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Abstract: Forest-based destinations rely on quality forest landscapes as a critical resource, and
recently the use of psychophysiological techniques that monitor the electrophysiological responses
of the brain has gained research attention in forest landscape assessment. This study innovatively
employed a mobile EEG methodology to investigate 130 participants’ attentional changes as they
walked through the tourist tracks of a national park, and adopted a multi-method design triangulating
the findings of a psychometric experiment, self-report measures, and expert assessments of forest
landscapes. Results demonstrated a strong correlation between visitors’ attentional changes over time
and on different tourist tracks, based on test–retest and alternate-form reliability testing. Moreover,
the brain attention values showed some correspondence with the perceived visual quality of forest
landscapes as rated by experts, and the consistency between the EEG and expert approaches was
particularly evident in relation to landscapes of high and low aesthetic quality. Results provided
persuasive evidence for the use of mobile EEG devices as a supplementary or alternative measure
of visual quality assessment of forest landscape, and to inform landscape planning and experience
design in forest-based destinations.

Keywords: electroencephalograms (EEG); visual quality assessment; forest landscape; attention;
psychophysiological approach

1. Introduction

High-quality forest landscape plays a critical role in ecosystem service, and positively
influences human health and well-being. How to scientifically and objectively evaluate
forest landscape quality is not only a research hotspot of forest recreation, but also an im-
portant mission of forest resource management implemented by forestry authorities [1].
Forest-based destinations are usually evaluated on the basis of landscapes from the perspec-
tive of visual quality assessment, using approaches such as the expert method and public
perception-based method [2]. Such assessments allow destination planners and authorities
to better understand the status of forest resources, understand the dynamic changes of
forest landscapes, evaluate the effects of visual changes on resource management planning,
and propose appropriate management strategies for sustainable development [3]. One
challenge of visual quality assessment is to comprehensively capture relevant landscape
features. These not only include the biophysical features of a forest landscape, but the
subjective perceptions and aesthetic preferences of those who evaluate the landscape, which
must also be understood [4]. An essential requirement is a scientific, effective, and holistic
assessment method bridging physical aspects of forest landscape and social-psychological
dimensions [5].

Research on visual quality assessment of forest landscape has primarily taken four
theoretical approaches, namely expert, psychophysical, cognitive, and experiential [6],
resulting in the implementation of a substantial range of assessment methods in environ-
mental management practice [7–11]. With the development of technology and a multi-
disciplinary approach to research in the late 1960s, experts in the fields of psychology,
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aesthetics, geology, ecology, and landscape architecture began systematic research on visual
quality assessments of forest landscape, and both experimental and practical techniques
have greatly progressed [12]. Meanwhile, in response to demands for more scientific and
knowledge-based forest resources management, visual quality assessment research has
become more quantitative and more technical with the applications of psychophysiological
approaches [13]. Over the last half-century, visual quality assessments of forest landscapes
have been characterized by a theoretical and validity contest between the expert approach
and the psychophysical approach [14].

Electroencephalogram (EEG) is the principal neurophysiological technique used to
measure the electrical activity of the brain [15,16]. By assessing the brainwaves and bioelec-
tricity signals human brains constantly produce, researchers have analyzed respondents’
cognitive or affective processes in response to prepared stimuli. The frequency of these
spontaneous bioelectricity signals usually lies between 0.1 Hz and 30 Hz, and can be di-
vided into five spectral bands: delta (<4 Hz), theta (4–7 Hz), alpha (8–12 Hz), low beta
(13–15 Hz), midrange beta (16–20 Hz), and high beta (21–30 Hz) [17]. EEG is a relatively
inexpensive and non-invasive measurement. Therefore, it permits experiments with large
groups of nonclinical participants. Numerous studies have demonstrated the ability of
EEGs to detect emotional states, as well as the reliability and validity of its performance,
mainly in the field of consumer neuroscience, which combines neuroscience, psychol-
ogy, and economics [18–22]. The main goal of such research is to study how the brain
is physiologically affected by advertising and marketing strategies, and to evaluate the
effectiveness of these strategies [23]. Moreover, the study of landscape architecture pays
close attention to the interaction between psychology and the landscape environment [24],
and landscape attention has become an important evaluation index of psychological reac-
tion of the environment [25]. EEG technology can be used as a novel research method in
landscape design and environmental psychology [26]. By recording human observations of
the landscape environment and quantifying the visual attention and cognitive process of
brain activities, the subjective feeling of the evaluators can be objectively reflected based on
the brainwave index.

Recently, the EEG technique has been employed within the visual quality assessment
domain, with most assessments conducted by having respondents view environmental
scenes (e.g., photography, digital images, and virtual landscape) in a laboratory [27–30] or
museum setting [31–33]. Results suggest that individuals have more intensive emotional
responses when viewing images of premium landscapes than when looking at mediocre
or low-quality landscapes [34]. However, there has been an absence of research using the
EEG method to record and analyze emotional responses to the natural environment in
non-laboratory settings. To our knowledge, the only study was to utilize the EEG method
to investigate visitors’ emotional experiences in three types of outdoor environments (shop-
ping streets, green spaces, and residential areas), and identified “systematic differences of
brain values between the three areas”, consistent with restoration theory [35]. Therefore,
a reasonable assumption is that the variations in users’ EEG brain activities in an outdoor
setting, and having the influence of other factors controlled, are caused by differences in
the perceived visual quality of the landscape.

Unlike previous studies conducted in a laboratory setting, this study innovatively
introduces the mobile EEG technology into the research field of landscape quality assess-
ment. Based on real-time recognition of visitor attention, the objective of the study was to
verify the reliability and validity of cortical brain signals in a forest setting, and evaluate
the usability of mobile EEG technology for visual quality assessments of forest landscapes.
More specifically, the study attempts to develop an assessment method for data collection
and analysis of brain signals for future use of EEG technology in visual quality assessment.
Therefore, this study enriches the existing assessment system for forest landscape quality,
especially exploring a new application in psychophysical approaches. Moreover, findings
from this study also provide insights into the exploration, planning, and management of
forest resources.



Forests 2022, 13, 1668 3 of 15

Non-laboratory experiments are easily influenced by many external factors [36], so we
need to examine the repeatability and stability of the experimental results across several
design variants. Furthermore, the paper aims to investigate whether a correlation exists
between variations in users’ EEG brain activities and forest landscape quality. To achieve
these objectives, this study adopted a multi-method approach incorporating the EEG,
self-report, and expert assessment to address the following research questions:

(1) Is the EEG test adequately stable for measuring visitors’ attentional changes to forest
landscapes across time and space in specific outdoor settings?

(2) Does the EEG test of visitors’ attentional changes produce results consistent with
expert evaluations and visitors’ self-reports of the visual quality of forest landscapes?

(3) Do visitors’ attentional changes vary systematically with the visual quality of the
forest landscape?

2. Materials and Methods

This study adopted a multi-method design triangulating the findings of a psychometric
experiment, self-report measures, and expert assessments of corresponding landscapes.

2.1. EEG Method
2.1.1. Experimental Devices

This study used ten Neurosky MindWave Mobile Kits and ten smartphones of Sam-
sung GT-S6818 Galaxy Fame (all smartphones with bluetooth function are compatible with
the EEG device) for data collection. The Neurosky MindWave Mobile Kit is a popular
headset device for collecting and analyzing brainwave data. It is able to separately output
two custom values (attention and meditation). Due to the advantages of low cost, ease
of use (mobile, gel-free), and single-channel acquisition, the device has been employed in
many prior studies [37–39]. The data acquisition process of the MindWave EEG system is
shown in Figure 1.
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Figure 1. Data acquisition process of MindWave EEG headset.

The device acquires brain biological signals by using a single contact sensor on the
user’s forehead and transmits the raw signals to the ThinkGear™ chipset, which can filter
the noise mixed into the signals, as well as motion-induced interferences. The processed
signals are then calculated by the eSense™ algorithm to obtain the Attention eSense Meter
results of a user, reflective of the intensity of the user’s level of mental state. Values ranged
from 1 to 100, with lower scores representing low levels of attention (Table 1). Distractions,
wandering thoughts, lack of focus, or anxiety may lower attention meter levels. Finally,
these values are outputted into intelligent devices (e.g., computers and smartphones) using
Bluetooth technology.

Table 1. Category of Attention eSenseTM Meters.

Value (Level) Mental State

1–20 (Strongly lowered) Distraction, agitation, or abnormality
20–40 (Reduced) Low attention
40–60 (Neutral) Normal mental focus

60–80 (Slightly elevated) Heightened attention
80–100 (Elevated) Intense concentration
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2.1.2. Pre-Test

To measure the preparedness and performance of the devices before the large-scale
experiments, we conducted a preliminary test. The chosen test area was a 1 km hiking track
inside Hunan Tianjiling National Forest Park, China, with twelve scenic spots and dense
vegetation on both sides of the track. Four randomly selected tourists were recruited to
walk through the track, each wearing a set of devices. The four participants varied in age,
profession, and educational background. Two were first-time visitors and the other two
had been to the track previously. To identify the accurate arrival time at each of the twelve
scenic spots along the track, one researcher recorded the entire test process with a digital
video camera. An analysis of the experimental data identified some problems needing to
be addressed before the large-scale test (see Supplementary Materials). According to the
results of the pre-test, we adjusted our study area, participant recruitment criteria, and
experimental procedure.

2.1.3. Study Area

The study was conducted in the Zhangjiejie National Forest Park of China, a UNESCO
World Heritage Site, listed in 1990. The park is famous for its spectacular scenery and
important ecological functions, and is a popular tourist destination. Over four million
visitors travel to the park every year (http://lww.zjj.gov.cn/ (accessed on 2 May 2022)), of
which more than 95% are estimated to be tourists [40].

The selected experiment sites are located along the three main tourist tracks of Huang-
shizhai, Yuanjiajie, and Jinbianxi. These all have abundant forests, as well as biological
and geological landscapes within popular sightseeing regions of Zhangjiejie National For-
est Park. To reduce participants’ physical exertion, we chose only hilltop, streamside, or
flat tracks. Scenic spots consisted of 20 along the Huangshizhai track (labeled A1–A20),
18 along the Jinbianxi track (B1–B18), and 12 along the Yuanjiajie track (C1–C12) (Figure 2).
These scenic spots are regularly distributed alongside the tracks, most of which are key and
iconic attractions in the forest park, with different types of landscape including woodlands,
mountains, cliffs, wild animals, streams, sites, and ruins.
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2.1.4. Participants

Previous studies have demonstrated that landscape evaluators with different demo-
graphic characteristics had significant consistency in aesthetic attitudes and preferences,
although they had certain differences in the description and understanding of the land-
scape environment [41]. Since the purpose of this study did not focus on analyzing the

http://lww.zjj.gov.cn/
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cognitive differences of different groups, a single group of similar age and education level
was selected for evaluation. Participants consisted of 130 students (56 males and 74 females)
who each received a small incentive for participation. To eliminate the potential influence
of demographic and attitudinal characteristics (e.g., age, cultural background, life envi-
ronment, and physical condition; see Supplementary Materials) on the experiment results,
we recruited a homogeneous group of participants for the experiment. The participants
were college or university students aged between 17 and 25 years, who had never been to
Zhangjiajie National Forest Park and did not have any physical injuries or health issues at
the time.

2.1.5. Experimental Procedure

The experimental procedure comprised the following steps: (1) The participants put
on MindWave EEG equipment outside the experiment tracks and confirmed the connec-
tion with the smartphone. The device then began to record attention values indicative of
brainwaves. (2) The note-takers (two for each group) guided participants to the experi-
mental area, purposefully controlled the tour time, and recorded the exact arrival time at
each scenic spot. (3) The experimental data were exported from MindWave EEG to the
smartphone after the participants finished their tour.

2.1.6. Data Processing

Attention values were generated every second within the range of 1 to 100, with higher
values indicating higher attention. The total number of attention values recorded for each
participant in any one track varied between 2400 and 3600. To process the data, we first
imported the raw txt. data into the SPSS analysis software for reorganizing and testing data
reliability. The EEG data indicated that there was a significant and irregular fluctuation
during the first 20 s of recorded data from each scenic spot, possibly because the participants
needed some time to settle down before attending to the scenery. Moreover, over 95% of the
attention value of participants distinctly reduced after 50 s due to diminishing interest. For
the sake of brevity, we chose to analyze only attention values from the 20th to 50th second
of the arrival time in each spot for test–retest reliability. Participants’ average scores of
attention values between the 20th and 50th seconds were used in alternative-form reliability
and validity tests. The principle applied to data filtering was that the 30-second attention
values must be consecutive and not constant, even if the data outside the thirty-second
interval were incomplete.

2.2. Self-Report Assessment

At the conclusion of the track, all participants were asked to complete a questionnaire
to rate the visual quality of each of the scenic spots on the track on a 5-point semantic
scale (Excellent = 100, Good = 80, Average = 60, Poor = 40 and Very poor = 20). A total of
120 valid questionnaires were received, yielding a return rate of 92.3%.

2.3. Expert Assessment

For the expert assessment component, we invited 21 influential experts from a forestry
university and a variety of disciplines, such as forestry, tourism, geology, and biology, who
served on a voluntary basis. These experts were all familiar with the Zhangjiajie National
Forest Park and its various tracks. A total of 15 experts agreed to participate, and each
completed a questionnaire that recorded their scoring of the aesthetic values of the study
site on the basis of China’s national standard for classification, investigation, and evaluation
of landscapes. We applied the evaluation method of multi-factor index system to assess
the scenic spots in the questionnaire. According to the method, assessment factors fall into
three categories (value of resource attributes, the influence of resource, and added value),
with a total score of 100 for the first two categories, plus additional scores of 5 for the third.
However, several indicators such as suitable tourist days and added value are not relevant
to the present study since participants’ scores would not vary on these indicators given that
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all participants visited the same national park. Accordingly, we made a slight adjustment
to the assessment method (Table 2).

Table 2. Index System of Multi-factor Evaluation on Tourism Resources.

Factors Sub-Factors Weight

Value of resource Attributes
(0–85)

Usage value of sightseeing and recreation 0–30
Value of history, culture, science and art 0–25

Rarity and uniqueness 0–15
Scale, abundance and probability 0–10

Integrity 0–5

Influence of resource (0–15) Popularity and influence 0–15

3. Results

Reliability and validity tests help inform the degree to which evidence supports
measurements of scores resulting from the proposed uses of tests [42]. For reliability, we
used test–retest and alternate-form reliability tests. To validate the results of the EEG
method, we compared them with those of the self-reports and expert evaluations of the
natural landscapes of Zhangjiajie National Forest Park.

3.1. Reliability Testing

Test–retest reliability measures “the closeness of the agreement between the results
of successive measurements of the same measure” conducted in the same conditions of
measurement [42]. As mentioned, one group of participants visited the Jinbianxi track
twice. The data of this group (18 scenic spots in total) were used in the test–retest reliability
testing. The result should be 540 values (i.e., 30 s at each of the 18 scenic spots) for each
participant from each visit. However, technical issues prevented recording of some values,
which were treated as missing data points in the reliability analysis.

Using SPSS software, we compared the datasets from the two visits and calculated the
Pearson correlation coefficient (PCC) [42]. The PCC measures the strength of the correlation
between the two sets of data. As shown in Table 3, all PCCs were significant, ranging from
0.626 to 0.802 (p < 0.01).

Table 3. Results of Test-retest Reliability Testing of Ten Participants.

Participant Number 1 2 3 4 5 6 7 8 9 10

Pearson correlation ** 0.802 0.644 0.757 0.626 0.687 0.635 0.631 0.676 0.662 0.656
Significance (bilateral) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N 502 521 496 511 488 516 507 491 508 497

** Correlation is significant at the 0.01 level (bilateral).

According to the proposed guidelines for interpreting PCC, the coefficient lies between
0.6 to 1.0, which indicates a strong positive correlation between the two variables [42]. The
test–retest coefficient is also referred to as the coefficient of stability, measuring a method’s
ability to produce consistent results. Our results demonstrated that the EEG experiment
was a stable test, with participants’ attentional changes being very similar in repeated
test sessions.

Alternate-form reliability refers to the consistency of the results obtained by testing
the same group of subjects twice with the same scale at different times [43]. We used the
EEG data of the Huangshizhai and Yuanjiajie tracks to test the alternate-form reliability,
as the two tracks are both flat mountain-top circuits with similar walking distance, track
difficulty, and landscape features, and could be regarded as comparable samples. All
130 participants visited these two tracks during the experiment period. We calculated
each participant’s average attention value of all scenic spots on each of the two tracks, and
compared participants’ average attention values on the two tracks. The PCC value was
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0.833, indicating a high correlation. Taken together, good test–retest and alternate-form
reliability test results signified the internal validity of the EEG results, and suggested that
the measurements were both reliable and stable over time.

3.2. Validity Testing

Validity was approached through a comparison of the EEG measured with the experts’
average ratings. Table 4 displays the average scores for the experts’ evaluations (ranging
between 37.6 and 98.2), EEG values (ranging between 48.6 and 65.6), and self-report scores
(ranging between 57.8 and 92.4) for each spot. None of the EEG values fell below 40, the
cut-off between “low attention” and “distraction” (see Table 1). Seven scenic spots returned
an average EEG score above 60, indicating “heightened attention.” Overall, the EEG scores
indicated that participants concentrated their attention throughout the scenic spots along
the three tracks.

Table 4. Results of the Expert Approach, the Self-report Method, and the EEG Method.

Number of
Scenic Spot

Expert
Score

Expert
Ranking

EEG
Value

EEG
Ranking

Self-Report
Score

Self-Report
Ranking

C9 98.2 1 65.6 1 92.4 1

B7 93.1 2 62.3 3 91.2 2

A15 91.7 3 62.2 4 68.2 25

B18 91.4 4 62.8 2 66 32

A8 90.0 5 62.1 5 87.6 3

A5 89.6 6 59.9 8 70 18

A18 89.1 7 61.9 6 68.8 22

A19 88.5 8 61.2 7 74 9

B17 88.3 9 59.1 10 68.6 23

A17 83.8 10 56.1 15 68.4 24

C1 82.0 11 59.7 9 70.2 17

C7 78.1 12 58.3 11 61.8 45

A14 74.7 13 55.6 17 65.6 33

B12 74.3 14 54.8 19 66 31

A1 73.8 15 54.9 18 61 47

A7 73.5 16 53.1 30 60.4 48

B8 73.4 17 54.0 23 73.4 11

B9 73.4 18 55.9 16 69.6 19

B16 73.2 19 57.5 13 65.2 35

C10 73.2 20 56.8 14 78.6 6

B5 72.0 21 58.0 12 65.2 34

A10 67.2 22 52.8 36 72.2 13

B1 60.4 23 54.3 20 62 43

A13 59.7 24 54.2 22 60.2 49

A20 59.5 25 53.9 25 62.8 41

B11 59.3 26 53.0 31 83.6 4

B14 59.2 27 54.2 21 67.6 26

A3 58.6 28 52.5 37 73.4 10

A12 58.5 29 52.5 38 72.6 12
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Table 4. Cont.

Number of
Scenic Spot

Expert
Score

Expert
Ranking

EEG
Value

EEG
Ranking

Self-Report
Score

Self-Report
Ranking

C2 58.5 30 53.9 24 69.2 21

C8 58.3 31 53.4 28 72.2 14

C11 58.1 32 53.6 26 66.8 28

C3 57.6 33 52.8 35 62.5 42

A4 57.2 34 52.3 40 71.6 16

C5 56.4 35 52.8 32 63.7 38

B13 55.7 36 52.3 41 64 37

C4 55.3 37 53.2 29 81.4 5

C6 55.2 38 53.5 27 74.2 8

A9 54.5 39 52.4 39 69.4 20

C12 54.1 40 52.8 34 63.7 39

B4 48.2 41 52.8 33 66.6 29

B3 46.6 42 49.6 47 71.8 15

A2 43.7 43 48.9 48 61.6 46

A6 43.3 44 50.5 43 76.4 7

B10 43.2 45 49.8 45 66.2 30

A11 42.8 46 50.2 44 65 36

A16 40.9 47 48.9 49 57.8 50

B2 40.3 48 49.7 46 61.8 44

B15 39.7 49 48.6 50 63.2 40

B6 37.6 50 50.5 42 67.2 27

The EEG, expert, and self-report rankings are also provided in Table 4. The top eight
scenic spots, as judged by experts, also had the highest EEG values (although in slightly
different orders), demonstrating high consistency between the two methods in relation to
high-quality natural landscapes. Consistency was also evident in the lower ranked scenic
spots. Nine of the ten scenic spots scored lowest by experts also appeared in the lowest ten
spots in the EEG ranking. However, there is a significant difference in the rankings between
the self-report scores and EEG values. Only four and three scenic spots in the self-report
ranking fell into the list of the top and lowest ten spots in the EEG ranking, respectively.

As Figure 3 illustrates, although expert and EEG scores on the same scenic spot greatly
differ, owing to the different measurement schemes, the overall patterns are similar, where
a spike or drop in expert rating often corresponds to a spike or drop in EEG measurement.

To compare the results of the three assessment methods more intuitively, we im-
ported the data into the SPSS 20.0 software package that allows a data analyst to plot
the relationships between two (Correspondence Analysis) or more variables (Optimal
Scaling) [44]. The Correspondence Analysis visually displays data classification, using
horizontal and vertical segmentation lines to divide the chart area into four quadrants
(Figure 4). The EEG measurements of the expert scores and the self-reports are depicted in
Figure 4a and Figure 4b, respectively.
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Figure 4. Four-quadrant chart of the results of the EEG, expert (a) and self-report (b) methods
(No. 1–20 refer to A1–A20 spot, No. 21–38 indicate B1–B18 spot, and No. 39–50 mean C1–C12 spot.
The reference lines are set at the mean values of the EEG, expert, and self-report scores.).

As Figure 4a shows, the findings indicate little difference between the two measure-
ment methods. Seventeen scenic spots (C9, B7, A15, B18, A8, A5, A18, A19, B17, A17, C1,
C7, A14, B9, B16, C10, and B5) lie in Quadrant I, accounting for 34% of the total experiment
samples, which indicate the scores of these spots were higher than the mean values of
the EEG and expert scores. Moreover, twenty-eight scenic spots (56% of all spots) are
distributed in Quadrant III, and only five scenic spots (A7, A10, B8, A1, and B12) are
classified into Quadrant II. It is worth noting that these five cases are closely located to
the two reference lines. Overall, the high consistency between the two measurements in
Figure 4a demonstrates that the EEG method could be an alternative to the expert method
in the evaluation of natural landscape resources. However, as shown in Figure 4b, nearly
40% of the total scenic spots are scattered in Quadrant II and Quadrant IV, indicating a low
level of consistency between the EEG values and self-report scores. A probable reason for
this is the time lag between when attentions were elicited and when participants evaluated
the scenic spots, which led to recall inaccuracy.

Hierarchical clustering analysis is an algorithm that groups similar objects into groups
called clusters. The endpoint is a set of clusters where each cluster is distinct from every
other cluster, and the objects within each cluster are broadly similar to each other [45]. In
order to identify the correlation between scores and forest landscape type, we used SPSS
software to conduct hierarchical clustering analysis of the three datasets. The hierarchical
clustering dendrogram is provided in Figure 5.
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According to China’s national standard for classification, investigation, and evaluation
of landscapes, landscape types can be divided into six categories: geological landscape, wa-
ter landscape, biological landscape (plants and wild animals), sites and ruins, astronomical
landscape, and landscape architecture. As Figure 5 shows, the five scenic spots which are
listed in Quadrant II of Figure 4a were classified into “geological landscape” or “sites and
ruins”. A closer examination reveals extraordinary historical or scientific values, or rarities
in geology, at these spots. As such, expert knowledge or professional interpretation may be
required to allow appreciation. Moreover, biological landscapes and landscape architecture
generally have higher scores than other kinds of landscapes. Biological landscapes are
the most representative tourism resources in the Zhangjiajie National Forest Park, which
are effective in attracting visitor attention. Different from original landscapes in a natural
setting, landscape architecture and facilities have a strong visual appeal because of the
combination of religious, artistic, and cultural elements.

4. Discussion
4.1. EEG-Based Methodology in Visual Quality Assessment of Forest Landscape

Different from previous EEG-based studies conducted in a laboratory [34,36], this
study employed a mobile methodology to investigate visitors’ attentional changes in
a national park, and yielded a number of interesting and innovative results.

First, the findings support the idea that external influences can affect the EEG measure-
ments of prior work [20]. Through the pre-test and data process, we identified those factors,
including prior experience, track difficulty, weather, crowdedness, and interpretation, that
need to be controlled in field studies employing EEG methods. The EEG method may not
be suitable for natural environments that present little diversity in features, or are small
in size or short in distance, because these changes in scenery may not provide sufficient
changes in stimuli to trigger different physiological responses in participants.

Second, to ensure a sufficient sample size for analysis, a significant number of partic-
ipants must be recruited. The EEG method is likely to return considerable missing data
owing to technical issues, such as loss of or interrupted connectivity. We noticed that
around 20% of the attention values were either invariant or not consecutive. Less than
30% of participants registered valid data across all spots of the three tracks. Therefore, for
multiple-site and longitudinal experimental designs, the sample size needs to be expanded
substantially to ensure adequate valid data for analysis.

Third, we chose to only analyze attention values between the 20th to 50th seconds
of participants’ stay at each scenic spot, as the values in this period are relatively free
from external disturbance and reflect the true response of brain activity to landscape
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viewing. After the 50th second, attention values quickly dropped as participants became
de-sensitized to the landscape. We therefore recommend that future applications of EEG in
landscape assessment take these issues into account.

4.2. Implications

By testing EEG as a measure of cognitive response to environmental stimuli, this study
sought a methodological and practical method for visual quality assessment research by
conducting an innovative field experiment.

Currently, EEG-based landscape research mainly focuses on health and rehabilitation
landscapes [46], as well as landscape psychological fatigue and visual fatigue [47]. Land-
scape attention and landscape preference, and especially the corresponding relationship
between EEG data and landscape quality, has been less studied. Based on a “stimulus-
response” analysis mechanism of psychophysical paradigm [14], this study proposes a new
methodology for landscape quality assessment with the combination of EEG technology
and mathematical analysis, which provides a new perspective for application of psy-
chophysiological approaches in landscape studies. Results demonstrate some evidence
preliminarily supporting the EEG method, as a means to gather objective measurements of
visitors’ attention. This shows promise for use as a supplementary or alternative method
for assessing the visual quality of landscapes. Interestingly, the brain attention values show
some correspondence with the perceived visual quality of forest landscapes as rated by
experts. The consistency between the two approaches is particularly evident in relation to
landscapes of high and low aesthetic quality. We also proposed a method for converting
EEG data for comparison with the official quality grading system, which may be adopted
in future studies. A scenic spot with an EEG score of less than 40 can be considered as
a mediocre- or low-quality forest landscape, and the spot which scored over 60 usually
has high aesthetic and recreational values. Furthermore, different landscape types show
distinct attention values, and scenes with typical visual guidance and focus are easier to
get visitor attention. The landscape visual characteristics are clearly displayed through the
quantification and visualization of EEG data.

The application of cutting edge psychophysiological techniques provides a new av-
enue for landscape assessment research [16]. A series of studies in cognitive psychology
demonstrated the coherent effects of emotion on attention [48–50], and provided accrued
evidence that the attention-emotion connection is robust, reliable, and important [51].
Therefore, the findings not only support previous laboratory-based research that visitors’
emotion varies dramatically with the environmental stimuli of varying degrees of visual
quality [52], but also validate the stability of the wearable EEG equipment outside the
laboratory environment; offering a reliable alternative to emotion measures for future
studies. Furthermore, the results offer some evidence that real-time psychophysiological
measurement methods may more objectively reflect visitors’ emotional responses than
the post hoc self-report method [53], due to the subconscious and non-discrete nature of
visitor emotions.

Despite these issues, we believe the EEG method should be particularly beneficial
in managing and exploring the landscape resources of forest destinations, and should be
developed for practice. For instance, park management authorities could use the EEG
method to identify locations that trigger the strongest physiological responses of visitors,
providing useful insights regarding site selection for lookouts and walking tracks.

4.3. Limitations

As the experiment was conducted in a natural mountain landscape, the findings may
be limited to the particular experimental setting and the type of scenic spots participants
visited. Only college students were selected as experimental participants in this study.
However, groups with different demographic characteristics have different preferences
on landscape perception; a homogeneous group of participants may not fully represent
the overall visitor demographic. Furthermore, more sophisticated and sensitive EGG
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devices are available, although they tend to be more intrusive, requiring participants to
attach a large number of sensors to their head and body, and making the recruitment of
participants difficult. In following the data cleaning procedure set out by the EEG device
manufacturer, this study excluded the interferences of other external factors (e.g., noises)
as much as possible. Results attributable to attentional changes, possibly related to the
attractiveness of natural landscapes, were measured in the study. Nevertheless, we ac-
knowledge the difficulty of completely isolating the influence of physical activities, such
as muscle activity, eye blinks, and physical movement, owing to the forest setting of the
experiment. Furthermore, the EEG data showed when and where visitors reacted to the
environment, but did not enable identification of the exact attributes of the environment
that triggered attentional responses. We therefore recommend that EEG data collection
incorporate a qualitative data collection component to solicit further explanatory insights.

4.4. Further Research

Further research is also needed to develop standard protocols for using mobile EEG
devices to assess the visual quality of forest landscapes. Such protocols should set ba-
sic experiment requirements in terms of physical distance, landscape pattern, number of
participants, and other factors. An examination of visitor markets with different ages,
occupations, cultural background, and visiting times would also be useful to determine
whether differences exist in aesthetic perceptions, as measured by EEG. In addition, future
research could extend the use of the EEG method to other types of natural landscapes,
such as lakes, and geological or rural sites. While cultural sites can also be investigated,
appropriate interpretation of the site by participants may be required to enable an un-
derstanding and appreciation of each site’s cultural and historical significance. Such an
interpretation may need to take place prior to data collection to minimize its influence on
participants’ physiological responses attributable to visual stimuli. Overall, we believe
the physiological approach to landscape evaluation has a significant role to play in future
research as technologies evolve, and more advanced EEG devices and software packages
become available.

5. Conclusions

This study conducted an exploratory investigation to assess the usability of the mobile
EEG method in visual quality assessment, and presented, for the first time, a psychophys-
iological methodology for quantization analysis of forest landscape attention. From the
findings, the following conclusions were obtained: Firstly, a significant correlation exists
through good test–retest and alternate-form reliability test results, implying high stability
of the EEG data over time and on different tourist tracks. Secondly, the EEG data, however,
do not align with participants’ self-reports. The results offer additional evidence that
real-time psychophysiological methods could more objectively reflect visitors’ emotional
responses than the post hoc self-report method, due to the subconscious and non-discrete
nature of visitor emotions. Thirdly, the brain’s attention values are roughly in line with the
perceived visual quality of forest landscapes as rated by landscape experts. The consistency
between the two approaches is particularly evident in relation only to forest landscapes of
high and low visual quality. Additionally, the EEG method, a means to gather objective
measurements of visitors’ emotions, may be useful as a supplementary or an alternative
method for assessing the visual quality of forest landscapes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13101668/s1, Figure S1: Raw EEG data of one participant in the
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