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Abstract: Nitrogen is an important indicator of vegetation health, but the relationship between 

changes in the leaf nitrogen content of Moso bamboo leaves under Pantana phyllostachysae Chao 

(PPC) stress and leaf spectra remains unclear. We analyzed the relationship between the leaf nitro-

gen content and leaf spectra of Moso bamboo leaves under PPC stress to investigate whether the 

relationship could be used to detect pests and prevent their spread. We measured the nitrogen con-

tent and leaf spectra of Moso bamboo leaves under different damage levels, identified spectral in-

dicators that were correlated with leaf nitrogen content (by removing the envelope and first-order 

differentiation of the raw spectra), and estimated leaf nitrogen content from the spectral data using 

regression models. Leaf nitrogen content decreased with increasing pest damage, and the leaf spec-

tral curves changed, with the “green peak” and “red valley” in the visible range disappearing and 

the slope of the spectral curve decreasing. The wavelength region with the strongest correlation 

between the nitrogen content and spectral characteristics changed significantly with increasing pest 

damage, and the correlation in the red-edge region gradually decreased. The fits of nitrogen-content 

estimation models tended to decrease and then increase with increasing pest damage and were 

worst among leaves in the moderate damage state (Mo). A disordered relationship between nitro-

gen content and spectral characteristics indicated possible PPC damage. The degree of disorder was 

greatest in the Mo state. This study provides theoretical support for remote sensing monitoring of 

PPC hazards. 

Keywords: Pantana phyllostachysae Chao; Moso bamboo; nitrogen content; spectral characteristics; 

pest damage; regression model 

 

1. Introduction 

Bamboo forest is crucial in forest ecosystems and the forest carbon sink, fostering 

ecological security and socio-economic development. China’s ninth forest resources in-

ventory (2014–2018) shows that the area of bamboo forest is approximately 6,411,600 hm2. 

Among many bamboo species, Moso bamboo accounts for 72.96% of the total area. It is 

the largest, most widely distributed, and most economically valuable bamboo species in 

China. Pests are important limits to healthy growth of bamboo forests. Pantana phyllosta-

chysae Chao (PPC; Lepidoptera: Lymantriidae) causes huge ecological and economic 
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losses to bamboo forests annually in China, and the negative impact cannot be ignored. 

PPC exhibits the characteristics of swarming and periodicity and causes severe damage 

[1,2]. During severe PPC outbreaks, Moso bamboo leaves are eaten, causing the death of 

patches of Moso bamboo forests. Traditionally, forest monitoring for pests is achieved 

through manual ground surveys. However, it is difficult to obtain a timely and detailed 

understanding of pest occurrence using this approach. The emergence of remote sensing 

technology has substantially improved the efficiency of forest pest surveys [3–6]. Ad-

vances in hyperspectral technology have further improved the accuracy and efficiency of 

forest pest monitoring [7–9]. 

The physiological state of leaves can be effectively used to characterize the health 

status of the vegetation [10,11]. Under pest stress, the external morphology of leaves 

changes, as well as the internal biochemical components [12–16]. Spectral information is 

affected by physiological changes in the vegetation [17]. Remote sensing has been widely 

used in agricultural and forestry management to obtain information on the biochemical 

components of leaves. Liu et al. used spectral indices to establish an inverse model of the 

chlorophyll content of soybean leaves, and the results provided a reference for large-scale 

monitoring of soybean growth status [18]. Minaei et al. estimated the nitrogen content of 

sugarcane leaves using Sentinel-2 data combined with a machine learning model to pro-

vide a reference for assessing the growing season quality of the crop [19]. Rubio-Delgado 

et al. found the best model for estimating the leaf nitrogen content of olive trees by adopt-

ing various pre-processing methods for raw spectra which provided a reference for ferti-

lization management [20]. The inversion model of biochemical components of vegetation 

under pest stress based on spectral information has great practical value for understand-

ing the response mechanism and monitoring of pests. Lian et al. estimated the canopy 

water content of Ziziphus jujuba under Tetranychus truncatus stress using multiple regres-

sion models [21]. Bai et al. constructed a model for monitoring the hazard level of Dendro-

limus tabulaeformis by screening hyperspectral indices that are sensitive to biochemical 

component parameters [22]. Nitrogen is a crucial nutrient element for plant growth and 

plays an important role in the growth and development of vegetation and photosynthesis 

[23,24]. 

The nitrogen content of vegetative leaves changes significantly under pest stress, and 

nitrogen has become an important indicator for monitoring vegetation pests [25,26]. Ni-

trogen in leaves is mainly found in proteins and chlorophyll, and nitrogen-containing 

chemical bonds of leaves vibrate under a certain intensity of spectral radiation, triggering 

the absorption and reflection of specific spectral bands. The intensity of spectral absorp-

tion is closely related to the content of these chemical bonds [27]. At present, remote sens-

ing inversion of the nitrogen content of vegetation is most commonly achieved by physical 

and empirical models, with good results [28–32]. Among these, empirical models are most 

widely used to determine the nitrogen content by modeling the relationship between the 

nitrogen content and spectral characteristics. Therefore, for studying pest monitoring 

mechanisms, it is important to clarify the relationship between the changing nitrogen con-

tent and spectra of leaves under pest stress. 

Most published studies have focused on using spectral information and improving 

algorithms to estimate the nitrogen content of vegetation, but few studies have investi-

gated the relationships between the changing nitrogen content and spectral characteristics 

of vegetation under pest stress. To address these problems, this study classified Moso 

bamboo leaves with different damage levels and investigated the relationship between 

them as pest damage stress increased. The objectives of this study were: (1) to clarify 

changes in the nitrogen content and spectral information of Moso bamboo leaves under 

different levels of damage; (2) to screen and analyze the spectral characteristics that are 

sensitive to the nitrogen content of Moso bamboo leaves under different levels of damage 

and establish a model for estimating the nitrogen content; and (3) to analyze the resultant 

estimates of the nitrogen content of Moso bamboo leaves under different damage levels 

and provide a fundamental basis for accurate identification of pests in large areas. 
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2. Materials and Methods 

2.1. Study Area 

The study area is located in Shunchang County of Fujian Province, southeastern 

China (117°29′–118°14′ E, 26°38′–27°12′ N; Figure 1a,b). Shunchang County has a subtrop-

ical monsoon climate—a mild climate with abundant rainfall. The terrain of the county is 

mainly mountainous and hilly, with large undulating terrain. It is a key forest area in the 

south of China and the first single bamboo forest carbon sink trading site in China. The 

county’s forest land area covers 167,000 ha, of which the bamboo forest area covers 44,000 

ha, with 110 million standing Moso bamboo. In 2021, the area of PPC occurrence in Shun-

chang County was 964 ha. Three generations of PPC occur in Fujian Province in a year, 

with the first generation (from late June to late August) causing the greatest harm. 

 

Figure 1. Study site: (a) location of the study area in Shunchang County; (b) remote sensing images 

and locations of sampling sites in Shunchang County. 

2.2. Sample Collection 

Healthy and damaged leaves were randomly selected from Moso bamboo canopies 

at different altitudes on 20 August 2019 (Figure 2a,b). The degree of Moso bamboo leaf 

damage was classified according to the leaf damage rate as described by LY/T2011 (2012): 

0% to 5% = Healthy (H), 5% to 25% = Mildly damaged (Mi), 25% to 50% = Moderately 

damaged (Mo), and ≥50% = Severely damaged (S). Moso bamboo produces a large number 

of shoots and long bamboo annually, and an annual whip for leaf replacement the follow-

ing year. This phenomenon is known as Moso bamboo on- and off-years, and there are 

significant differences in the biochemical parameters of Moso bamboo leaves between on- 

and off-years. The N, P, and K contents of Moso bamboo leaves in on-years are signifi-

cantly higher than those in off-years (O) [33]. To avoid the effects of off-years of Moso 

bamboo, the off-year Moso bamboo leaves were grouped separately. The off-year Moso 

bamboo leaves were predominantly in a healthy condition. A total of 169 Moso bamboo 

leaf samples were collected. The numbers of leaves of each hazard class were H: 37, Mi: 

29, Mo: 35, S: 28, and O: 40. 
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2.3. Determination of Leaf Spectra and Nitrogen Content 

Leaf spectra were obtained by coupling the ASD FieldSpec3 spectrometer (Figure 2c) 

with the ASD Plant Spectrum Probe (Analytical Spectral Devices, Longmont, CO, USA) 

in the field immediately after they were removed. The spectrometer has 2151 bands, which 

are essential to detecting spectral information over the full range of the solar irradiation 

spectrum (350–2500 nm) with sampling intervals of 1.4 nm (350–1000 nm) and 2 nm (1001–

2500 nm), and 1 nm after resampling. Dark current correction was applied before each 

measurement. For each leaf the spectral reflectance was obtained from the mean value of 

the results of five leaf scans. Different parts of the leaf (tip, veins, lamina) and damaged 

parts were considered when selecting the scanning area. The Savitzky-Golay smoothing 

algorithm with a polynomial order of 3 and a window width of 11 was used to preprocess 

all raw spectral data to reduce effects from particle size, scattering, and covariance [34]. 

After the leaf spectra were measured, leaves were put into sealed bags and tempo-

rarily stored in liquid nitrogen tanks. After being returned to the laboratory, leaves were 

dried in a drying oven at 105 °C for 30 min and then dried to a constant weight at 80 °C. 

The dried leaves were put into centrifuge tubes and ground into powder using a DHS 

v4800 grinder, while a Vario MICRO cube elemental analyzer (Elementar, Langenselbold, 

Hessen, Germany) was used to determine the nitrogen content of each leaf. 

 

Figure 2. Sample collection and analysis: (a) Pantana phyllostachysae Chao larvae; (b) leaf samples of 

Moso bamboo in different states of damage; (c) ASD FieldSpec3 spectrometer used in the study. 0% 

to 5% = Healthy (H), 5% to 25% = Mildly damaged (Mi), 25% to 50% = Moderately damaged (Mo), 

≥50% = Severely damaged (S), and Off-years (O). 

2.4. Spectral Data Processing 

Original spectrum (OS) data have low sensitivity to the parameters of biochemical 

components of vegetation, the detection of which requires further processing of the spec-

tral data. Continuum removal (CR) is a spectral analysis method that is crucial to effec-

tively improve the absorption and reflection characteristics of the spectral profile [35,36]. 

The formulae for calculation are as follows: 

)()( sese RRK    (1)

))(( sjsjj KRRCR    (2)

where Re and Rs are the original spectral reflectances of the start and end points, respec-

tively. λe and λs are the wavelengths of the start and end points, respectively; K is the slope 

between the start and end point bands. λj is the central wavelength of the j band. Rj is the 

original spectral reflectance of band j, and CRj is the envelope removal value of band j. 

Derivative processing of spectral data eliminates baseline drift, moderates the effects of 

background interference, and amplifies subtle changes in the spectral profile. This means 

that it provides a higher-resolution and higher-definition spectral profile than the OS [37]. 

First derivative spectra provide a better representation of the rate of change and extreme 

value points of the raw spectral data and are calculated as follows: 
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 )(
1 iii

RRFDR 


 (3)

where FDRλi is the first derivative spectral value between band i and band i + 1. λi is the 

wavelength value of band i. Rλi+1 and Rλi represent the original spectral reflectance at 

bands λi+1 and λi, respectively, and   represents the wavelength difference between 

bands λi+1 to λi. 

2.5. Relationship Model Construction 

Partial least squares (PLS) provides a method of many-to-many linear regression 

modeling. It differs from ordinary least squares regression by employing data dimension-

ality reduction, information synthesis, and screening techniques in the regression model-

ing process [38,39]. For analyses involving many variables with multiple correlations and 

a small number of observations, models built with PLS regression offer advantages that 

are not offered by traditional methods such as classical regression analysis. The main pa-

rameter to be adjusted in the PLS model is n-components. 

Support vector regression (SVR) is a nonparametric modeling technique for pattern 

recognition and classification that does not require a priori assumptions about the distri-

bution of the data and ensures maximum generalizability of the model from the perspec-

tive of structural risk minimization [40]. It allows nonlinear regression modeling by ad-

justing the kernel function and has many advantages for pattern recognition in small sam-

ple datasets. Both PLS and SVR models were implemented using the scikit-learn packages 

in Python and the parameters were tuned using five-fold cross-validation [41]. 

The pattern of change in the relationship between Moso bamboo leaf nitrogen content 

and the spectra of leaves under different damage conditions is complex. Correlations be-

tween the nitrogen content and spectral reflectance data processed by continuum re-

moval-first derivative (CR-FD) were determined. Wavelengths with high correlations 

were screened and labeled as the characteristic spectra. The relationships between the ni-

trogen content and the characteristic spectra were constructed using multiple regression 

models, and patterns in the relationships under different degrees of damage to the leaves 

were analyzed. The PLS and SVR methods model linear and nonlinear relationships, re-

spectively, and results indicate the complexity of the relationship between the nitrogen 

content and leaf spectra. The model was constructed using 70% of the data as training 

samples and 30% of the data as test samples. Models were evaluated using the regression 

model evaluation index coefficient (R2) and root mean square error (RMSE). If the PLS 

model is better, it means that the relationship between the nitrogen content and leaf spec-

tra is relatively simple, while if the SVR model is better, it means that the relationship is 

in a relatively complex state. 

2.6. Study Workflow 

The workflow for this study (Figure 3) included the collection and processing of data 

and an analysis of changes in the relationship between the nitrogen content and leaf spec-

tra under PPC stress. 
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Figure 3. Workflow of changes in the relationship between nitrogen content and leaf spectral char-

acteristics under PPC stress. 

3. Results 

3.1. Analysis of Changes in Nitrogen Content 

The nitrogen content of Moso bamboo leaves with the same damage exhibited a wide 

range of values, and the damage level could not be effectively distinguished by the nitro-

gen content (Figure 4). The nitrogen content gradually decreased with the increasing dam-

age. The decrease was most pronounced in leaves in the H to Mi state, which provides a 

reference for the early monitoring of insect pests. The nitrogen content of off-year leaves 

was much lower than that of on-year leaves. After being eaten by pests, the cell structure 

of Moso bamboo leaves was damaged and a large number of nutrients were lost, which 

led to a gradual decrease in the overall nitrogen content of the leaves with increasing pest 

damage. 



Forests 2022, 13, 1752 7 of 18 
 

 

 

Figure 4. Trends in nitrogen content of Moso bamboo leaf samples in different damage states. The 

left side of each pair of graphs shows the box line plot for nitrogen content for that damage state, 

and the right side shows the actual distribution of data. 

3.2. Analysis of Variation in Leaf Spectral Characteristics 

The spectra of Moso bamboo leaf have characteristics of evident undulating changes, 

and the overall spectral characteristics are similar to those of other green plant leaves. 

Under PPC stress, Moso bamboo leaves lost their green color and experienced water de-

ficiency and other diseases, resulting in pronounced changes in the spectral reflectance 

curve (Figure 5). (1) The healthy leaf spectral reflectance curve between 490 and 600 nm 

had a wave-shaped peak, called the “green peak,” which was the green strong-reflectance 

area corresponding to chlorophyll. (2) The healthy leaf spectral reflectance curve between 

600 and 700 nm had the form of a trough, called the “red valley,” where 610–660 nm was 

the main absorption band for phycocyanin, and 650–700 nm was the strong absorption 

band for chlorophyll. (3) The “green peak” and “red valley” gradually disappeared as the 

degree of pest damage increased, and the slope of the spectral curve in the red-edge range 

(670–760 nm) gradually decreased. (4) The spectral reflectance curves of off-year Moso 

bamboo leaves were the same as those of on-year Moso bamboo leaves, except that the 

overall spectral reflectance of off-year leaves was slightly higher than that of on-year 

leaves. 

 

Figure 5. Spectral information for Moso bamboo leaves in different states: ① and ② are local en-

largements of the corresponding areas. 
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3.3. Model Construction and Change Analysis 

3.3.1. Model Construction and Analysis of Whole Leaf Sample 

Analyses of the correlation between the nitrogen content and spectral data of Moso 

bamboo leaves after OS, CR, and CR-FD treatments are shown in Figure 6. CR and CR-FD 

treatments significantly improved the correlation between the spectral information and 

nitrogen content. The regions with a higher correlation were around 540, 687, 740, 1690, 

1733, 1784, 1840, 2071, and 2251 nm. The red-edge regions (680–760 nm) had a higher cor-

relation, and comparative analysis revealed that most of the high correlation regions were 

sensitive ranges for chlorophyll and protein [42,43]. The highest correlation was located 

at 740 nm with a correlation coefficient of 0.823 (p < 0.01). 

 

Figure 6. Correlation analysis of spectral data for whole leaf samples with nitrogen content. The 

number is the area with high correlation, and the scope of the area is predominantly determined 

according to whether the correlation trend has significantly changed. Original spectrum (OS); con-

tinuum removal (CR); continuum removal-first derivative (CR-FD). 

3.3.2. Model Construction and Analysis for Leaves in Different Damage States 

To investigate variation in the pattern of the relationship between the spectral infor-

mation and nitrogen content of Moso bamboo leaves in different damage states, leaves 

were divided into different damage classes and off-year groups, and correlations of their 

spectral information with the nitrogen content were assessed (Figure 7). Wavelengths 

with the highest correlation between the nitrogen content and leaf spectral data of Moso 

bamboo leaves in different damage states were H: 751 nm, Mi: 524 nm, Mo: 2252 nm, S: 

2252 nm, and O: 534 nm, and their correlation coefficients were H: 0.860, Mi: −0.796, Mo: 

0.643, S: 0.788, and O: −0.851. The wavelength region with the strongest correlation be-

tween the nitrogen content and spectral information changed significantly as the degree 

of pest damage increased, and the absolute value of the correlation coefficients tended to 

decrease and then increase. The mean of the absolute value of the two correlation coeffi-

cients in the red-edge range tended to gradually decrease with increasing pest damage. In 

the 400–2500 nm wavelength range, the number of wavelengths with a strong correlation 

(absolute value of correlation coefficient > 0.6) with a nitrogen content of Moso bamboo 

leaves increased and then decreased with increasing pest damage. The number of wave-

lengths with strong correlations with a nitrogen content of Moso bamboo leaves was the 

highest for the Mi state, followed by the O and H states. The lowest number was observed 

for the S and Mo states. 
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Figure 7. Correlation analysis of spectral data and nitrogen content of Moso bamboo leaves in dif-

ferent states: (a–e) correlations between spectral data and nitrogen contents of leaves in H, Mi, Mo, 

S, and O states, respectively. (f) Correlations between nitrogen content and spectral characteristics. 

The model was constructed by selecting wavelength spectral reflectance information 

with the highest absolute value of correlation with the nitrogen content, from the area 

with high correlations between the nitrogen content and leaf spectral data of Moso bam-

boo leaves with different damage levels. Table 1 shows the three best one-dimensional 

models of the relationship between the leaf spectra and the nitrogen content of Moso bam-

boo leaves in different damage states. The fit of the models shows a general trend of de-

creasing and then increasing with rising pest damage levels. Estimation of the model in 

the Mo state was poor, and the estimation model constructed from the 751 nm wavelength 

spectral information in the H state was the best. 

Table 1. Construction of relationship models for Moso bamboo leaves in different damage states. 

State Index Best Estimate Model Equation R2 RMSE 

H 

CR-FD696 761.4882.1  xlny  0.674 0.127 

CR-FD751 927.8952.0  xlny  0.805 0.098 

CR-FD2049 xey 187.477467.8   0.541 0.151 
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Mi 

CR-FD524 912.2638.118  xy  0.551 0.145 

CR-FD637 xey 364.71772.2  0.533 0.148 

CR-FD2143 475.2435.219999.91865 2  xxy  0.659 0.127 

Mo 

CR-FD534 397.2496.74291.76054 2  xxy  0.097 0.163 

CR-FD735 368.1572.191851.9163 2  xxy  −0.146 0.184 

CR-FD2252 xey 511.160629.2  0.275 0.157 

S 

CR-FD1103 080.2199.1797231.2344354 2  xxy  0.312 0.206 

CR-FD1731 069.2347.1147384.1904836 2  xxy  0.530 0.170 

CR-FD2252 868.2358.718816.78149 2  xxy  0.604 0.156 

O 

CR-FD534 404.2702.256230.19972 2  xxy  0.690 0.126 

CR-FD689 829.2458.87659.1360 2  xxy  0.487 0.162 

CR-FD739 489.1485.136  xy  0.604 0.142 

3.3.3. Multivariate Model Construction and Analysis 

When individual spectral characteristics were selected for the estimation of nitrogen 

content, the spectral information of the individual bands was not sufficiently explanatory 

for the nitrogen content. Overall estimation of the model was poor due to a loss of infor-

mation on physicochemical parameters carried by other spectral bands. Therefore, it was 

necessary to explore multivariate models for the relationship between spectral character-

istics and the nitrogen content of Moso bamboo leaves. Both PLS and SVR models were 

implemented to explore their advantages and disadvantages. In the SVR model, after 

cross-validation the best kernel function for the model was determined to be the radial 

basis kernel function. Figure 8 shows the estimated nitrogen content of Moso bamboo and 

the model fits for the whole samples and those in different damage states. The overall fit 

of the multiple regression models was significantly improved compared with that of the 

one-way regression model. The p-values of the models were all less than 0.001 and reached 

a highly significant level. In the Mo and S states, the SVR model outperformed the PLS 

model while in the other states the reverse was observed. The fits of both models showed 

the same trends for different damage states of Moso bamboo leaves. The model fits de-

creased and then increased with the rise in pest damage level, and the model fits in the 

Mo state were the worst. 
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Figure 8. Estimated nitrogen content of Moso bamboo from two regression models for Moso bam-

boo leaves in different damage states: (a) Whole samples PLS model; (b) whole samples SVR model; 

(c) H-PLS; (d) H-SVR; (e) Mi-PLS; (f) Mi-SVR; (g) Mo-PLS; (h) Mo-SVR; (i) S-PLS; (j) S-SVR; (k) O-

PLS; (l) O-SVR. partial least squares (PLS); support vector regression (SVR). 

To investigate whether the results of the models were statistically different at differ-

ent damage levels, paired t-tests were performed using the results of five trials. Table 2 

shows that for the evaluation index R2, the results are not significantly different under the 

Mi-S group; for the evaluation index RMSE, the results are not significantly different un-

der the Mi-S and Mi-O groups of the SVR model. The main reason for the above phenom-

enon was that the model results showed a decreasing and then increasing trend as the 

pest level rises and the effect was worst in the Mo state, while the difference between the 

Mi and S states was not obvious. The results of the experiment further verified the varia-

tion pattern between the nitrogen content and leaf spectrum of Moso bamboo leaves un-

der PPC stress. 

Table 2. Paired t-test for evaluation index of PLS and SVR models. 

Pest Level 

PLS SVR 

R2 RMSE R2 RMSE 

t p t p t p t p 

H-Mi 7.178 0.002 ** 17.920 0.000 ** 5.913 0.004 ** 5.714 0.005 ** 

H-Mo 91.625 0.000 ** −61.388 0.000 ** 13.460 0.000 ** −8.572 0.001 ** 

H-S 5.027 0.007 ** −6.802 0.002 ** −10.846 0.000 ** 6.662 0.003 ** 

H-O −22.823 0.000 ** 12.113 0.000 ** −14.366 0.000 ** 6.152 0.004 ** 
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Mi-Mo 327.916 0.000 ** −72.838 0.000 ** 13.118 0.000 ** −6.906 0.002 ** 

Mi-S 2.254 0.087 −26.315 0.000 ** −12.159 0.000 ** −2.159 0.097 

Mi-O −102.374 0.000 ** −7.791 0.001 ** −20.803 0.000 ** 1.325 0.256 

Mo-S −61.473 0.000 ** 32.152 0.000 ** −19.199 0.000 ** 8.056 0.001 ** 

Mo-O −23.948 0.000 ** 54.194 0.000 ** −27.815 0.000 ** 7.260 0.002 ** 

S-O −299.605 0.000 ** 24.890 0.000 ** −2.930 0.043 * 3.581 0.023 * 

Note: * at the significance level of 0.05; ** at the significance level of 0.01. 

4. Discussion 

4.1. Discriminatory Ability of Nitrogen Content-Sensitive Spectra for PPC Stress 

Bands of spectra differed in their responsiveness to Moso bamboo leaves under dif-

ferent damage levels, and a one-way analysis of variance (ANOVA) revealed the respon-

siveness of spectral information to different damage classes [44] (Figure 9). When the spec-

tral information of a band significantly differed (p < 0.05) among leaves of different dam-

age classes, the information was used as a reference factor for the PPC damage detection 

model. Figure 9 shows that (1) the spectral reflectance of healthy (H) and damaged (Mi, 

Mo, S) Moso bamboo leaves differed significantly in most wavelength ranges, and the 

band ranges in which the groups significantly differed were similar. (2) The overall dif-

ferences in spectral reflectance between Moso bamboo leaves in the affected states were 

small, but there were more pronounced differences in spectral reflectance in the green to 

red wavelength range. (3) The differences in spectral reflectance of Moso bamboo leaves 

between the O and other states were relatively complex. The overall difference between 

the O and H states was pronounced. The overall difference between the O and Mi states 

was relatively small. There were more significant differences between the O and Mo and 

S states in some wavelength ranges. A one-way ANOVA showed that the range of spectral 

wavelengths that was sensitive to the nitrogen content was also the range with significant 

differences among the leaf states. 
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Figure 9. One-way ANOVA of spectral wavelengths among different Moso bamboo leaf states: (a) 

one-way ANOVA of the H and damaged (Mi, Mo, S) states; (b) one-way ANOVA of different dam-

age states; (c) one-way ANOVA of off-year and on-year (H, Mi, Mo, S) states. 

4.2. Effect of Spectral Feature Index Screening on Model Results 

The effectiveness of the model for estimating the nitrogen content of Moso bamboo 

leaves was closely related to the selection of leaf spectral characteristics. In this study, the 

selection of spectral characteristics was considered in two aspects, namely the correlation 

between the spectral information and nitrogen content, and the existence of co-linearity 

between the spectral information. The reasons for considering these two aspects were: (1) 

when there is a strong correlation between variables, it is meaningful to conduct regres-

sion analysis to obtain the specific relationships between variables. (2) Any covariance 

problem in the feature indicators will lead to a lack of stability in the regression model 

and affect the generalization error of the model. 

Correlation between spectral reflectance data and the nitrogen content was signifi-

cantly improved by CR-FD processing of the original spectra. Therefore, the CR-FD-pro-

cessed spectral reflectance data were used as a basis for selecting feature indicators. When 

the absolute value of the correlation between the spectral information and the nitrogen 

content was >0.6, the wavelength reflectance at the largest absolute value of the correlation 

coefficient was selected as the characteristic index. However, in the Mo and S states, the 

value was adjusted slightly downward due to the low correlation between the spectral 

data and nitrogen content. The range of the region is predominantly determined accord-

ing to whether there is a significant change in the correlation between the spectral infor-

mation and nitrogen content, to avoid covariance due to the close distance of sensitive 

wavelengths. To avoid covariance in the selected feature spectra after this treatment, PLS 

was used to model the multivariate linear relationship. This is because doing so can 

weaken the effect of covariance between characteristics. The improvement in the models 

can be combined with feature selection and principal component analysis in future studies 

[45]. Screening spectral characteristics sensitive to nitrogen content revealed that the num-

ber of wavelengths with a strong correlation with nitrogen content was highest in the Mi 

state. However, constructing the relational model showed that the nitrogen content esti-

mation model was inferior in the Mi state compared with those in the H and O states. This 

result was related to the low correlation between the nitrogen content and feature spectra 

in the Mi state. This result also demonstrated the shortcomings of analyzing the relation-

ship between the two changes using the relational model. 
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4.3. Relationship between Pests and Leaf Nitrogen Content and Leaf Spectrum 

PPC damage occurs when larvae eat bamboo leaves, causing leaves to become 

notched and hollow and resulting in a high loss of nutrients, including nitrogen, chloro-

phyll, and water [46]. This has a serious impact on Moso bamboo photosynthesis. Reduced 

photosynthetic efficiency leads to ineffective decomposition of water in the bamboo body, 

triggering a vicious cycle of water accumulation in the bamboo cavity at each node, fur-

ther resulting in the death of patches of affected bamboo in the forest. Selection of spectral 

characteristics that can reflect these characteristic changes is the key to using leaf spectral 

information to determine the degree of pest stress. Asner et al. found that concentrations 

of chlorophyll, water, and nonstructural carbohydrates were significantly reduced in 80% 

of leaves of disease-infested plants, which together led to changes in leaf spectral reflec-

tance [47]. Xi et al. studied the response mechanisms of larch forests under Jas’s Larch 

Inchworm stress using ground-based hyperspectral and biochemical components data 

(chlorophyll and water contents) [48]. Some researchers believe that current remote sens-

ing technology cannot accurately analyze the extent of damage to the host by PPC [49] 

and that research should be conducted at the leaf scale. After continuous exploration iden-

tified the pest stage, related research found that leaves with PPC damage are sensitive to 

wavelengths of 703.43–898.56 nm, and the spectral reflectance of the leaf differs for differ-

ent pest classes [50]. Pest stress led to changes in vegetation biochemical fractions, which 

further influenced changes in vegetation spectra. Exploring the effect of pest damage 

stress on the remote sensing inversion of biochemical components of forest trees is of con-

siderable importance for accurate identification of pest damage, the study of forest tree 

resistance mechanisms, analysis of the spread of pest damage, and traceability work. 

Nitrogen is an important component of plant chlorophyll and protein and is a key 

factor in regulating the photosynthetic capacity of plant leaves. Nitrogen affects all aspects 

of photosynthesis, including leaf chlorophyll content, the photosynthetic rate, dark-reac-

tion enzyme activity, and photorespiration. Correlation between the nitrogen content and 

leaf spectral information and the fit of the nitrogen content model were significantly re-

duced after infestation by pests significantly decreased. Therefore, nitrogen content can 

be used as a response indicator to monitor the health status of Moso bamboo under PPC 

stress. The nitrogen content of Moso bamboo leaves changed significantly during infesta-

tion by the pest, especially in the early stage of infestation. Therefore, measuring nitrogen 

content can be key in efficiently and effectively monitoring pests in Moso bamboo forests 

through remote sensing. Nevertheless, to improve the precision of pest identification via 

remote-sensing pest monitoring, data of other biochemical component parameters, such 

as chlorophyll, water content, cellulose, and lignin, should also be analyzed. 

5. Conclusions 

In this study, we measured the nitrogen content and leaf spectra of Moso bamboo 

leaves. Briefly, we selected spectral characteristics that were strongly correlated with the 

nitrogen content of leaves by processing original spectral data using CR and FD and then 

estimated the nitrogen content of Moso bamboo leaves using spectral data as predictors 

through various regression models. The relationship between the nitrogen content and 

leaf spectral characteristics, as well as variations in the relationship, were analyzed ac-

cording to the indices of fit of estimation models, and the following conclusions were 

drawn: 

(1) The overall nitrogen content of leaves gradually declined with increasing insect dam-

age, with the fastest rate of decline in the H to Mi damaged states. These results pro-

vide a reference for the early monitoring of insect pests. The overall nitrogen content 

of leaves in off-years was lower than that in on-years. 

(2) The spectral curve of Moso bamboo leaves changed significantly under PPC damage. 

The “green peak” and “red valley” gradually disappeared in the visible range, and 

the slope of the spectral curve in the red range gradually decreased. 
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(3) In the whole leaf samples, the wavelength regions strongly correlated with the nitro-

gen content of leaves were around 540, 687, 740, 1690, 1733, 1784, 1840, 2071, and 2251 

nm. The wavelength region with the strongest correlation between the nitrogen con-

tent and spectral characteristics changed significantly in leaves in different damage 

states. The mean of the absolute value of the correlation between the nitrogen content 

and spectral characteristics in the red-edge range tended to gradually decrease with 

an increase in the degree of pest damage. The number of wavelengths with a strong 

correlation with the nitrogen content in the wavelength range from 400 to 2500 nm 

first increased and then decreased with an increasing degree of pest damage. The 

number of wavelengths with a strong correlation between the nitrogen content and 

spectral data was highest in the Mi state. 

(4) The SVR model outperformed the PLS model in the Mo and S states, and the fits of 

both were significantly improved compared with those of the univariate models. For 

both the univariate and multivariate models, the model fit followed the same trend, 

i.e., the fit of both models decreased and then increased as the pest damage level 

increased. The fit of both models in the Mo state was the worst, and that of the models 

in the off-year state was better than that in the on-year state. 
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