use of natural pine hybrids in Mexico could therefore be considered a
possible option for sustainable management and as a component of adaptive silviculture.

Keywords: natural hybridization; Pinus arizonica; Pinus durangensis; Pinus engelmannii; Pinus leiophylla;
Pinus teocote

1. Introduction

Natural hybridization is a common phenomenon in plants [1], as more than 25% of
plants hybridize naturally [2]. Interspecific gene transfer occurs during hybridization,
which may introduce more different genetic material than that generated directly by
mutations [3]. Understanding hybridization is important for practical reasons, as the
presence of hybrids in seed stands can influence the success of natural regeneration and
reforestation [4,5]. In the same generation of hybrids, viability, fertility, and vigor can vary
widely across individuals, with some of them having the same values, lower values, or even
higher values than their parents [4]. Different cases of natural hybridization of Mexican
pine species have been observed [6].
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Hernández-Velasco et al. [7] detected significant differences in the survival, diameter,
and height between seedlings of the pure parental trees and putative hybrid seedlings of five
very important timber species in Mexico, i.e., Pinus arizonica, P. durangensis, P. engelmannii,
P. leiophylla, and P. teocote [8], which were grown for 15 months in nursery conditions. The
seed of the species was collected from seed stands in the municipalities of Tepehuanes,
Otáez, and Santiago Papasquiaro, in the state of Durango, Mexico. Because the controlled
conditions in nurseries are completely different from those in natural field environments,
the same authors [7] recommended further studies to determine the performance of each
hybrid in field conditions, particularly in regions where slower growing parental trees are
found, as well as in extreme environments. This is because hybridization creates new gene
combinations that can promote or enhance adaptation to new or changing environments [9].

Provenance trials are useful for detecting associations between genetic, geographic,
and climatic factors [10]. However, these trials are time-consuming and usually only
allow for the measurement of phenotypic differences between individuals and populations
under common conditions. Only reciprocal trials allow for the contribution of phenotypic
plasticity and the interactions between genotype and environment to be revealed [11,12].

Some forest plant species have wide distribution ranges, as they possess adaptive
strategies that allow them to survive and grow in ecologically different areas [13]. One of
these strategies is the morphological alteration of leaves, as a consequence of stress-related
effects [14]. The stomata are microscopic structures present on the surface of leaves. In the
case of conifers, the stomata have a protective function as they surround a central pore
and limit access to mesophyll cells. Environmental factors such as light intensity, atmo-
spheric CO2 concentration, and internal control systems regulate the development of the
stomata [15]. Plants can alter the opening of the stomatal pores, moderating gas exchange
between the leaf interior and the atmosphere [16]. The morphology and distribution of
stomata vary in response to environmental changes and are primarily directed by genetic
traits and phenotypic plasticity, representing long-term adaptations of plant species [15,17].
Characteristics of the stomata, such as size, density, and responsiveness to environmental
factors are key components influencing plant growth [18].

The present research aimed, for the first time, to evaluate and compare the growth
and survival of putative hybrid seedlings and seedlings of the pure parental species of
Pinus arizonica, P. durangensis, P. engelmannii, P. leiophylla, and P. teocote, in two reciprocal
trials in the Sierra Madre Occidental (SMO), in the state of Durango, Mexico. The study
also aimed to examine the possible correlation between the stomatal density of the needles
and the growth and survival of the seedlings. The growth of both types of seedlings may
not be statistically different [19]; however, there may be significant differences between the
growth of putative hybrid seedlings and seedlings of the pure parental trees in the field
in terms of either hybrid vigor [20] or hybrid depression [5]. In addition, stomatal density
may also influence pine seedling growth and survival [17].

2. Materials and Methods
2.1. Study Site

Two field trials (1 hectare each) were established in July 2018 to compare the growth
of putative hybrid seedlings and seedlings of the pure parental trees in the field (referred
to as hybrid seedlings and pure seedlings). The planting distance between the seedlings
was 2 × 2 m. Regardless of the species and the type of plant (hybrid or pure), each plant
was randomly included in both trials. The trial areas were cleared of tree vegetation and
protected by a 1.8 m high wire fence, before the seedlings were planted. The trials included
a total of 2552 seedlings, which were produced, evaluated, and classified either as hybrids
(1297, mostly consisting of backcrosses, with smaller numbers of F2 and subsequent hybrid
generations, but no F1 hybrids) or pure species (1255). The seedlings were first grown
together for 15 months in the nursery [7] and then for 27 months in the field.

The first trial was established in the Ciénega de Salpica el Agua ejido, in the area
known as La Mesa Alta, at an elevation of 2710 m (25.06 N, −105.77 W). The other trial was
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established in the Laguna de La Chaparra ejido, in the area known as La Mesa Seca, at an
elevation of 2610 m (25.12 N, −105.70 W). Both sites are located within the municipality of
Santiago Papasquiaro, state of Durango, Mexico (Figure 1).
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Figure 1. Location of the two study sites where the seedlings of interest were planted and are growing.

Both sites are composed of pine–oak forests. The topography of the area consists of
high and low mountain ranges. During the period 1961–1990, the mean annual temperature
was 10.5 ◦C in Mesa Seca and 9.6 ◦C in Mesa Alta; the mean annual precipitation was
803 mm in Mesa Seca and 903 mm in Mesa Alta. The soil characteristics differ little between
the two sites (Table 1). The presence of Pappogeomys castanops Baird, a rodent that consumes
plants or parts of plants [21], was detected in both sites.

Table 1. Soil characteristics in both reciprocal trials in the municipality of Santiago Papasquiaro, state
of Durango, Mexico.

Characteristic Mesa Alta Mesa Seca

Textural class Sandy clay loam Loam
Organic matter (OM, %) 4.64 High 1.94 Median

Nitrogen (N-NO3, kg/ha) 12.32 7.39
Phosphorus (ppm) 9.66 7.39
Potassium (ppm) 220 116

Magnesium (ppm) 198 114
Zinc (ppm) 2.06 4.12

pH 1:2 water 5.88 5.25
CaCO3 (ppm) 1698 774

CEC (meq/100 g) 10.99 5.35
CEC = cation exchange capacity.

In October 2020, seedling survival was calculated for each pure species and hybrid
and per trial, as a percentage of the total number of individuals planted in both trials in
July 2018 (Table 2).
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Table 2. Descriptive statistics of the basal diameter (mm) of the surviving seedlings of the five pure
Pinus species and their hybrids, in each separate trial and both trials together, after 27 months in
the field.

Species
Mesa Alta Mesa Seca Both Trials Together

N Median Mean Sd N Median Mean Sd N Median Mean Sd

PA-H 5 13.1 ab 13.1 0.8 5 21.5 ab 21.5 5.2 10 13.6 ab 15.9 4.9
PA-P 3 9.6 b 9.6 0.6 4 11.0 b 11.0 1.4 7 10.3 ab 10.3 1.0
PD-H 18 10.6 b 11.4 3.6 58 14.8 b 15.1 5.5 76 13.2 b 14.2 5.3
PD-P 14 11.6 b 11.5 2.7 20 14.6 b 15.3 5.2 34 12.6 ab 13.7 4.7
PE-H 56 19.9 a 19.4 9.0 211 24.4 a 24.6 7.4 267 23.6 a 23.5 8.0
PE-P 78 20.1 a 20.2 7.8 218 23.3 a 23.6 7.1 296 22.5 a 22.6 7.4
PL-H 7 17.3 ab 19.3 5.9 18 20.3 ab 20.1 6.7 25 20.0 b 19.9 6.4
PL-P 4 22.1 a 22.5 5.8 13 14.6 b 17.3 6.9 17 18.7 b 18.5 6.9
PT-H 49 16.2 ab 15.9 6.4 114 16.7 b 16.9 6.3 163 16.6 b 16.6 6.3
PT-P 24 15.3 ab 15.9 5.4 77 15.3 b 16.8 5.9 101 15.3 b 16.6 5.7

H 135 15.4 a 15.8 5.1 406 19.5 a 19.6 6.2 541 17.4 a 18.0 6.2
P 123 15.7 a 15.9 4.5 332 15.8 a 16.8 5.3 455 15.9 a 16.3 5.2

Sd = standard deviation, N = number of Pinus seedlings, PA-P = Pinus arizonica, PD-P = P. durangensis,
PE-P = P. engelmannii, PL-P = P. leiophylla and PT-P = P. teocote. PA-H = hybrids of Pinus arizonica × P. durangensis
genetically more similar to P. arizonica; PD-H = hybrids of P. durangensis × P. arizonica genetically more similar
to P. durangensis and P. durangensis × P. engelmannii genetically more similar to P. durangensis PE-H = hybrids of
P. engelmannii × P. arizonica genetically more similar to P. engelmannii; PL-H = hybrids of P. leiophylla × P. teocote
genetically more similar to P. leiophylla; PT-H = P. leiophylla × P. teocote genetically more similar to P. teocote;
different letters indicate significant differences (α = 0.025).

2.2. Evaluation of Differences in the Development of Hybrid/Pure Individuals in the Field

In total, 541 hybrid seedlings and 455 pure seedlings of the five species under study
were analyzed (258 from Mesa Alta and 738 from Mesa Seca) (Table 2). The basal diameter
(at plant collar) was measured using a digital Vernier scale, with a resolution of tenths of a
millimeter (AVEDISTANT, LCD6); plant height at the apical growth bud and maximum
needle height (from the base to the top of the needles) were measured using a flexometer,
with a resolution of millimeters (Uline Accu-Lock, H-1766) (Tables 2–4). Needle length
in young seedlings is considered a good indicator of future growth [22]. According to
Squillance and Silen [23], pine needle length is positively correlated with height growth
and thus with productivity.

Table 3. Descriptive statistics of height to the apical bud (cm) of Pinus seedlings per species and their
hybrids, in each trial and both trials together, after growing for 27 months in the field.

Species
Mesa Alta Mesa Seca Both Trials Together

N Median Mean Sd N Median Mean Sd N Median Mean Sd

PA-H 5 22.2 ab 22.2 5.9 5 16.0 ab 16.0 5.1 10 18.0 ab 20.1 5.5
PA-P 3 30.0 a 30.0 7.6 4 18.3 ab 18.3 8.8 7 24.2 ab 24.2 8.3
PD-H 18 33.2 a 34.6 14.1 58 31.3 a 32.7 12.2 76 31.5 a 33.2 12.6
PD-P 14 31.3 a 31.4 10.5 20 35.6 a 36.9 14.7 34 32.8 a 34.6 13.2
PE-H 56 14.2 b 16.5 12.7 211 15.9 b 16.6 6.7 267 15.2 b 16.7 8.4
PE-P 78 14.2 b 15.1 6.2 218 15.8 b 17.6 8.3 296 15.3 b 16.9 7.8
PL-H 7 30.0 a 30.8 7.4 18 34.1 a 33.3 9.1 25 31.2 a 32.6 8.6
PL-P 4 43.3 a 40.8 13.3 13 33.0 a 34.4 8.2 17 37.0 a 35.9 9.6
PT-H 49 33.7 a 35.2 12.6 114 30.0 a 31.3 10.9 163 32.0 a 32.5 11.5
PT-P 24 34.5 a 36.1 14.7 77 34.7 a 36.0 17.2 101 34.5 a 36.0 16.6

H 135 26.7 a 27.9 10.5 406 25.5 a 26.0 8.8 541 22.0 a 24.6 12.9
P 123 30.7 b 30.7 10.5 332 27.5 a 28.6 11.4 455 19.5 b 23.3 14.1

Sd = standard deviation, N = number of Pinus seedlings, PA-P = Pinus arizonica, PD-P = P. durangensis,
PE-P = P. engelmannii, PL-P = P. leiophylla and PT-P = P. teocote. PA-H = hybrids of Pinus arizonica × P. durangensis
genetically more similar to P. arizonica; PD-H = hybrids of P. durangensis × P. arizonica genetically more similar to
P. durangensis and P. durangensis × P. engelmannii genetically more similar to P. durangensis; PE-H = hybrids of
P. engelmannii × P. arizonica genetically more similar to P. engelmannii; PL-H = hybrids of P. leiophylla × P. teocote
genetically more similar to P. leiophylla; PT-H = P. leiophylla × P. teocote genetically more similar to P. teocote;
different letters indicate significant differences (α = 0.025).
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Table 4. Descriptive statistics of the maximum height to the top of the needles (cm) of Pinus seedlings
per species and their hybrids, in each trial and both trials together, after growing for 27 months in
the field.

Species
Mesa Alta Mesa Seca Overall, Both Trials

N Median Mean Sd N Median Mean Sd N Median Mean Sd

PA-H 5 31.4 b 31.4 5.9 5 23.0 ab 23.0 6.9 10 27.2 ab 28.6 6.4
PA-P 3 31.6 b 31.6 3.6 4 27.7 ab 27.7 2.2 7 29.7 ab 29.7 2.8
PD-H 18 44.5 a 46.4 13.4 58 42.0 a 43.9 12.9 76 42.0 a 44.5 13.0
PD-P 14 42.1 a 40.4 13.7 20 46.0 a 47.7 14.2 34 42.9 a 44.7 14.2
PE-H 56 32.8 b 32.9 8.8 211 33.0 b 34.3 8.5 267 33.0 b 34.0 8.6
PE-P 78 32.0 b 32.4 9.2 218 33.2 b 34.6 9.6 296 33.0 b 34.0 9.5
PL-H 7 34.0 a 36.8 9.3 18 38.7 a 39.3 10.3 25 38.4 ab 38.6 9.9
PL-P 4 46.6 a 44.7 16.1 13 42.0 a 40.1 8.8 17 43.0 ab 41.2 10.5
PT-H 49 40.2 a 40.3 12.3 114 36.2 a 37.4 10.4 163 36.0 a 37.0 10.8
PT-P 24 39.6 a 41.5 13.9 77 39.5 a 42.1 16.7 101 35.1 a 36.9 12.4

H 135 36.6 a 37.5 9.9 406 34.6 a 35.6 9.7 541 35.3 a 36.5 9.7
P 123 38.4 a 38.1 11.3 332 37.7 a 38.4 10.4 455 36.7 a 37.3 9.9

Sd = standard deviation, N = number of Pinus seedlings, PA-P = Pinus arizonica, PD-P = P. durangensis,
PE-P = P. engelmannii, PL-P = P. leiophylla and PT-P = P. teocote. PA-H = hybrids of Pinus arizonica × P. durangensis
genetically more similar to P. arizonica; PD-H = hybrids of P. durangensis × P. arizonica genetically more similar to
P. durangensis and P. durangensis × P. engelmannii genetically more similar to P. durangensis; PE-H = hybrids of
P. engelmannii × P. arizonica genetically more similar to P. engelmannii; PL-H = hybrids of P. leiophylla × P. teocote
genetically more similar to P. leiophylla; PT-H = P. leiophylla × P. teocote genetically more similar to P. teocote;
different letters indicate significant differences (α = 0.025).

2.3. Calculation of Stomatal Density in Needles

In both study sites, two needles per seedling were collected from 245 individuals
(randomly chosen) of the three most frequent species (P. engelmannii, P. durangensis, and
P. teocote) of the five initially considered species (as the required number of replicates
was not obtained for the other two species). The needle samples were examined under
a binocular stereoscope (EUROMEX: ED-1402-S) to calculate the stomatal density. The
rows of stomata and the number of stomata within an area of one square millimeter were
counted on both the abaxial and adaxial sides of the needles. The stomatal density of each
face was calculated by multiplying the number of stomata per mm2 by the number of rows.
These values were summed to obtain the density per needle. We repeated this process with
a second needle and then calculated the mean density. The values of central tendency and
dispersion of the stomatal density were estimated (Table 4).

2.4. Statistical Analysis

Multiple median comparisons of the basal diameter, height at the apical bud, maxi-
mum height to the top of the needles and survival were made, and the respective p values
were calculated for hybrid and pure species seedlings (Tables S1–S3). The comparisons
were conducted using Nemenyi tests (posthoc.kruskal.nemenyi.test) and the PMCMR
package of the R software version 1.4.1103 [24] (α = 0.025).

Spearman’s analysis was used to examine the possible correlation (rs) between the
stomatal density and seedling diameter, height, and survival in both trials of hybrid and
pure seedlings. Correlation values and their significance (p) were estimated considering
α = 0.025.

The average survival (%) of the seedlings per seed stand was computed. Significant
differences in the survival of the pure and hybrid seedlings were checked using the Delta
index (δ) and the corresponding p value (Table S4). A δ value of zero indicates two
collectives of individuals with identical survival rates, and a δ value of one indicates
completely different survival rate (0 vs. 100% survival) [25,26]. The correlations between
survival and stomatal density and the corresponding p values were also calculated.



Forests 2022, 13, 1791 6 of 13

3. Results
3.1. Growth Parameters and Survival

Considering both trials together and each trial separately, no significant difference
between the basal diameter of the hybrid and pure seedlings was detected. Comparison
of the diameter of the different species revealed that Pinus engelmannii seedlings were
significantly larger than the P. durangensis, P. leiophyilla, and P. teocote seedlings (Table 2).

Considering both trials together and separately, no significant differences in the heights
to the apical bud between hybrid and pure individuals of the corresponding species were
observed. Overall, for both trials, the median height to the apical bud of the hybrid
individuals was significantly larger than that of the pure seedlings (Table 3).

Considering both trials together and separately, comparison of the median values for
the hybrid and pure species seedlings of P. engelmannii revealed significantly lower values
of the maximum height to the top of the needles of this species relative to the hybrid and
pure P. durangensis and P. teocote seedlings. On the other hand, there was no significant
difference between hybrids and pure seedlings of each species in maximum height to the
top of the needles (Table 4).

Considering both trials together, we observed significant differences in survival (δ)
between hybrid and pure species individuals of P. arizonica and P. durangensis (45% vs. 12%
and 40% vs. 27%). However, we did not observe any significant differences in the analysis
of the overall survival of hybrid and pure seedlings (δ = 0.23, p = 0.99). Considering the
trials separately, the mean survival rate of the P. arizonica hybrids was significantly higher
than that of the pure individuals, but the mean survival of the hybrid P. durangensis was
only higher in the Mesa Seca trial. Overall in both trials, pure Pinus arizonica seedlings
exhibited the lowest survival in the field (12%), and the δ was significant relative to the other
hybrids and pure seedlings. Pure P. durangensis seedlings presented significant δ relative to
the hybrids and pure seedlings of P. engelmannii (26%, 46%, and 42%). Individuals of pure
P. teocote (34%) and hybrids of P. engelmannii (46%) also presented significant δ (Table 5).

Table 5. Number of Pinus seedlings (N) growing in the field in both provenance trials, between July
2018 and October 2020 (classified as hybrids and pure species). Different letters in each survival
column indicate significant differences in the survival rate.

Species
Mesa Alta Mesa Seca Mean Survival (%)

N 2018 N 2020 Survival (%) N 2018 N 2020 Survival (%) 2020

PA-H 11 5 45 a 11 5 45 b 45 ab
PA-P 29 3 10 b 29 4 14 d 12 c
PD-H 94 18 19 b 94 58 61 ab 40 a
PD-P 66 14 21 b 65 20 30 c 26 b
PE-H 294 56 19 b 293 211 72 a 46 a
PE-P 354 78 22 b 357 218 61 ab 42 a
PL-H 35 7 20 b 34 18 52 b 36 ab
PL-P 27 4 15 b 28 13 47 b 31 ab
PT-H 216 49 23 b 215 114 52 b 38 a
PT-P 150 24 16 b 150 77 51 b 34 ab

H 649 135 21 a 649 406 63 a 42 a
P 628 123 20 a 627 332 53 a 36 a

PA-P = Pinus arizonica, PD-P = P. durangensis, PE-P = P. engelmannii, PL-P = P. leiophylla and PT-P = P. teocote;
PA-H = hybrids of Pinus arizonica × Pinus durangensis genetically more similar to P. arizonica; PD-H = hybrids of
P. durangensis × P. arizonica genetically more similar to P. durangensis (13 live individuals) and P. durangensis ×
P. engelmannii genetically more similar to P. durangensis (63 live individuals); PE-H = hybrids of P. engelmannii ×
P. arizonica genetically more similar to P. engelmannii; PL-H = hybrids of P. leiophylla × P. teocote genetically more
similar to P. leiophylla; PT-H = P. leiophylla × P. teocote genetically more similar to P. teocote; different letters indicate
significant differences (α = 0.025).

3.2. Stomatal Density and Growth in the Field

Considering both trials together, the stomatal density did not differ significantly be-
tween the seedlings of the same pure species and the respective hybrids. However, stomatal
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density was significantly higher in the hybrid and pure individuals of P. engelmannii (145.7
in hybrids and 146.6 in pure individuals) than in the other two species (p < 0.001) (Table 6).

Table 6. Descriptive statistics of the estimated stomatal density (stomata/mm2) for each pure species
analyzed and the hybrids in both provenance trials.

Species N
Mesa Alta

N
Mesa Seca Total N Median Mean Sd

PD-H 12 16 28 94.0 b 94.6 17.1
PD-P 10 6 16 96.5 b 97.7 24.6
PE-H 27 29 56 144.3 a 145.7 33.6
PE-P 30 35 65 142.0 a 146.6 35.6
PT-H 23 24 47 109.5 b 111.3 24.2
PT-P 15 18 33 108.0 b 112.2 30.3

H 62 69 131 119.7 a 122.4 34.6
P 55 59 114 127.0 a 129.6 38.0

Sd = standard deviation, N = number of Pinus seedlings, PD-P = Pinus durangensis, PE-P = P. engelmannii,
PT-P = P. teocote; PD-H = hybrids of P. durangensis × P. arizonica genetically more similar to P. durangensis and
P. durangensis × P. engelmannii genetically more similar to P. durangensis; PE-H = hybrids of P. engelmannii ×
P. arizonica genetically more similar to P. engelmannii; PT-H = P. leiophylla × P. teocote genetically more similar
to P. teocote. N = number of individuals; different letters indicate significant differences in the median stomata
density (α = 0.025).

In all three species, the mean stomatal density was significantly correlated with the
basal diameter, height to the apical bud, maximum height to the top of the needles, and
survival (p < 0.01). Stomatal density was significantly positively correlated with the basal
diameter, but negatively correlated with both heights in the three species. In the hybrid
seedlings, stomatal density was significantly positively correlated with survival at the seed
stand level. In contrast, there was no significant correlation between these two variables
in the pure seedlings. However, for the pure seedlings, a parabolic-like function with
a negative quadratic coefficient of the survival rate with stomatal density was observed
(with maximum survival rate at about 120 stomata/mm2). These two variables were
not significantly correlated in the pure seedlings. Consequently, very low and very high
stomatal density correspond to lower survival of the pure seedlings (Figure 2 and Table 7).
We did not detect a significant relationship between stomatal density and seedling growth
or survival within any of the three species or their hybrids.

Table 7. Spearman’s correlation (rs) (and p-value) between the stomatal density and the basal diameter,
height to the apical bud, and maximum height to the top of the needles per seedling. In addition,
Spearman’s correlations (rs) (and p-value) between the stomatal density and survival in seedlings of
the three selected pure pine species (Pinus durangensis, P. engelmannii, and P. teocote) and their hybrids
(P. durangensis × P. arizonica, P. durangensis × P. engelmannii, P. engelmannii × P. arizonica, and P. teocote
× P. leiophylla) (α = 0.025) are shown for each trial.

Variable rs p-Value

Basal diameter +0.34 3 × 10−7

Height to apical bud −0.36 5 × 10−8

Maximum height to the top of the needles −0.23 0.0006
Survival (hybrid seedlings) +0.49 10−8

Survival (pure seedlings) −0.002 0.98
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Figure 2. Correlations between stomatal density (N/mm2) and basal diameter (mm), height to apical
bud (cm), maximum height to the top of the needles (cm) per individual, and survival by seed stand
in individuals of the three selected pure species (Pinus durangensis, P. engelmannii, and P. teocote) and
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and P. tecote × P. leiophylla). Mean values (cyan and red lines) and the 95% confidence level intervals
for predictions (grey area) are based on generalized additive models (GAM).

4. Discussion
4.1. Seedling Growth and Survival

We observed significant differences in the growth of the height and basal diameter and
a higher survival rate in Pinus engelmannii relative to the other species. These differences
can be attributed to the fact that at the first stage of development, P. engelmannii, as a
pioneer species, rapidly increases in diameter and needles, and to a lesser extent in height,
and displays a cespitose growth habit [27,28]. The greater survival of this species is also
due to its resistance to drought (mean annual precipitation from 670 to 830 mm [9]) and
to the fact that it usually grows on plateaus, slopes, valleys, and terraces, at elevations of
between 1500 and 2700 m [29,30]. The same applies to the more drought-resistant species
of P. leiophylla and P. teocote [9], which are often associated with P. engelmannii [8]. Although
P. arizonica is one of the most important timber species in the SMO [31], survival of these
seedlings was lower than that of other species in both trials (Table 5). This species has
specific growth requirements, including a pH of 4.9 ± 0.3 [32], dense tree cover [33,34], and



Forests 2022, 13, 1791 9 of 13

a mean annual precipitation of between 870 and 1200 mm [9]. These conditions did not
occur in the study area, as tree cover is sparse in both sites, and the level of precipitation
was low in the year prior to data collection.

In general, the growth of hybrid seedlings was similar to that of the pure seedlings in
the trials (Tables 2–4). Only the overall median height to the apical bud of hybrid seedlings
was slightly, but significantly, greater than the median height of the pure seedlings (Table 3).
This has also been observed in hybrids of other species, such as Pinus oocarpa × P. pringei [19]
and P. arizonica × P. engelmannii [29], and adult hybrid trees of Pinus luzmariae × P. herrerae,
which were taller than pure P. luzmariae trees [35]. However, hybrids generally show
intermediate values of height and diameter relative to the (pure) parents [36].

In addition, the survival of hybrids of P. arizonica and of P. durangensis was significantly
higher than that of the pure species (Table 5), which may indicate hybrid vigor (heterosis).
In theory, heterosis occurs for different reasons: heterozygous individuals display higher
levels of fitness than homozygous individuals, thus favoring the survival of hybrids [37].
Individuals with higher individual heterozygosity show more stable growth, being less
affected by environmental factors [20], because hybrids have greater genetic variability,
which allows them to adapt to a greater number of ecosystems and conditions [5].

Another reason for hybrid vigor is overdominance, which occurs when heterozygous
individuals are more vigorous than homozygous individuals, giving rise to superior hy-
brids [37,38]. Dominance occurs when less homozygous individuals have, by definition,
lower values of inbreeding and lower inbreeding depression [39–41].

However, the most likely cause of hybrid vigor is that the environmental conditions,
in both trials, were more suitable for the hybrids with P. engelmannii genes (P. arizonica ×
P. engelmannii, P. durangensis × P. engelmannii) (Table 5).

Finally, after growing for 27 months in the field, the mean survival rate of seedlings
was 35% (Table 2). This is lower than the rate determined by Mejía et al. [42], who studied
seedlings of Pinus of different species and ages in the SMO, where only plantings trees
older than eight years had a survival rate of less than 60%. This is also lower than the
rate reported by Benítez [43], who calculated a mean survival of 60% in Pinus engelmannii
plantations in Durango, Mexico. However, it was similar to that in the plantations studied
by Torres Rojo [44], with a mean survival rate of 38%, and to some of the Pinus engelmannii
plantations studied by Prieto Ruíz et al. [45]. Possible causes of low survival in the planting
sites (both trials) include the presence of Pappogeomys castanops Baird and low rainfall
during 2019 (429 mm), the year prior to data collection [46].

4.2. Stomatal Density

Stomatal density was the highest in the drought-tolerant P. engelmannii [26,30] (Table 7).
This finding is consistent with those of other studies that have reported a higher stomatal
density and/or number of stomatal rows in P. ponderosa [47] and in some Mediterranean
pines under drought conditions [48–50]. According to Afas et al. [51] and Shu [47], a
higher stomatal density could enable increased leaf gas exchange during short, favorable
periods and greater control of water loss and gas exchange under drought stress in harsh
dry conditions. Stomatal density depends on different environmental factors, such as
water stress [52] and changes in ambient CO2 concentration [53]. Despite the influence of
environmental factors, stomatal density is strongly controlled by genetic factors [54].

The stomatal density was positively and significantly correlated with the basal diame-
ter and negatively correlated with height in the pine species analyzed (Table 7, Figure 2).
In a study of an F1 hybrid between Quercus robur and Q. robur subsp. Slavonica, Gailing
et al. [55] also observed a positive, significant correlation between the stomatal density and
basal diameter; however, the correlation between stomatal density and height was also
positive. We obtained the opposite result regarding height, which can be explained by the
lower height growth of P. engelmannii than of P. durangensis and P. teocote (Tables 3 and 4).
However, P. engelmannii has the highest stomatal density (Table 6). The same authors [55]
also stated that (i) stomatal development is regulated by different genetic and environmen-
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tal signals and (ii) in Q. robur, the allele of a particular quantitative trait locus associated
with higher stomatal density was generally correlated with taller plants and an increase
in size, indicating pleiotropic gene effects or a close genetic linkage, as also reported by
Chebib and Guillaume [56].

In the present study, in addition to influencing growth, stomatal density was also
positively correlated with the survival of the hybrid seedlings. However, for the pure
seedlings, plotting the survival rate against the stomatal density yielded a parabolic-like
curve (Figure 2 and Table 7). Thus, on average, hybrids with a high stomatal density
survived better than pure seedlings with a similar high stomatal density, which could be
explained by differences in other traits not studied here. These other traits could have
contributed to enhancing the adaptive capacity of the hybrids by enabling them to cope
with environmental conditions in both trials more successfully than the pure individuals.
Significant variation in stomatal density has been detected between clones and hybrids
of Populus species, and its respective correlation with biomass production [57] and light
conductance [58], indicating that stomatal density may vary among clones or pure species,
as well as among hybrids; such variation will enable the trees to adapt to the surrounding
environmental conditions.

5. Conclusions

The basal diameter, height to the apical bud, and maximum height to the top of the
needles varied weakly between hybrid and pure seedlings of different pine species. A
greater height to the apical bud and survival of hybrids were detected in Pinus arizonica and
P. durangensis than in the pure species. After growing for 27 months in the field, the hybrids
generally displayed the same capacity as the pure seedlings (and in some cases a greater
capacity) to withstand weather conditions, survive, and grow effectively. These differences
are expected to increase over time in the field. Thus, there is no reason to exclude these
hybrids from the forest management plans.

We recommend continuing to monitor these trials in order to determine the long-term
viability of the hybrid and pure seedlings. Because of the spatial and temporal limitations
of the study, we also suggest replicating this type of trial with other species and in other
sites, as there is a wide variation in the chances of detecting hybrid vigor.

The results of this research will help forest managers to select the most appropriate
species and their hybrids for reforestation or plantations, thus contributing to sustainable
forest protection, conservation, and management, including adaptive silviculture, and to
satisfying the growing demand for wood in the forestry sector.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13111791/s1, Table S1: Difference between basal diameters
medians of Pinus species in millimeters and p-values calculated in Kruskal-Wallis multiple testing
(both trials); α= 0.025; Table S2: Differences between the median height to the apical bud of Pinus
species in centimeters, and the corresponding p-values, calculated in Kruskal-Wallis multiple tests
(overall for both trials); α = 0.025; Table S3: Difference between the medians of the maximum height
to the top of the needles of Pinus species, in centimeters, and p-values calculated in Kruskal-Wallis
multiple tests (overall for both trials); α = 0.025; Table S4: Delta index (δ) and corresponding p-values
in delta tests for the survival of Pinus species (both trials combined), α = 0.025.
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