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Abstract: Accurate estimation of forest aboveground biomass (AGB) is vital for informing ecosystem
and carbon management. The Global Ecosystem Dynamics Investigation (GEDI) instrument—a
new-generation spaceborne lidar system from NASA—provides the first global coverage of high-
resolution 3D altimetry data aimed specifically for mapping Earth’s forests, but its performance is
yet to be tested for large parts of the world. Here, our goal is to evaluate the accuracies of GEDI in
measuring terrain, forest vertical structures, and AGB in reference to independent airborne lidar data
over temperate and tropical forests in North America. We compared GEDI-derived elevations and
canopy heights (e.g., relative height percentiles such as RH50 and RH100) with those from the Shuttle
Radar Topography Mission (SRTM) or from two airborne lidar systems: the Laser Vegetation Imaging
Sensor (LVIS) and Goddard’s Lidar, Hyperspectral and Thermal system (G-LiHT). We also estimated
GEDI’s geolocation errors by matching GEDI waveforms and G-LiHT pseudo-waveforms. We
assessed the predictive power of GEDI metrics in estimating AGB using Random Forests regression.
Results showed that GEDI-derived ground elevations correlated strongly those from LVIS, G-LiHT,
and LVIS (R2 > 0.91), but with nonnegligible RMSEs of 5.7 m (G-LiHT), 3.1 m (LVIS), and 10.9 m
(SRTM). GEDI canopy heights had poorer correlation with LVIS (e.g., R2 = 0.44 for RH100) than with
G-LiHT (e.g., R2 = 0.60 for RH100). The estimated horizontal geolocation errors of GEDI footprints
averaged 6.5 meters, comparable to the nominal accuracy of 9 m. Correction for the locational errors
improved the correlation of GEDI vs G-LiHT canopy heights significantly, on average by 53% (e.g.,
R2 from 0.57 to 0.82 for RH50). GEDI canopy metrics were useful for predicting AGB (R2 = 0.82
and RMSE = 19.1 Mg/Ha), with the maximum canopy height RH100 being the most useful predictor.
Our results highlight the importance of accommodating or correcting for GEDI geolocation errors for
estimating forest characteristics and provide empirical evidence on the utility of GEDI for monitoring
global biomass dynamics from space.

Keywords: GEDI; airborne lidar; forest structure; ground elevation; aboveground biomass; carbon

1. Introduction

Carbon neutrality has been put on the agenda of the United Nations as an important
goal, and how to achieve this goal is presently an urgent problem for the major economic
powers [1]. Forest carbon sinks are among the main means to achieve carbon neutral-
ity [2,3]—forests capture carbon dioxide from the atmosphere and transform it into biomass
through photosynthesis. To some extent, the aboveground biomass (AGB) can largely char-
acterize the carbon sequestration capacity of forests [4,5]. Therefore, accurate estimation
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of forests’ AGB is of great significance for conducting carbon neutrality research. Existing
studies have shown that lidar is one of the most effective ways to estimate forests’ AGB by
obtaining forest vertical structure and ground elevation information [6–8].

Lidar data from airborne platforms have been widely used to estimate forest structure
parameters at stand or regional scales, such as Goddard’s Lidar, Hyperspectral and Thermal
(G-LiHT) and the Land, Vegetation, and Ice Sensor (LVIS). The G-LiHT project was led
by the National Aeronautics and Space Administration (NASA) to support their scientific
research on satellite observation verification and calibration [9], such as validating the
Ice Cloud and Land Elevation Satellite (ICESat-2) satellite-borne lidar observations over
forest ecosystems [10]. G-LiHT data have also been used to map forest vertical structure,
AGB, and carbon storage [11–13]. The LVIS is another widely used airborne lidar with
the advantage of providing low-cost observational data for NASA-related researchers and
scientific missions [14]. For example, LVIS lidar data have been successfully applied to tree
height and AGB estimation [15–17] and satellite observation verification [18].

Spaceborne lidar systems have been proven to have the potential to extend lidar
observations on unprecedented scales, from regional to continental and global extents. The
Geoscience Laser Altimeter System (GLAS) aboard the ICESat was the first spaceborne
lidar system and was successfully applied to global canopy height mapping [19,20] and
national-scale biomass mapping [21,22]. However, due to equipment failure, ICESat GLAS
ceased operation in 2009. ICESat-2/ATLAS, the successor to ICESat GLAS, was launched
in September 2018 equipped with a newly designed photon-counting lidar sensor (ATLAS).
Although ICESat-2 observations have been applied to map forest vertical structure param-
eters [23,24], studies have shown that the ATLAS sensor is extremely sensitive to noise,
which in turn leads to an increase in uncertainty [25].

Although ICESat and ICESat-2 provide means for measuring forest structure parame-
ters on a global scale, they were not originally designed for forest observation; thus, they
often suffer from problems such as relatively low spatial resolution and susceptibility to
noise interference. The Global Ecosystem Dynamics Investigation (GEDI) onboard the inter-
national space station (ISS) is a new spaceborne lidar system designed for forest observation.
The inventor claims that GEDI can provide high-quality measurements of forest vertical
structure with a spatial resolution of ~25 m at footprint level, especially in temperate and
tropical forests [26]. Researchers have started using available GEDI data for forest studies,
including canopy height mapping [27], AGB estimation [28–30], fuel load mapping [31],
and vertical leaf area index profile mapping [32].

GEDI provides an opportunity to improve the accuracy of multiple forest structure
parameters globally, such as AGB. However, using GEDI data to derive accurate forest
AGB requires a comprehensive understanding of GEDI’s measurement performance, such
as percentile height and ground elevation. Percentile height—which is the canopy vertical
position extracted from the integrated received waveform energy—is a description of
the forest vertical structure; studies have documented that it is sensitive to variations in
biomass [33]. Ground elevation extracted from the lidar received waveform is another
important variable that can determine the accuracy of forest biomass [34]. Furthermore,
the geolocation error of GEDI should be figured out. As described in the official GEDI
documentation, the geolocation information released by the GEDI product has an error
of about 9 m [35]; this uncertainty factor will increase the uncertainty of the high-level
products, such as biomass, particularly over heterogeneous canopies.

As the new generation of spaceborne lidar, GEDI was specially designed for observing
forest dynamics; therefore, it should be a good choice for biomass estimation. The overall
goal of this study was to evaluate the information content of GEDI for forest AGB estimation
by using G-LiHT discrete lidar data, LVIS full-waveform lidar data, and SRTM data in
low and mid-latitudes of North America. Our study areas covered the forest structure
characteristics of tropical and temperate regions. Specifically, we (i) evaluated the ground
elevation from GEDI with that derived from G-LiHT, LVIS, and SRTM data; (ii) evaluated
GEDI typical percentile height metrics (25th, 50th, 75th, and 100th percentile of relative



Forests 2022, 13, 1686 3 of 19

heights: RH25, RH50, RH75, and RH100) based on airborne lidar observations; (iii) assessed
the geolocation error of the GEDI footprint centroid by comparing the profiles of energy
measured by GEDI and G-LiHT; and (iv) used the Random Forests (RF) machine learning
method to evaluate the ability of GEDI to estimate forest AGB determined by forest vertical
structure and ground elevation.

2. Materials
2.1. Study Area

Our study area included three sites in the United States (US) and Mexico. Site a was
located in Quintana Roo, Mexico (Figure 1a) where the terrain is relatively gentle, with an
altitude of 38–196 m; the forest type is dominated by tropical forests, including evergreen
and deciduous forests; and the canopy height ranges between 10 and 35 m. Site b was
located in New Hampshire, US (Figure 1b) where the altitude ranges from 90 to 280 m;
the land cover is homogeneous, mainly coniferous forests with heights varying from 15 to
35 m. Site c was located in New Jersey, US (Figure 1c) where the terrain is relatively flat
with an average elevation of about 200 m; forest resources are quite rich; and the forest
type is mostly deciduous. Due to the rich forest resources, site c has become a widely used
research site for biomass estimation [36].
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Figure 1. GEDI footprints at three sites. (a) Site a was located in Quintana Roo, Mexico; the base
map of this site comprises the elevation information from SRTM data. (b) Site b was located in New
Jersey, US; the base map of this site comprises the elevation information provided by airborne lidar
observations. (c) Site c was located in New Hampshire, US; the base map of this site is a biomass map
derived from airborne lidar observations.

2.2. GEDI Data

GEDI was successfully launched at the end of 2018 and mounted on the ISS, and it
began acquiring and processing science data in April 2019 [26]. Based on the collected ~25 m
spatial resolution GEDI full-waveform lidar data, several products have been produced
and released, including footprints and gridded data. These products were divided into four
different levels depending on the degree of data processing: level 1: raw waveform data
and geographic location information; level 2: footprint-level canopy height and percentile
heights; level 3: grid forest structure parameters; and level 4: biomass products. The
GEDI level 1 data product (i.e., L1) was further developed into two separate products:
level 1A (L1A) and level 1B (L1B). They all include the raw waveform and geolocation
information; the difference between them is that the L1A data product contains fundamental
instrument engineering and housekeeping data. L1B was used in this study (Table 1).
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Furthermore, the L1B product includes the quality flag parameter to assist the user in
performing quality filtering—we removed GEDI shots flagged as unsuitable for measuring
the canopy structure, i.e., the “stale_return_flag” was not equal to 1, and the “degrade”
was less than 1. We used GEDI data obtained on days 112, 165, and 191 in 2019, and the
local particle IDs for these data were as follows:

(1) GEDI01_B_2019112201147_O02034_T01337_02_003_01
(2) GEDI01_B_2019165230622_O02859_T04183_02_003_01
(3) GEDI01_B_2019191095142_O03254_T00065_02_003_01

Table 1. Key information extracted from GEDI product used in this study.

Products Attributes Record Name in GEDI File

L1B

Unique shot identifier shot_number
Latitude latitude_bin0

Longitude longitude_bin0
Number of sample intervals of received waveform rx_sample_count

Starting address of received waveform rx_sample_start_index
Record file of received waveform rxwaveform

Height of start of received waveform, relative to WGS-84 ellipsoid
(ellipsoidal height) elevation_bin0

Quality level—indicates that a “stale” cue point from the coarse search
algorithm is being used stale_return_flag

Quality level—greater than zero if shot occurs during a degrade period,
zero otherwise degrade

Starting address of transmitted waveform tx_sample_start_index
Number of sample intervals of transmitted waveform tx_sample_count

Starting address of transmitted waveform txwaveform

2.3. LVIS Data

We used airborne LVIS full-waveform lidar data as the reference to evaluate the
performance of GEDI observations in estimating percentile height metrics and ground
elevation. LVIS is an imaging laser altimeter system that uses a 1064 nm wavelength laser
and three detectors to detect the ground surface topography and 3D structure [14]. In
May–June 2019, NASA used the LVIS equipment to conduct an observation mission in the
southeastern United States and Central America; the purpose was to provide calibration
and validation for GEDI. We used the LVIS data collected in Central America from the
above mission to conduct our research; the nominal footprint diameter was about 25 m,
and the acquisition date was 14 June 2019.

2.4. G-LiHT Data

G-LiHT data were used to evaluate the GEDI performance in estimating percentile
height metrics, ground elevation, and GEDI geolocation error. G-LiHT collects the scanning
lidar data with the Rigel VQ-480 airborne laser scanning instrument. At a standard working
height of 335 m, the G-LiHT ranging accuracy can reach 25 mm and the ground resolution
is 0.1 m [9]. Here, we used the G-LiHT 3D-derived point cloud data collected in New
Hampshire, USA on 14 June 2017.

2.5. SRTM Data

Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global elevation data were
used as other reference data to analyze the accuracy of GEDI in detecting ground elevation
information. The SRTM 1 Arc-Second Global elevation data are the processing result of
C-band InSAR observations, with a spatial resolution of 30 m [37]. Regarding vegetation-
free areas, the radar phase center should correspond to the ground surface. In vegetated
landscapes, such as forests, the phase center is usually located within the canopy [38]. Since
the elevation from SRTM data is referenced to the Earth Gravitational Model (EGM 96)
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geoid, it is the orthometric height. To make sure SRTM elevation had the same reference
as GEDI elevation, we used the MATLAB 2021a (Math Works) egm96 geoid function to
convert it to ellipsoidal height.

2.6. GlobeLand30 Land Cover Product

We used the 2020 version of GlobeLand30 land cover product to identify and exclude
non-forest-covered GEDI footprints. GlobeLand30 is a source of high-spatial-resolution
global land cover data developed by the National Geomatics Center of China (NGCC)
with a spatial resolution of 30 m; it is derived from Landsat, Chinese HJ-1, and GF-1
images [39]. The evaluation of GlobeLand30 V2020 led by the Aerospace Information
Innovation Institute of the Chinese Academy of Sciences showed that the overall accuracy
of the 2020 version reached 85.72%, and the kappa coefficient was 0.82 [40].

2.7. Carbon Monitoring System

To assess the ability of GEDI on estimating biomass, we introduced spatially contin-
uous biomass data. This biomass data were provided by the NASA Carbon Monitoring
System (CMS) program, estimated by using leaf-off lidar data and gridded by a spatial
resolution of 30 m [41]. In terms of the accuracy of this biomass data, the ground validation
results showed that the root mean square error (RMSE) was 89.3 Mg/ha, and the validation
based on the US Forest Inventory data showed that this product could achieve an accuracy
of RMSE = 58.2 Mg/ha [41]. The time range of this biomass data corresponds to the period
from 2004 to 2014, and we selected the products of 2014 to conduct our research.

3. Methods
3.1. GEDI and LVIS Data Processing

The ground position is one of the key factors to accurately estimate biomass from full-
waveform lidar data. Here, the ground position was identified from full-waveform lidar
data based on a Gaussian decomposition method. The processing steps mainly included
Gaussian filtering, Gaussian decomposition, and the identification of the ground position
(Figure 2). Based on previous research conclusions [42], we took the peak position of the
last Gaussian decomposition result as the ground position.
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Identifying noise thresholds is key for waveform lidar data analyses in order to
determine the effective waveform range. It is usually calculated separately for the start and
end of the waveform because generally the noise level is lower at the start of the signal
than at the end [43]. The equation for calculating noise threshold (nt) is as follows:

nt = Mean + n× Std (1)

where Mean and Std are the mean and standard deviation of the waveform noise; and n is
an empirical value. For the start of the noise threshold, Mean and Std were calculated based
on the first 50 bins of the waveform; and for the end they were calculated based on the last
50 bins; n was set equal to 4 based on previous research [44].

Based on the waveform noise thresholds, the effective waveform was located. We
then used the effective waveform to calculate the 25th, 50th, 75th, and 100th percentile
heights (RH25, RH50, RH75, and RH100), as shown in Figure 2. First, the total waveform
energy was calculated by summing the waveform energy from the beginning to the end of
the signal. Afterward, the RH25, RH50, RH75, and RH100 were calculated by comparing
the corresponding accumulated percentile energy with total energy. All these percentile
heights refer to the ground position.

3.2. G-LiHT Lidar Data Processing

The accuracy of measured forest vertical structure is a critical factor that determines the
accuracy of biomass estimation. To evaluate the performance of GEDI on the measurement
of forest vertical structure, we introduced G-LiHT airborne discrete point cloud data;
however, the data type was not consistent between the two. To achieve comparability
between G-LiHT point cloud data and GEDI full-waveform data, we took a strategy to
convert the G-LiHT point cloud data into full-waveform data. Details of our strategy are
as follows.

Measurements of full-waveform lidar depend on the characteristics of the instrument,
such as the intensity of laser emission energy, the shape of the emitted laser pulse, and
the resolution of the receiver. The GEDI lidar receives the emitted Gaussian pulse to
achieve target observation, with a time resolution of 1 ns. Therefore, the energy distribution
of the GEDI waveform in the horizontal and vertical directions is satisfied by Gaussian
distribution, as shown in Figure 3. In the horizontal distribution, the energy distribution
on the ground footprint can be approximately expressed as:

Wh(x, y) = exp
{
−
[
(x− x0)

2 + (y− y0)
2
]
/2σ2

}
(2)

where (x0, y0) is the centroid point of the footprint, and σ is the width of the footprint (σ
is related to footprint radius by r = 2σ). In terms of the vertical distribution, the energy
distribution is usually determined by the upward reflected energy intensity of the basic
observed element; here, we used the reflection intensity information of the point cloud data
to represent this item.

A waveform can be simulated from point cloud data by convoluting the horizontal
and vertical energy distribution weighting function [45]. In the simulation process, we
used an effective field of view (FOV) 126 m in diameter, which was determined by the
orbital height and the FOV of the GEDI (diameter = 2 × H × tan(FOV/2)). Overall, given
any airborne lidar laser echoes (xi, yi, zi), the simulated waveform can be expressed as:

WV(z) =

[
∑
i∈U

Ii ×Wh(xi,yi)

]
× Int(z) (3)

U =

{
i :
√
(xi − x0)

2 + (yi − y0)
2 ≤ 126, |zi − z| ≤ ∆h

2

}
(4)
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where ∆h is the waveform height interval—it was set to 0.15 m, consistent with GEDI
observations; U is the collection of airborne lidar points that can be seen by the GEDI
telescope; and i is a weighting parameter that represents the attributes of the ith point,
which is determined by partial hits. All points can be weighted equally (i = 1) when
ignoring partial hits. Previous studies have documented that partial hits can be ignored
when the footprint radius of point cloud data is small enough [34,46]. The footprint radius
of G-LiHT airborne lidar data is around 0.1 m; thus, we could reasonably assume that
partial reflections were almost non-existent in our application scenarios.

Forests 2022, 13, x FOR PEER REVIEW 7 of 19 
 

 

used an effective field of view (FOV) 126 m in diameter, which was determined by the 
orbital height and the FOV of the GEDI (diameter = 2 × H × tan(FOV/2)). Overall, given 
any airborne lidar laser echoes (xi, yi, zi), the simulated waveform can be expressed as: 

( ) ( ) ( ),i h i i
i U

WV z I W x y Int z
∈

× 
 

×=

  (3)

( ) ( )2 2
0 0: 126,

2i i i
hU i x x y y z z Δ = − + − ≤ − ≤ 

   
(4)

where Δh is the waveform height interval—it was set to 0.15 m, consistent with GEDI 
observations; U is the collection of airborne lidar points that can be seen by the GEDI 
telescope; and i is a weighting parameter that represents the attributes of the ith point, 
which is determined by partial hits. All points can be weighted equally (i = 1) when ignor-
ing partial hits. Previous studies have documented that partial hits can be ignored when 
the footprint radius of point cloud data is small enough [34,46]. The footprint radius of G-
LiHT airborne lidar data is around 0.1 m; thus, we could reasonably assume that partial 
reflections were almost non-existent in our application scenarios. 

Following the above steps, we obtained a simulated waveform to represent the ver-
tical profile of the airborne lidar points frequency within the GEDI footprint. Although 
the simulated waveform cannot completely represent the real GEDI lidar receiving wave-
form, it can effectively describe the vertical distribution indicated by reflecting surfaces in 
the forest canopy on a large footprint scale. The true waveform represents the spatial dis-
tribution of the laser beam intensity along the entire beam path [45]. Therefore, our simu-
lated waveform was expected to be extremely similar to the true GEDI waveform. The 
simulated waveform was used to conduct the evaluation with the GEDI-observed wave-
form. 

 
Figure 3. Example of simulating the waveform from G-LiHT airborne discrete lidar data. (a) Distri-
bution of airborne lidar points within a GEDI footprint. (b) Distribution of the Gaussian pulse en-
ergy, which was used as the weighting term for simulating the waveform. (c) Simulated waveform 
based on distribution of the Gaussian pulse energy, as compared to the observed GEDI waveform. 

Figure 3. Example of simulating the waveform from G-LiHT airborne discrete lidar data. (a) Distri-
bution of airborne lidar points within a GEDI footprint. (b) Distribution of the Gaussian pulse energy,
which was used as the weighting term for simulating the waveform. (c) Simulated waveform based
on distribution of the Gaussian pulse energy, as compared to the observed GEDI waveform.

Following the above steps, we obtained a simulated waveform to represent the vertical
profile of the airborne lidar points frequency within the GEDI footprint. Although the
simulated waveform cannot completely represent the real GEDI lidar receiving waveform, it
can effectively describe the vertical distribution indicated by reflecting surfaces in the forest
canopy on a large footprint scale. The true waveform represents the spatial distribution
of the laser beam intensity along the entire beam path [45]. Therefore, our simulated
waveform was expected to be extremely similar to the true GEDI waveform. The simulated
waveform was used to conduct the evaluation with the GEDI-observed waveform.

3.3. Assessing the Uncertainty of GEDI Geolocation Information

The GEDI science team states that the geolocation data provided by the GEDI product
are subject to random errors, with an error of about ±9 m [35]. This uncertainty factor will
affect the effectiveness of the GEDI observation in biomass estimation to a certain extent.
In this study, we adopted a strategy to quantitatively evaluate GEDI geolocation errors to
address this uncertainty by referring to previous research [34]. Our strategy assumed that
the geolocation information from the airborne lidar was correct since the georeferencing
errors of the airborne lidar can be negligible compared to those of GEDI. The strategy
mainly included two steps (Figure 4): step one was to shift the center of the footprint along
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the x-axis and y-axis in a (−9, 9)-m window with an interval of 1 m; step two was to take
the correlation between the GEDI waveform and the simulated waveform as an evaluation
criterion to locate the potentially correct geolocation of the GEDI footprint centroid.
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shift-searching procedure. Red point is nominal location obtained from GEDI product; cyan point is
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waveform of this point has the best correlation with GEDI waveform.

3.4. Estimating AGB Using Random Forests

We used the Random Forests machine learning approach to model AGB and assess
the ability of GEDI-acquired forest vertical structure and ground elevation metrics for
estimating AGB across our study sites. We selected the Random Forests machine learning
method as many studies have shown this model’s good performance in biomass predic-
tion [47,48]. In the training process of the Random Forests, we used CMS AGB data as the
objective variable, which were extracted based on the pixel’s value at the center position.
Four typical percentile heights (RH25, RH50, RH75, and RH100) from GEDI observation
were used as input for biomass estimation, all calculated referring to the ground position.
Furthermore, we used the 10-fold cross-validation strategy for Random Forests training,
in which we randomly divided the collected data into ten equal-sized subsamples. Of the
ten subsamples, one was retained as the validation data, and the remaining subsamples
were used as training data. We also used the Gini index to assess the importance of each
percentile height of GEDI to the predicted biomass. The Gini index, which is widely used to
analyze the sensitivity of the input variables in the Random Forests model to the output [49],
is an indicator of node purity; the smaller the Gini index, the higher the purity of the node.
Higher node purity usually means the corresponding variable is sensitive to the output.
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3.5. Accuracy Assessment

The basis for assessing the accuracy of GEDI observations in forest vertical structure,
ground elevation, and biomass consisted of three statistical items: mean bias, the coefficient
of determination (R2), and the root mean square error (RMSE), which are shown as follows:

R2 =

n
∑

i=1

(
Vi −V

)2 −
n
∑

i=1

(
Vi −Vi

)2

n
∑
1

(
Vi −V

)2
(5)

RMSE =

√√√√√ n
∑

i=1

(
Vi −Vi

)2

n
(6)

Bias =

n
∑
i

(
Vi −Vi

)
n

(7)

where Vi is the result extracted from the GEDI observation, Vi is the reference value, V is the
average result of reference values, and n is the amount of data involved in the comparison.

4. Results
4.1. Ground Elevation Assessment

We used airborne lidar (LVIS and G-LiHT) data and SRTM data to evaluate the ability
of GEDI to measure the ground elevation across our study sites (Figure 5). The ground ele-
vation information provided by GEDI and G-LiHT was strongly correlated, with R2 = 0.91,
RMSE = 5.68 m, and bias = −1.74 m (Figure 5a). The GEDI- and LVIS-lidar-derived
ground information also yielded a strong correlation, with R2 = 0.95, RMSE = 3.06 m, and
bias = 1.16 m (Figure 5b). Overall, the consistency of the comparison results shows the
stable performance of the GEDI lidar system. However, it can be noted that the comparison
data are distributed on both sides of the 1:1 line (Figure 5a,b), while there are some obvi-
ously inconsistent points. These inconsistent points may mostly be caused by inaccurate
recognition of the ground position in the data preprocessing step (Figure 5a).

Comparison of the GEDI ground elevation with SRTM data also showed a strong
correlation, with R2 = 0.94 (Figure 6a). However, there was an overall bias of 10.11 m,
indicating that the elevation from SRTM data was higher than that from GEDI. We also
used the elevation of the canopy top position from the GEDI product and compared it
with the SRTM elevation; there was an overall bias of −6.53 m (Figure 6b). Combining the
two comparison results (Figure 6), we can determine that the elevation provided by SRTM
data is located at approximately 39% of the distance from the canopy top to the ground,
on average.
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4.2. Percentile Height Assessment

Percentile heights of the full-waveform lidar data indicate the density of forest canopy
elements at a certain height in the forest area. The combination of different percentile
heights can describe the vertical distribution of canopy elements, such as RH25, RH50,
RH75, and RH100; these kinds of canopy vertical height metrics are key factors in deter-
mining the forest biomass. In this section, we used the RH25, RH50, RH75, and RH100
percentile heights obtained from G-LiHT and LVIS airborne lidar data as the reference to
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assess the values obtained by GEDI. The evaluation result can provide a guideline for using
GEDI observation to estimate forest biomass.

4.2.1. Comparisons of Percentile Heights between GEDI and G-LiHT

A moderate correlation of percentile heights was found between GEDI and G-LiHT
(Figure 7). Percentile height RH100 has the relatively best correlation, with R2 = 0.60,
RMSE = 3.09 m, and bias = −0.02 m. Percentile height RH25 has the relatively worst corre-
lation, with R2 = 0.46, RMSE = 2.55 m, and bias = −0.03 m. The scatter plots in Figure 7
show that percentile heights from these two data sources are not consistent. For instance,
data points are loosely distributed on both sides of the 1:1 line. It can be observed how
the spread of the points around the trend line increases as the height decreases. This
phenomenon resulted from the occlusion of mid- and understory vegetation by upper veg-
etation, preventing their being appropriately captured by the lidar sensors, particularly for
the discrete-return sensor from which the pseudo-waveforms were simulated. Furthermore,
RH25 yielded negative values in some cases, mostly due to the lidar work principles. The
GEDI lidar emitted a Gaussian waveform, so there will be a weakening process after the
emitted energy touches the ground. In other words, waveform energy still exists below the
ground position (i.e., the last Gaussian peak). We calculated the percentile height metrics by
starting the integration from the end position of the energy, so 25% of the integrated energy
is usually lower than the ground position in the case of shrubland or young regenerating
forests, and there will be a negative result.
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Figure 7. Comparisons of four typical percentile heights (RH25, RH50, RH75, and RH100) provided
by GEDI and G-LiHT lidar observations: graphs in row (A) use data without the geolocation error
revised; graphs in row (B) use data that have undergone geolocation revision.

The GEDI product instructions documented random errors of about 9 m in the geoloca-
tion information provided by the products. Here, we used a shifting strategy (as described
in Section 3.3) to identify potential geolocation errors. The potential geolocation error of
GEDI was estimated to be 6.53 m, and the specific information on the shifting process is
shown in Figure 8a. Furthermore, we provide an example to show how the waveform
changed when undergoing the shifting process (Figure 8b,c)—which is obvious considering
that the geolocation error can significantly improve the correlation between GEDI and
airborne lidar observation. We recalculated the percentile heights of the simulated airborne
lidar waveform with explicit consideration of the geolocation error, which in turn were
used to compare with GEDI. The comparison results showed an increased correlation;
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for example, the correlation of RH50 increased from 0.57 to 0.82 (Figure 7). The RMSE
of four different percentile heights yielded less than 2 m, indicating a strong consistency
between GEDI and G-LiHT observation. The above results illustrate the impact of ge-
olocation errors on GEDI observations, which may increase the uncertainty in applying
GEDI, such as modeling forest biomass. In addition, it should be noted that these estimated
potential geolocation errors may not represent true errors due to some specific factors, such
as the similarity in land cover that may cause a failure in the evaluation result based on
our strategy.
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Figure 8. Diagram of shift-searching process to estimate the geolocation error of the GEDI: (a) is the
potential geolocation error of the used GEDI data in site b; (b) is the comparison of the GEDI received
waveform and simulated waveform derived from G-LiHT data; here, we used the footprint centroid
of GEDI without the geolocation error revised; and (c) is also the comparison of the waveform
between GEDI and G-LiHT; it should be noted that here the used footprint centroid of GEDI has the
geolocation error revised, the red point shown in (a) is the offset of the footprint centroid.

4.2.2. Comparisons of Percentile Heights between GEDI and LVIS

LVIS full-waveform lidar data were also used as a reference to measure the ability of
GEDI to obtain forest vertical structure. Figure 9a presents comparison results of percentile
heights from LVIS and GEDI, showing a moderate correlation between the two (RH25:
R2 = 0.42; RH50: R2 = 0.57; RH75: R2 = 0.46; RH100: R2 = 0.44). In theory, they should have
a better relationship than the results show for the following reasons: firstly, the footprint
size of the collected LVIS is almost the same as that of GEDI; secondly, the lidar sensors
of LVIS and GEDI work similarly [46]; thirdly, we applied the same data preprocessing
algorithm to them. However, the comparison result is not as good as expected, mostly
because of the geolocation mismatch of the observed footprints. At our comparison site,
almost no footprints between GEDI and LVIS completely overlapped. Figure 9b presents
the distance between the footprint centroids of the LVIS and GEDI data. The maximum
distance between the two centroids is about 15 m, which is close to the radius of GEDI. In
other words, almost half the objects observed by LVIS and GEDI do not overlap.
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Figure 9. (a) Comparison of four typical percentile heights (RH25, RH50, RH75, and RH100) derived
from GEDI and LVIS lidar data; (b) distance distribution of footprint centroids between GEDI and
LVIS; (c) set of comparison cases used to explain the effect of inconsistency of observations on
comparison result.

We selected two typical sites to further explain the effect of the inconsistency of
observations on our comparison results (Figure 9c). As the LVIS and GEDI observations
showed an almost coincident footprint centroid at site a, the received lidar waveforms
were the same for both (Figure 9c). Therefore, percentile height metrics derived from site a
showed good agreement (Figure 9a). For site b, however, the footprint centroids between
LVIS and GEDI were not coincident, with a 14.85 m distance between them (Figure 9c);
the received lidar waveform and percentile height metrics from site b showed a relatively
significant bias (Figure 9a). The above evidence can explain the impact of geolocation
differences between GEDI and LVIS on our validation analysis to some extent.

Although the significance of using LVIS data to conduct the evaluation analysis for
GEDI has been reduced to a certain extent due to the inconsistent geolocation between LVIS
and GEDI observation, our comparison can also reflect the reliability of GEDI observation.
There are two reasons that can support our view. First, although the correlation between
LVIS and GEDI is not very strong, the RMSE and bias are very small: the maximum RMSE
and bias are 1.94 m and −0.58 m, respectively; considering that the land cover in our
study is homogeneous, this result can illustrate the consistency between GEDI and LVIS
observation. Second, our example shows that sites with consistent geolocation between
GEDI and LVIS show good agreement on forest structure observation.
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4.3. Aboveground Biomass Estimation

We used the Random Forest method to explore the role and performance of GEDI
observations on biomass estimates; the ground elevation and percentile heights verification
analysis in Sections 4.1 and 4.2 further motivated this analysis. Figure 10a illustrates the
biomass estimated based on four typical percentile heights (i.e., RH25, RH50, RH75, and
RH100); the result showed a good agreement between predicted and reference biomass,
with R2 = 0.82, RMSE = 19.14 Mg/ha, and bias = 0.22 Mg/ha.
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The advantage of Random Forests is that it can evaluate the importance of input
variables to the output result. Figure 10b shows the importance of each percentile height
calculated from the node purity of the Random Forests in predicting biomass. Four typical
percentile heights all played a crucial role in biomass estimates, of which RH100 was
the variable most sensitive to the variation in biomass. Table 2 shows the ability of each
percentile height to estimate AGB, which was calculated based on the linear regression
method. The t-test was used to test if the regression equations for the biomass estimates
were statistically significant—the p-value of 0.00 was less than the default significance level
of 0.05, indicating a significant linear regression relationship between the response biomass
and the predictor variables. Results showed that the RH100 was able to explain 81% of the
variance associated with the reference biomass; the RH25 predicted the relatively worst
biomass, which was able to explain 35% of the variance in biomass.

It can be noted that biomass estimates in the low–medium part are not as good as
those in the high part (Figure 10a). The main reason for the inaccurate prediction of
low and medium biomass is due to the difference in observation times between airborne
lidar and GEDI observations. More specifically, the reference biomass data we used was
from the airborne lidar observation in 2014, while the GEDI lidar data was obtained in
2019. Biomass in the range of a low-to-medium value usually corresponds to young and
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middle-aged forests, and biomass with a high value corresponds to mature forests. Young
and middle-aged forests tend to grow vigorously, while mature forests grow slowly [50].
Therefore, there would be a significant increase in tree height for young and middle-aged
forests from 2014 to 2019; however, the tree height variety in mature forests might be
minimal. This tree growth pattern is consistent with our evaluation results for biomass.
Furthermore, regression results based on RH100 for biomass showed that the biomass
was underestimated when the tree height was less than 20 m (Figure 10c). This result can
further explain the rationality of our conjecture. Although the biomass maps we used
are inconsistent with the GEDI observations in terms of time, they are coincident and
matched in space and scale. Furthermore, using this kind of biomass map as the “true
value” can avoid representative problems with ground-based reference data, i.e., whether
the ground-observed result can represent the footprint of GEDI.

Table 2. The regression coefficients and root mean square error: AGB = a ∗ GEDI-derived RH + b,
where a is the slope and b is the intercept of the linear model.

GEDI-Derived RH a b R2 t-Test

RH25 4.42 97.03 0.35 0.00
RH50 4.81 59.95 0.56 0.00
RH75 5.24 29.77 0.67 0.00

RH100 6.52 −45.73 0.81 0.00

5. Discussion
5.1. Limitations of the Current Lidar Waveform Processing Method for Ground Detection

In the step of full-waveform lidar data processing, ground detection is one of the
most challenging parts, especially for the observations over a complex canopy structure or
steep terrain areas. A complex canopy structure leads to the received waveform containing
multi-peaks, and the steep slope leads to the waveform near the ground being extended;
these two factors will make higher peaks above the ground position in the waveform
easily mistaken for the ground. The above situation was the main reason for the error in
the ground elevation extracted from the full-waveform lidar data, such as GEDI, which
also appeared in our study. However, there were almost no suitable automatic detection
algorithms for a complex waveform that could accurately identify the ground position.
Although some researchers have used a manual extraction strategy to identify the ground
position from the waveform data to reduce the possible errors of the automatic detection
algorithm [34], this strategy was not suitable to apply across the large spatial domain.
Furthermore, the manual extraction strategy is susceptible to interference from subjective
factors in actual operation. Overall, efforts are still required to extract accurate ground
position information from full-waveform lidar data.

5.2. Difference in Ground Elevation between SRTM and GEDI

In the comparison between SRTM and GEDI ground elevation, there is an inconsistent
result in that elevation information provided by SRTM data is located within the canopy
from approximately 39% of the distance from the canopy top to the ground on average. This
difference may result from the different characteristics of lidar and InSAR. SRTM elevation
is derived from the C-band InSAR observation, and thus the detected so-called ground
position is the scattering center. In forested areas, the scattering center is usually located
within the canopy, not the ground, due to the limited penetration ability of InSAR [51–53].
However, the lidar has a better penetration ability, which can detect the ground position in
forest areas [54,55]. A previous study documented that there was a 40% overall bias for
comparison between SRTM data and lidar-detected ground elevation in forest areas [56],
which is close to the experimental results of this study. Overall, GEDI has better perfor-
mance in measuring ground elevation than InSAR equipment, especially in dense forest
areas. Accordingly, GEDI is expected to be an effective means to revise the error of the
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ground elevation in dense forest areas from the InSAR observation, which can further help
improve the accuracy of forest biomass estimation.

5.3. Role of Lidar Emitted Energy for Canopy Detection

Some inconsistent points appeared in the comparison between LVIS and GEDI in
terms of percentile height metrics. Although the geolocation error of GEDI is one reason
for this inconsistency, as described in the Section 4, the difference in the emitted power of
the lidar equipment also needs to be mentioned. The emitted power of LVIS and GEDI is
not the same in terms of not only GEDI’s coverage lasers but also its full-power lasers [57].
The difference in the emitted power of lidar will lead to a different capability to reach the
bottom of the canopy, and this will have a certain effect on the obtained percentile height
metrics. How the emitted power of lidar affects the derived height metrics, which in turn
affect biomass estimation, is a topic for investigation in the next step of research.

5.4. Selection of Percentile Heights in Biomass Prediction

Previous studies have documented that percentile height RH50, also known as the
height of mean energy (HOME) of the waveform, was the most sensitive percentile height
variable to the variation in biomass [58]. Our experimental results differ from previous
studies—RH100 is the most sensitive percentile height to the biomass variation. This is
primarily because our used CMS biomass map was derived from leaf-off lidar data. In the
leaf-off state, the lidar mainly obtains information from thicker branches, which means the
main trunk is the main object detected by the lidar. For this reason, the biomass estimated
based on this kind of point cloud data should be closely related to the tree height, which
explains why RH100 is the most sensitive variable to the variation in biomass in this study.
From the above analysis and evidence, we can reasonably consider that the RH100 height
should be more efficient than the RH50 height in leaf-off forest biomass prediction. How-
ever, it should be noted that the above conjecture may still require additional conditions
to hold, such as the distribution of canopy heights in the sample plot. Therefore, clear
conclusions about the performance of RH100 for leaf-off forest biomass prediction need to
be further explored in subsequent studies.

6. Conclusions

This study investigated the ability of GEDI-derived forest structure and ground eleva-
tion observations for estimating AGB in temperate and tropical forest ecosystems across
low-to-middle latitudes of North America. An evaluation was conducted by comparing
against the NASA LVIS-, G-LiHT-, and SRTM-derived products. In terms of ground ele-
vation, the elevation obtained from GEDI showed good consistency with both LVIS and
G-LiHT lidar observation. However, the SRTM elevation provided by GEDI observation
was located at approximately 39% of the distance from the canopy top to the ground, on
average, which occurs in dense forest conditions. For forest vertical structure, the typical
percentile heights extracted from GEDI were highly correlated with airborne lidar obser-
vation, especially considering the geolocation error of GEDI. Using the evaluation results
of ground elevation and forest vertical structures as guidance, we estimated forest AGB
based on GEDI observations. Results showed that GEDI observations could effectively
capture biomass variations, for example, RH100 percentile height extracted from GEDI
could explain more than 80% of leaf-off forests’ biomass variations.

GEDI, the latest generation of Earth observation lidar equipment mounted on the ISS,
can provide vertical observations for forests between 50◦ N and 50◦ S on a global scale.
Compared with previous full-waveform spaceborne lidar equipment, such as ICESat GLAS,
GEDI has higher spatial resolution, broader spatial coverage, and denser sampling in its
Earth observation capabilities—all this improved performance makes GEDI a good choice
for forest biomass estimation. A better understanding of GEDI characteristics is crucial in
applying GEDI observations, such as forest biomass estimation. In this study, we provide
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an example to evaluate the information content of GEDI observation, and the results can
serve to instruct the efficient use of GEDI observation to estimate forest biomass.
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