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Abstract: Due to complex terrain and harsh environments, sensor nodes are often randomly scattered
in the monitoring area, which may cause coverage holes or network disconnection. Current works
move some sensor nodes to certain places to address this problem. However, these works cannot
guarantee the coverage and connectivity simultaneously and have larger moving cost in energy. In
this paper, we propose a coverage optimization strategy based on the flower pollination algorithm
(FPA). First, to solve the shortcomings of the classical FPA in convergence and accuracy, an improved
FPA is proposed. Then, the network deployment optimization problem is modeled as a multi-
objective optimization problem that guarantees the coverage of target points and the connectivity of
the network while minimizing the energy consumption of sensor nodes’ moving. The sensor nodes
are selected and moved to the proper position by utilizing the improved FPA to minimize the energy
consumed by the sensors’ motion and guarantee the coverage and connectivity. Test results show
that the improved FPA has good convergence speed and accuracy compared with other evolutionary
algorithms. Simulation results demonstrate that the proposed algorithm can guarantee network
connectivity and satisfy the coverage requirement while minimizing the energy consumption of the
sensor movement. Consequently, more energy of the sensor node can be used to collect and transmit
sensed data. These results indicate that our algorithm can prolong network lifetime and improve
monitoring quality in fields such as forest monitoring.

Keywords: deployment optimiztion; coverage; connectivity; flower pollination algorithm; wireless
sensor networks

1. Introduction

Forest fires spread rapidly and are difficult to extinguish quickly, which seriously
affects the safety of people’s lives and property [1]. A real-time monitoring system is
required to ensure early fire detection to minimize risks. Traditional detection techniques,
however, cannot be used because of the complicated forest environment and the unreliable
wireless channel [2]. The wireless sensor network (WSN) is a self-organizing system
composed of hundreds of low-cost and tiny sensor nodes. With the advantages of device
cost, flexibility, and robustness, WSNs can efficiently monitor the environment and provide
early warning of potential threats [3]. Therefore, it is widely used in forest scenarios such
as the detection of pests and forest fires [4].

Some techniques, such as energy-efficient routing [5], mobile sinks [6], and data
compression [7] are frequently employed to increase data reliability and enable long-
term monitoring of the target region. However, these approaches are usually built on
manual deployment schemes which selectively determine the location of sensors or random
deployment with larger redundant sensors. In forest scenarios, due to the large scale of
the network and the complexity of the environment, the random deployment scheme (e.g.,
by aircraft) is often adopted. Then, some undesirable cases appear. Although more sensors
are used to ensure the coverage and connectivity, due to uneven distribution, some sensors
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are located close to each other and some far away from each other. Then, some targets
are not covered effectively, the network connectivity is poor, and even the network is not
connected [8]. To ensure the coverage of the WSN by using random deployment, many
works have been done. In [9], the sensing range is dynamically adjusted, and the coverage
hole problem can be solved in some extent. However, the deployment optimization works
use movable sensors to repair network blind spots, which can solve the coverage hole
problem and disconnectivity.

Many factors should be considered by the optimization strategies of the sensor de-
ployment, such as network coverage, network connectivity, and sensor mobile energy
consumption. It has been proven that the sensor deployment optimization is an NP-hard
problem [10]. Many scholars are interested in solving the deployment optimization prob-
lem by using swarm intelligence optimization algorithms. Various algorithms have been
proposed [11–17] to optimize the coverage of the network.

Deng et al. [11] proposed an improved virtual spring force algorithm for the problem
of coverage vulnerability in irregularly shaped WSNs, which effectively improved the
coverage robustness of the network, but did not consider the energy consumption of node
movement. A non-dominated sorting genetic algorithm-II (NSGAII) is used to improve
the coverage quality and network connectivity in [12]. The algorithm can achieve better
coverage; however, the NSGAII algorithm has the disadvantage of uneven distribution
of non-dominated solutions for high-dimensional optimization problems. Xie et al. [13]
designed an improved whale swarm algorithm to improve the coverage performance of
the network and achieve network connectivity for the secondary deployment, which only
optimizes the coverage of the target area. The work in [14] proposed a node coverage
optimization based on an improved grey wolf optimizer to arrange the working nodes
in the monitoring area to move appropriately according to the network coverage quality,
which can meet the network coverage requirements by moving fewer nodes, but the
algorithm is deficient at times because it falls into the local optimum. A WSN coverage
optimization method given in [15] is based on an improved artificial fish swarm algorithm
with multiple optimization objectives. The method considered the network coverage, node
utilization, and average energy consumption jointly to eliminate the unreasonableness of
the random deployment of sensor nodes. The algorithm has a good global search capability,
but its time consumption is high. A dynamical algorithm based on K-means was proposed
in [16] to find the optimal positions of sensors to realize the optimal coverage control.
However, this algorithm ignores the network connectivity. To jointly solve this problem,
the authors in [17] proposed a robot path planning algorithm to find a path for sensors from
original positions to destination points. Although these works are effective in improving
the coverage and enhancing the connectivity of the network, the energy caused by sensors’
movement is ignored or not minimized, and the algorithm converges slowly or takes a
long time to compute. In order to improve network lifetime, the limited energy of each
sensor should be well utilized. The energy caused by the movement needs to optimized,
and some effective algorithms are necessary.

The flower pollination algorithm (FPA) is a metaheuristic algorithm inspired by the
pollination process of flowers [18], which has good convergence speed and efficiency.
It is often used to solve complex and nonlinear optimization problems in real-life situ-
ations [19], including wind forecasting [20], resource management [21], and the WSN.
Authors introduced a difference algorithm in the FPA, and the improved algorithm has
significant competitiveness but does not balance well between local and global pollination
methods [22]. An enhanced pollination algorithm is proposed in [23] which introduces
random jump perturbation in the pollination phase and updates the switching probabil-
ity according to the optimal global value of each iteration. To solve high-dimensional
optimization problems, a dimension-by-dimension improvement FPA is proposed [24].
The parameter-tuning of the FPA was summarized in [25]. These algorithms can effectively
improve the capability of the FPA in solving the engineering problem. However, facing
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the multi-objective optimization problem in the WSN with random deployment, these
improved FPAs cannot guarantee the convergence speed and optimality.

To address the problem of the random deployment and the shortage of the FPA, we
propose a connectivity coverage optimization algorithm based on the proposed improved
FPA in this paper. The main goal of the optimization algorithm is minimizing the mobile
energy consumption while ensuring coverage and connectivity quality. First, by analyzing
the classical FPA, an improved algorithm is proposed to address the slow convergence speed
and low accuracy of the traditional FPA. The modified algorithm is verified by a benchmark
function test, which has better convergence performance than other similar algorithms.
Then, the network deployment optimization problem is modeled as a multi-objective
optimization problem. The improved FPA is used to solve the problem. The coverage
of target points, and the energy consumption of the sensors’ motion construct the multi-
objective optimization function whereas the network connectivity judgment is performed
simultaneously with the iteration of the improved FPA. The proposed algorithm first
calculates the location of the optimized node. To minimize movement energy consumption,
a greedy node-matching algorithm is used to find the moving path for the sensor node.
Simulation results show that the proposed algorithm can guarantee network connectivity,
repair the blind areas of the network, and minimize mobile energy consumption.

Our main contributions are concluded as follows.

• An improved FPA is proposed, which has a fast convergence rate, high accuracy,
and significant competitiveness compared with similar algorithms in solving the
deployment optimization problem of the WSN with random deployment.

• The deployment problem of sensor nodes is modeled as a multi-objective optimization
problem, and an algorithm is proposed to solve this problem. The proposed algorithm
can optimize the energy consumed by the movement of the sensor node on the premise
of ensuring high coverage quality and strong connectivity.

The rest of this paper is organized as follows. Section 2 presents the network model
and problem definition and the improved FPA is given in Section 3. We describe the WSN
coverage optimization scheme in Section 4. The numerical and simulation results are
shown in Section 5 to demonstrate the effectiveness of the algorithm. Section 6 concludes
the whole paper.

2. Network Model and Problem Formulation
2.1. Network Model

It is assumed that the WSN consists of N mobile sensor nodes and P target monitoring
points. The set of sensor nodes is denoted by S = {s1, s2, ...sN}, whereas the set of detection
target points is defined as P = {p1, p2, ...pM}.

We use the sensing disk model as the coverage model, which considers all nodes
within the disk centered at the node to be covered [26]. In other words, if the distance
from monitoring point pk to sensor node sj is less than the sensing radius Rs, point pk is
considered to be covered by sj. Let

{
xj, yj

}
, 1 ≤ j ≤ N and {xk, yk}, 1 ≤ k ≤ M denote the

two-dimensional spatial coordinates of the sensor node sj and the monitoring target point
pk, respectively. Thus, the probability Pcov(sj, pk) of the monitoring target point pk being
sensed by the sensor node sj is expressed as

Pcov(sj, pk) =

{
1 i f

√
(xj − xk)2 + (yj − yk)2 < Rs

0 otherwise
. (1)

Let Sall represent the set of all sensor nodes in the monitoring area of target point pk,
and the joint sensing probability Cp(sall , pk) of the monitoring target point pk is defined as

Cp(sall , pk) = 1−
N

∏
j=1,sj∈Sall

(1− Pcov(sj, pk)). (2)
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Then, the coverage ratio Cr is defined as

Cr =
∑M

k=1 Cp(sall , pk)

M
. (3)

In [27], it has been proven that the necessary condition of the network connectivity
is that when the communication radius Rc of the sensor node is not less than twice the
sensing radius Rs, the network achieves full connectivity if the target point is fully covered.
In this paper, we assume that Rc=2Rs. Thus, as long as target points are fully covered,
the network is connected.

The total energy consumed by the sensor node movement is linearly related to the
movement distance, and the relationship can be represented as

EN =
N

∑
i=1

emovedi, (4)

where emove denotes the energy consumed by the sensor node when it moves per unit
distance, and di denotes the distance that the sensor node si moves.

2.2. Problem Formulation

Because some target points may not be covered or the network may not be connected
after the random deployment of sensor nodes, it is necessary to optimize the network
coverage and connectivity through moving sensor nodes. To ensure all target points are
covered and the network is fully connected, some sensor nodes should move to some
proper positions. In order to prolong the work time of the WSN, the less energy caused by
sensor movement, the better. Hence, the fitness function is set to high coverage and less
energy consumption for node movement, and the problem is described as

max [w1(Cr) + (1− w1)(1−
EN
Eall

)] (5a)

s.t. lb ≤ xj ≤ ub (5b)

lb ≤ yj ≤ ub (5c)

0 ≤ emovedi ≤ E0, (5d)

where w1 is the weight coefficient of the target, Eall is total energy of the sensor nodes, ub
and lb are the upper and lower bounds of the network respectively, and E0 is the initial
energy consumption of the sensor node. Equations (5a) and (5b) indicate that the sensor
node cannot move out of the network area. The energy consumed by the moving of the
sensor node should be less than the initial energy. By adjusting the value of w1, a tradeoff
between the consumed energy and coverage quality is achieved.

Hence, the problem can be described by Figure 1. To address the problem in Figure 1
and Equations (5a)–(5d) , we will propose an algorithm (CCFPA) which includes two
parts: the improved FPA, which is used to find the sensor node and the optimal position,
and the greedy node-matching algorithm, which arranges the optimal moving path for
each selected sensor node. Due to some shortages of the FPA in selecting sensor nodes and
positions, we first modify the FPA to overcome those shortages.
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Figure 1. The considered problem and our solution.

3. The Improved Flower Pollination Algorithm

To address the problem in Equation (5), we propose an improved FPA based on the
analysis of the traditional FPA. Hence, we first introduce the FPA briefly, and then the
improved FPA is described in detail. The comparison is given finally.

3.1. Flower Pollination Algorithm

The flower pollination algorithm is a novel global optimization algorithm inspired
by the process of flower pollination in nature. A flower and its pollen represent a solution
to an optimization problem. Pollination can be divided into two types: biotic and abiotic,
also known as cross-pollination and self-pollination. The pollination of flowering plants is
mainly biotic, which is performed by insects and animals for large-scale cross-pollination.
The biotic corresponds to an optimization problem on a global scale. Abiotic pollination is
self-pollination by transferring pollen on the same plant through wind and water diffusion,
which corresponds to a local search of the optimization problem. We balance both pollina-
tion behaviors by transforming probability p. Its simple structure, ease of operation and
adjustment make it popular among scholars.

The FPA idealizes the main characteristics of the pollination process, flower stability,
and pollinator behavior for flower pollination into the following four rules [28].

3.1.1. Global Search Process

Biotic and cross-pollination are considered as a global search process, where pollinators
carrying pollen move in a Lévy flight pattern. It usually travels a long distance, so the
pollen can move a long distance. The expression of the rule is expressed as

Xt+1
i = Xt

i + γL(λ)(Xbest − Xt
i ), (6)

where Xt
i represents the i-th element of the solution vector at iteration t, Xbest is the

best solution at current iteration, and γ is a scaling factor to control step size, which is
usually set to 0.01. L(λ) represents the step length of pollen movement and obeys Lévy
distribution [29]:

L(λ) ∼
λΓ(λ) sin(πλ

2 )

π
.

1
s1+λ

, (s > s0 > 0), (7)

where Γ(λ) is the standard gamma function and λ is a constant which takes the value as 1.5
usually. s0 represents the minimum step and s is the flight step of Lévy. Thus s is generated
by the following formula,

s =
U

|V| 1
λ

, (8)

where U and V follow the normal distribution. That is, V ∼ N(0, 1) and U ∼ N(0, σ2)
where σ2 can be calculated as

σ2 =

{
Γ(1 + λ) · sin(πλ

2 )

Γ( 1+λ
2 ) · λ · 2 λ−1

2

}
. (9)
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3.1.2. Local Search Process

Abiotic and self-pollination are considered as a local search in the algorithm, and the
rule is as follows,

Xt+1
i = Xt

i + ε · (Xt
j − Xt

k), (10)

where Xt
k is the kth element of the solution vector in the tth generation, and ε represents

the local pollination coefficient, which obeys a uniform distribution between 0 and 1.

3.1.3. The Stability of Evolutionary Advantages

The degree of similarity between two flowers determines the flowers’ probability of
reproducing. Some flowers can only attract one specific insect to spread pollen, and the
stability of this flower may have an evolutionary advantage. Hence, it will maximize pollen
transfer to the same plant and ensure species stability.

3.1.4. Conversion Probability

It is possible for flowers to be pollinated at all scales, both locally and globally. How-
ever, neighboring clumps are more likely to pollinate each other. In order to model this
feature, the transition probability p is used to describe the switch between biotic pollination
and abiotic pollination. The results of several simulations show that the algorithm has
good results when p = 0.8. The mode transition can be described as follows,

pollinatio mode =
{

global pollinatio, i f r < p
local pollinatio, otherwise

, (11)

where r is a randomly generated fractional number between 0 and 1. If r < p, global
pollination is performed, and vice versa for local pollination.

To simplify the algorithmic process, assume that each plant has only one flower
and each flower emits only one pollen gamete. In this way, when solving the problem,
the flowers which bloom or reproduce the gametes correspond to a feasible solution of
the problem.

3.2. The Improved Flower Pollination Algorithm

During the search process, the traditional FPA also encounters some difficulties. Dur-
ing biotic pollination, in Lévy flight, the step size is determined by the scaling factor γ
which is a constant. A small step size will affect the search speed of the algorithm, whereas
a large step size will not converge to the global optimum. In the self-pollination process,
the reproductive probability is normally distributed, the high randomness in the late stage
of the algorithm causes the search to be slow or even stagnant. In addition, self-pollination
is only performed in the neighborhood, which limits the search capability of the FPA. Local
and global pollination are performed on the pollen, which is beneficial to expand the search
range and increase the population diversity. However, it is not conducive to the careful
search of the algorithm, and it is difficult to converge to the optimal value, especially for
complex problems. That is, it is easy to fall into the local optimum.

To address the above problems, an improved flower pollination algorithm (I-FPA) is
proposed. The improved algorithm can effectively speed up the convergence rate, jump out
of the local optimum, and improve the global search capacity. Improvements are mainly
made in the following four aspects.

3.2.1. Adaptive Step Scaling Factor γ

To improve the convergence efficiency, an adaptive step scaling method is used for
the initial population, and this strategy can effectively accelerate the convergence rate.
The factor γ is large at the initial stage of the iteration to increase the search speed, whereas
the step size gradually becomes smaller at the later stage so that it can converge near the
optimal solution. The step scaling function is as follows,
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γ = µ · T · e−t/T , (12)

where T is the preset number of iterations, t is the current number of iterations, and µ is
the scaling factor. After several simulations, the overall performance of the algorithm is
better when µ · T = 0.2.

3.2.2. Reproduction Probability Based on Rayleigh Distribution U

From Equation (8), it is clear that the random numbers are normally distributed, and
this method may stall when converging to the optimal value at a later stage. By introducing
the Rayleigh distribution and the deformation function to improve U, the algorithm can
jump out of the local extremes in the late stage. The random number used to calculate
improved reproduction probability of the t-th iteration is generated as

U = θ − t
σ2 e−

t2

2σ2 · ( t
T
)30. (13)

After executing several simulations, the algorithm is able to approximate the local
optimum at a later stage when θ = 0.3, σ = 2. Thus, the optimization accuracy of the FPA
can be improved.

3.2.3. Dynamic Conversion Probability p

In the FPA, both local and global pollination processes are carried out on the whole
pollen as shown in Equation (10), which is beneficial to the fast convergence of the algorithm
but not to the fine search of the algorithm. For complex problems in particular, it is easy to
fall into local optimum. In order to solve this problem, local pollination or global pollination
is performed in dimensions by conversion probability, and the value size is now adjusted
according to the number of iterations combined with the Weber distribution function. Thus,
the value p can be adjusted adaptively with the number of iterations, which makes the
improved algorithm tend to global search in the early stage and local search in the later
stage. The formula of conversion probability is given as

p = q− w · (1− t
T
) (14)

where q is the fixed value and w is the influence factor. A large number of test data shows
that the algorithm can solve the optimal solution rapidly when q = 0.6, w = 0.1.

3.2.4. Use of Cross-Counters in Local Pollination pc

During local pollination of the FPA, as shown in Equation (9), pollen is only influenced
by randomly selected pollen and searched in the neighborhoods. This search capability
is limited, thus limiting the search capability of the FPA. Therefore, the FPA has the
disadvantage of being prone to local optimum and slow convergence. The crossover
operator in the genetic algorithm makes the algorithm have good global search performance
and has been widely used [30]. Therefore, in order to enhance the local pollination process,
the crossover operator is introduced into the local pollination. Any set of pollen individuals
from the contemporary population is crossed with the optimal individuals of the previous
generation. The introduction of the crossover operator not only improves the algorithm’s
search accuracy, but also maintains the diversity of the population. The crossover operator
formula is defined as

pc = Pmin + (pmax − pmin)
1

1 + e fi− fiave
, (15)

where pmax and pmin represent the maximum and minimum values of crossover probability,
respectively, and fi denotes the fitness of individuals in the ith generation population while
fiave represents the average fitness of the ith generation population.
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3.3. The Comparison Analysis

To clarify the process of the I-FPA, the flow chart is given in Figure 2, in which the
left part is the diagram of the FPA and the right part shows the operations of the I-FPA.
From Figure 2, it can be seen that four steps of the FPA are modified.
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Figure 2. Flow charts of the FPA and the I-FPA. (a) FPA. (b) I-FPA.

The switching probability p is dynamically adjusted according to the number of
iterations. This adjusting can overcome local optimum and slow convergence. In the early
stage, the dynamic switching probability p is small and the adaptive step size γ is large
due to the small number t of iterations. The algorithm tends to the global search which has
high search efficiency. With the increasing of t, p becomes larger and γ becomes smaller,
and this makes the algorithm tend to the local search. This change lets the algorithm be able
to find the optimal solution more quickly. The introduction of cross-counters pc improves
the algorithm’s accuracy while simultaneously maintaining the diversity of the population.
Hence, comparing with the FPA, the I-FPA has higher convergence rate and accuracy.
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4. The Coverage Optimization Algorithm

Based on the improved FPA, a coverage optimization is proposed, which is the cover-
age and connectivity based on the improved FPA (CCFPA). In the CCFPA, the I-FPA is used
to find the optimal positions by considering the coverage quality and energy consumption.
Then, a greedy node-matching algorithm is applied to complete node movement match-
ing to achieve the purpose of minimum node movement distance. The flow chart of the
proposed algorithm is shown in Figure 3, and the specific steps of searching the optimal
positions and the matching process are given in Algorithm 1.
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Figure 3. Flow chart of the coverage optimization algorithm.

Algorithm 1 The improved FPA for WSN deployment

1: Input: SI : the set of initial locations sensor nodes.
2: Output: So: the set of optimal locations of sensor nodes.
3: for t=1 to T(MaxGenerations)
4: for i=1 to N(size Of population)
5: p = q− w · (1− t/T)
6: if rand<p
7: Adaptive step scaling:γ = µ · T · e−t/T

8: Global Pollination:Xt+1
i = Xt

i + γL(Xbest − Xt
i )

9: update the Xbest

10: else
11: Partial pollination:Xt+1

i = Xt
i + ε(Xt

j − Xt
k)

12: Performing cross-operations
13: Calculate the fitness of new flowers and renew in the population if the new flowers

are better
14: end if
15: end for
16: end for
17: get Best flower Xbest, as the set of the optimal locations of sensor nodes So.
18: Apply greedy node matching algorithm to match SI and So for node movement
19: Determine whether the network is connected or not, and if not, select the next best set

of deployment options until the connected set of options
20: Return: So: the set of the optimal locations of sensor nodes.
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As shown in Algorithm 1, given the network parameters, they are mapped into
parameters of the I-FPA and the fitness function is constructed by using the objective
function. Then, the I-FPA is used to search for the best flower. When the stop condition is
satisfied, the set of best flowers is output. The set of best flowers is the set of the optimal
locations of sensor nodes.

In the coverage optimization of the WSN [31], position-finding and sensor move-
ment are separately operated. The initial position set of N sensor nodes in the region
is SI = {s1, s2, ...sN}, and the final node position set after moving is So =

{
s′2, s′2, ..., s′N

}
.

The matching of SI with So is achieved often by the greedy node-matching algorithm to
move the sensor node to the target with the same serial number. To find the right position,
the computation for N nodes moving toward N target locations is N!. When the number of
sensor nodes is large, the algorithm is too computationally intensive. In addition, the aver-
age node movement distance is usually not the shortest. Therefore, to achieve the goal of
minimum energy consumption for node movement, the greedy node-matching algorithm
is proposed in this paper, and its pseudo-code is shown in Algorithm 2.

Algorithm 2 Greedy node-matching algorithm

1: Input: the initial position of sensor nodes SI , the optimal position after moving So,the
number of mobile nodes N.

2: Output: the node assignment diagram
3: for i=1 to N do
4: for j=1 to N do
5: calculate for dij = |SiSj|,Si ∈ SI , Sj ∈ So,
6: append to set D
7: end for
8: end for
9: for k=1 to N do

10: find the shortest distance dij in D, complete a
11: pair of node matches Si, Sj.
12: Matching nodes do not participate in the next
13: round of matching.
14: end for
15: Return: Draw the node assignment diagram

In the FPA algorithm, the time complexity is only related to the number of iterations
T, the population size N, and the search dimension D. The time complexity of the FPA
is O(N · T · D). On this basis, the improved FPA adds some operations which bring
more time complexity. The added operations are used to calculated the adaptive step
scaling, the reproduction probability based on Rayleigh distribution, and the dynamically
adjusted transition probability, which have the same size as the number of iterations.
Hence, the time complexity of the I-FPA O(N · T · D + 3T). In the greedy node-matching
algorithm, the distance between each sensor and each position should be calculated and
sorted; thus, the number of operations is N2. In addition, the connectivity judgment
increases the number of operations by O(N · N). Therefore, the time complexity of the
proposed algorithm is O(N · T · D + 3T + 2N · N).

5. Numerical Results

The simulation validation in this section contains two types of experiments. To prove
the effectiveness of the I-FPA, we first compare the convergence performance of the im-
proved FPA with four other well-known metaheuristics, including the FPA on four standard
mathematical functions. Then, the second experiment applies the proposed algorithm to
WSN for coverage optimization to verify the performance of the CCFPA.
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5.1. Function Testing and Analysis

Like other metaheuristics publications, the I-FPA is evaluated by using a set of standard
functions. Four baseline functions will be selected, and they are all minimization problems
with optimal solutions of 0. They were chosen because each function has a unique set
of qualities that make it easier to assess metaheuristic algorithms. The four specific test
functions are shown in Table 1. It is evident that F1 is unimodal and separable, while F2 is
non-separable. F3 and F4 functions have multimodal and non-separable characteristics.

Table 1. Standard test functions.

Function Dimension Variable Range Theoretical

F1 = ∑n
i=1 x2

i 30 [−100, 100] 0

F2 = ∑D−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [−30, 30] 0

F3 = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos( xi√
2
) + 1 30 [−600, 600] 0

F4 = −20exp(−0.2
√

1
D ∑D

i=1 x2
i )− exp( 1

D ∑D
i=1 cos 2πxi) + 20 + e 30 [−32, 32] 0

By using these four test functions, our proposed I-FPA compares with other four
algorithms: FPA, AIFS [32], IGWO [33], and IPSO [34]. The improved FPA is set to the same
population size and number of iterations with the comparison algorithms, and 20 indepen-
dent runs were performed for each of the four groups of test functions in Table 1. The best,
average, and worst values of each algorithm are collected and compared. The comparison
results are given in Table 2, where our results are highlighted in bold.

Table 2. Test results.

Function Evaluation Metrics IGWO FPA AIFS IPSO I-FPA

F1 Best 0.0052 0.2609 0.1602 0.5040 1.054 × 10−3

Average 0.1851 0.3602 8.089 × 10−3 0.6565 1.809 × 10−3

Worst 0.3563 0.4602 1.600 × 10−3 0.8090 1.419 × 10−3

F2 Best 0.0334 0.8819 0.7574 0.6139 2.528 × 10−2

Average 0.6852 2.026 0.9177 1.3318 7.573 × 10−2

Worst 1.2165 4.1239 1.0780 2.0496 4.674 × 10−2

F3 Best 0.5926 0.6144 0.7584 0.5334 7.038 × 10−3

Average 1.2038 0.3280 1.8069 3.1942 2.609 × 10−3

Worst 3.0938 1.0316 2.8554 5.8550 1.337 × 10−2

F4 Best 5.043 × 10−3 2.2700 2.8260 × 10−2 1.8050 4.44 × 10−3

Average 4.764 × 10−2 3.4450 0.1311 2.3105 1.572 × 10−2

Worst 9.025 × 10−2 4.6200 0.2340 2.8160 2.7 × 10−2

From the comparison results in Table 2, it can be obtained that the proposed I-FPA
is the best among five algorithms in terms of the search accuracy for both single-peak
and multi-peak functions. This indicates that the improved algorithm can effectively go
beyond the local optimum and search in the direction of the global optimum. Moreover,
the optimal values obtained by the I-FPA are most closed to the optimum solution 0,
whether it is the best, average, or the worst. The gap of the I-FPA with the optimum
solution 0 is two magnitudes less than that of the other four algorithms on some metrics of
a certain function.

In addition to the comparison of the accuracy of the results, Figure 4 presents the
convergence plots of five algorithms running the four test functions. From the results in
Figure 4, the convergence rate of the FPA is far faster than other four algorithms.
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Figure 4. (a–d) are the convergence curves of the F1, F2, F3, F4 functions, respectively.

From the above figure, it can be seen that the improved FPA algorithm significantly
improves the search accuracy and convergence performance of these four functions as
the number of iterations increases. In the later iterations of the algorithm in particular,
the improved FPA still has the effect of continuous optimization. The results show that
the proposed algorithm has good global search ability, can effectively avoid local extremes,
and converges faster.

5.2. WSN Coverage Optimization Simulation

The improved PFA algorithm is then applied to WSN coverage optimization. The sim-
ulation environment is set as a flat area with 100× 100 m2. A total of 80 mobile nodes are
randomly deployed with sensing radius Rs = 8.8375 m, and the communication radius
Rc = 17.675 m. The population size is 50, the maximum number of iterations is 20, and the
initial energy E0 = 0.5 J. Figure 3 depicts the effect of the improved FPA on the network
coverage optimization, where the circle indicates the sensing range of sensor nodes, and the
signal * indicates the monitoring target point. The blue points represent the sensor nodes
and the red points are the monitoring target points. The green circles indicate the sensing
range of sensor nodes.

Figure 5a shows the covera situation of random deployment of sensor nodes. The cov-
erage rate of the network in Figure 5a is 88.9%. It can be seen that sensor nodes are not
evenly distributed, and many target points are not covered. At the same time, the distance
from the sensor node to its neighbour sensor nodes is greater than Rs, and the network
is disconnection. After using the proposed CCFPA, the node coverage state is shown in
Figure 5b. All target points are covered, and the coverage rate is 100%. Each sensor node
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has at least one sensor node in its transmission range, which indicates that the network is
connected. Thus, the proposed algorithm can effectively solve the coverage hole problem
and disconnectivity.
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Figure 5. The effect of the improved FPA on the network coverage optimization.

Figure 6 depicts the coverage comparison of the WSN by using the FPA algorithm,
IGWO algorithm, and the improved algorithm, respectively, for monitoring target points
with different numbers of deployed sensor nodes. It can be seen from the figure that when
the number of sensor nodes is 50, coverage optimization schemes based on the IGWO
and the improved FPA can cover all monitoring target points 100%, whereas the FPA
algorithm needs 65 sensor nodes to achieve complete coverage. The algorithm using the
I-FPA only needs 20 iterations to achieve full coverage of monitoring target points, whereas
the algorithm adopting the IGWO algorithm needs 50 iterations to achieve full coverage.
Thus, the CCFPA has the best coverage optimization capability for the WSN with the
random deployment.
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Figure 6. Coverage comparison of the three algorithms under different number of nodes.

High coverage and low energy consumption are two main objectives considered in
the coverage optimization of wireless sensor networks. The energy consumed by the
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sensor movement is shown in Figure 7. The consumed energy increases with the increasing
number of sensor nodes. This is because the selected sensor nodes also increase when
the deployed sensor nodes increase. The energy consumption of the network utilizing
the proposed CCFPA is smaller than that of other two algorithm. First, as proven in
Section 5.1, the I-FPA used by the CCFPA has higher accuracy than the FPA and the IWGO,
the position set found by the CCFPA is closer to the optimal position. Secondly, the greedy
node-matching algorithm is used by the CCFPA to match the sensor nodes and the optimal
position, and the shortest movement distance can be achieved. Thus, sensor nodes consume
the least energy when the coverage is guaranteed.
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Figure 7. Energy consumption of the three algorithms under different number of nodes.

6. Conclusions

To solve the problem of node coverage optimization in wireless sensor networks, a new
algorithm is proposed to optimize the network coverage. First, to address the shortcomings
of slow convergence and insufficient accuracy of the FPA, an improved flower pollination
algorithm is proposed. The I-FPA improves its global pollination capability and enables
itself to explore more regions in the search space to avoid falling into local extrema. Besides,
the improvement of local pollination enhances the ability to search widely for the optimal
solution; thus, the convergence of the near-optimal solution speeds up in the right direction.
In addition, the introduction of the crossover operator in local pollination maintains the
diversity of the population and improves the convergence accuracy of the algorithm. Then,
based on the I-FPA, a coverage and connectivity optimization algorithm (CCFPA) which
considers the coverage quality, mobile energy consumption, and the network connectivity
is proposed. The CCFPA utilizes the I-FPA to find optimal positions where sensor nodes
would move and the greedy node-matching algorithm to determine which sensor node
move to a certain position. By using four typical standard functions, the comparison of
the test results demonstrates that the I-FPA has higher search efficiency and accuracy than
the standard FPA, IGWO, AIFS, and IPSO. The simulation results verify that our proposed
CCFPA can use fewer sensor nodes and less movement energy to guarantee 100% coverage
and connectivity.

In this work, the coverage optimization of the WSN with random deployment is
realized by moving some sensor nodes. Hence, the selection of sensor nodes and positions
is the key point of the problem. We assume that all sensor nodes can move; however, some
sensor nodes cannot move in practical applications. Thus, combining dynamic sensors and
static sensors to optimize the coverage of the WSN is an interesting topic. Furthermore,
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in the future Internet of things, not only the sensor node can move, and both the sink and
relays are mobile. The coverage optimization of the WSN becomes more complicated.
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