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Abstract: Climate change poses a serious threat to species, especially for endangered species. This
is particularly true for the endangered tree Parrotia subaequalis, endemic to China. To date, little
is known about its pattern of habitat distribution, and how it will respond under future climate
change still remains unclear. Based on six climate variables and 115 occurrence records, we used the
MaxEnt model to predict the potential distribution of P. subaequalis in China. The modeling results
showed that the first three leading factors influencing its distribution were precipitation in the driest
quarter (Bio17), the mean temperature of driest quarter (Bio9), and annual average temperature (Bio1).
The actual distribution area of this endangered tree was smaller than the projected suitable range
(2.325 × 104 km2), which was mainly concentrated in west and southeast Anhui, southwest Jiangsu,
and northwest Zhejiang, eastern China. Our study also indicated that P. subaequalis populations
in the three regions (Central-China Mountain Area (CC), Dabie Mountain Area (DB), and Tianmu
Mountain Area (TM)) responded differently to future climate change. The DB population changed
insignificantly in a suitable habitat, while the TM population increased slightly in area, migrating
northeast on the whole. The habitats of the DB and TM populations became more fragmented under
all future climate scenarios than those under the current condition. Due to geographical isolation and
limited spread, it is plausible for P. subaequalis to grow in CC under current and future conditions.
Accordingly, our findings highlighted that the two local populations of P. subaequalis presented
different responses to climate change under global warming. Therefore, our study can improve the
conservation and management of P. subaequalis in China and be helpful for other endangered tree
species with local populations that respond differently to climate change.

Keywords: environmental variables; MaxEnt model; climate change; potential habitat; model optimization

1. Introduction

Parrotia subaequalis (H. T. Chang) R.M. Hao and H.T. Wei, endemic to China, is a small
deciduous tree in the family Hamamelidaceae. As a tertiary relict plant, P. subaequalis is a
valuable material for research in familial phylogeny and floral evolution [1]. It is also a fine
timber tree due to its straight trunk and hard texture. Moreover, this tree is of great value in
horticulture because of a series of distinctive features, such as leaves turning red in autumn
(Figure 1a,b), flowers without petals (Figure 1c), and exfoliating bark (Figure 1f) [2–4]. Due
to overexploitation, the natural populations of P. subaequalis have been under threat in the
past few decades, thus resulting in its population decreasing and range shrinking. As a
result, it has been listed in the List of National Key Protected Wild Plants [5] and categorized
as “Critically Endangered (CR)” in the IUCN Red List [5,6].
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Figure 1. Photos of Parrotia subaequalis in the field. (a) Green leaves in summer (red circle); (b) red 
leaves in autumn; (c) Blooming flowers without petals; (d) capsules, showing seeds at the bottom 
right; (e) seedlings in the forest floor; and (f) individuals in valley, with exfoliating bark (red arrow). 
The photos were taken by Guangfu Zhang. 

P. subaequalis has a relatively narrow distribution in eastern China, where it sporadi-
cally occurs in subtropical mountains of Anhui, Jiangsu, and Zhejiang provinces [4,7]. This 
can be ascribed to three primary reasons. First, this tree has a weak photosynthetic capac-
ity relative to other dominant species in the forest stand, and accordingly it usually grows 
slowly. Regarding P. subaequalis, its saplings have a flexible light-adaptation strategy, 
while its mid-sized trees may be shaded by upper branches in the stand, thus retarding 
their growth [8]. Furthermore, this species often faces intense interspecific competition 
from its associated tree species since there is a short distance between them [9]. Thirdly, 
anthropogenic activities, such as road construction, land reclamation, and tourism devel-
opment, may have an adverse effect on its distribution. For example, some advanced in-
dividuals were stolen for making bonsai on the boundary between eastern Anhui and 
southern Jiangsu [2,10]. Although the current distribution of P. subaequalis seems to be 
limited and narrow, the identification of the new localities of P. subaequalis in Shangcheng 
County of Henan Province, Siming Mountain of Zhejiang Province, and Liyang City of 
Jiangsu Province, within eastern China [5,10,11] indicates that the actual spatial distribu-
tion of the species may be wider than its known distribution. Therefore, the actual spatial 
distribution of the species remains unclear to date. 

Figure 1. Photos of Parrotia subaequalis in the field. (a) Green leaves in summer (red circle); (b) red
leaves in autumn; (c) Blooming flowers without petals; (d) capsules, showing seeds at the bottom
right; (e) seedlings in the forest floor; and (f) individuals in valley, with exfoliating bark (red arrow).
The photos were taken by Guangfu Zhang.

P. subaequalis has a relatively narrow distribution in eastern China, where it sporadi-
cally occurs in subtropical mountains of Anhui, Jiangsu, and Zhejiang provinces [4,7]. This
can be ascribed to three primary reasons. First, this tree has a weak photosynthetic capacity
relative to other dominant species in the forest stand, and accordingly it usually grows
slowly. Regarding P. subaequalis, its saplings have a flexible light-adaptation strategy, while
its mid-sized trees may be shaded by upper branches in the stand, thus retarding their
growth [8]. Furthermore, this species often faces intense interspecific competition from its
associated tree species since there is a short distance between them [9]. Thirdly, anthro-
pogenic activities, such as road construction, land reclamation, and tourism development,
may have an adverse effect on its distribution. For example, some advanced individuals
were stolen for making bonsai on the boundary between eastern Anhui and southern
Jiangsu [2,10]. Although the current distribution of P. subaequalis seems to be limited and
narrow, the identification of the new localities of P. subaequalis in Shangcheng County
of Henan Province, Siming Mountain of Zhejiang Province, and Liyang City of Jiangsu
Province, within eastern China [5,10,11] indicates that the actual spatial distribution of the
species may be wider than its known distribution. Therefore, the actual spatial distribution
of the species remains unclear to date.
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Climate is one of the most important factors influencing plant distribution at the
regional scale [12,13]. Accordingly, climate change plays a significant role in growth
performance, geographical range, and population size for a tree species [14,15]. In general,
endemic tree species in a forest are more susceptible to climate shift than widespread
species because the former have a narrower habitat and a smaller population than the latter.
It seems likely that endemic trees have a poor adaptive capacity to deal with climate change,
especially endangered and endemic trees [16,17]. For example, Zelkova schneideriana, an
endangered tree in subtropical China, was decreasing in abundance and range under the
threat of climate change [18]. Because the geographical distribution of P. subaequalis is still
unclear at present, it is also necessary to identify the key climatic variables limiting its
distribution, as well as its projected current distribution.

Species distribution models (SDMs) are applied extensively to explain the effects of cli-
mate change on species distribution. They can also predict the current distribution patterns
of species and how they will respond in the face of future climate change [19,20]. Among
them, the MaxEnt (maximum entropy) model is one of the most widely used SDMs due to
its high prediction accuracy, technically simple operation, and good performance at low
sample sizes [21–23]. Recently, it has been successfully applied to predict the geographical
distribution of endangered plants, and to determine the dominant environmental factors
affecting their distribution under changing climate scenarios [24]. Moreover, MaxEnt also
has advantages in terms of predicting the suitable range in distribution and exploring the
potential habitat in cultivation for rare and endangered species [25].

Here, we collected the occurrence data of P. subaequalis and environmental factors and
then predicted its potential distribution in China by using the MaxEnt model. The objective
of this study is to (1) forecast the suitable distribution of P. subaequalis in China under
the current climate scenario; (2) identify the key bioclimatic variables affecting its spatial
distribution; (3) determine the responses of P. subaequalis under three different climate
scenarios (RCP2.6, RCP4.5, RCP8.5) in the future (2050s and 2070s); and (4) discuss the
conservation and management strategies of P. subaequalis under climate change.

2. Methods
2.1. Species Occurrence Data

In the past few years, we conducted extensive field surveys for P. subaequalis wild
populations in Anhui, Jiangsu, Zhejiang, and other provinces of eastern China to obtain
their distributional localities [2,9,26] (Figure 1). Meanwhile, we also collected other oc-
currence data from the published literature and related websites. Firstly, the distribution
information was searched by using the key words of specific name, the Latin name and
synonym in Flora of China, provincial floras, and associated checklists [27,28]. Then, the
newly discovered distribution sites were gathered from available articles, monographs,
and reports [9,10,29,30]. Furthermore, original specimen records containing latitude and
longitude or detailed small place names were collected by searching Chinese Virtual Herbar-
ium (CVH, http://www.cvh.ac.cn, last accessed on 8 March 2022), National Specimen
Information Infrastructure (NSII, http://www.nsii.org.cn, last accessed on 8 March 2022),
and Global Biodiversity Information Facility (GBIF, https://www.gbif.org/, last accessed
on 8 March 2022). Accordingly, we initially complied a total of 211 occurrence points for
this species.

After deleting incorrect or duplicate record points, we used the spatially rarefy occur-
rence data for the SDMs tool (i.e., SDMtoolbox 2.0) to retain only one distribution point in
each 1 km × 1 km grid [31]. This method of rarefying record points is based on the resolu-
tion of bioclimatic data to reduce the spatially auto-correlated occurrence points [32,33]. In
total, 115 occurrence data of P. subaequalis were used for MaxEnt modeling, which were
mainly distributed in Jixi, Jinzhai, Shucheng, Yuexi, and Jingde in Anhui Province; Yixing
and Liyang in Jiangsu Province; Anji and Fenghua in Zhejiang Province; and Shangcheng
in Henan Province (Figure 2, Supplementary Material).

http://www.cvh.ac.cn
http://www.nsii.org.cn
https://www.gbif.org/
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Figure 2. Distribution of occurrence records of P. subaequalis in China. 
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Figure 2. Distribution of occurrence records of P. subaequalis in China.

2.2. Bioclimatic Variables

Bioclimatic variables can be used to model habitat suitability, which is of great help
in determining suitable bioclimatic regions for species [34]. Data for the 19 bioclimatic
variables used in this study were downloaded from the WorldClim environmental database
(version 1.4) (http://www.worldclim.org, last accessed on 16 May 2022) with a spatial
resolution of 30 s (approximately 1 km) (Table 1). The current climate data are the average
of the 1960–1990 climate data. Due to the limitation of using a single climate model to
predict future climate [35,36], the future climate data of the 2050s (2041–2060) and 2070s
(2061–2080) are derived from the average values of the three global climate models (the
Beijing Climate Center Climate System Model version 1.1, BCC-CSM1-1; the Community
Climate System Model version 4, CCSM4; and an earth system model based on the Model
for Interdisciplinary Research on Climate, MIROC-ESM) of WorldClim.

Table 1. Description of 19 bioclimatic variables and percent contribution of six variables (in bold font)
used in the final MaxEnt model.

Variable Description Unit Percent Contribution (%)

Bio1 Annual mean temperature ◦C 13.1
Bio2 Mean diurnal range (mean of monthly (max temp–min temp)) ◦C 0.9
Bio3 Isothermality (Bio2/Bio7) (×100) %
Bio4 Temperature seasonality (standard deviation × 100) -
Bio5 Max temperature of warmest month ◦C
Bio6 Min temperature of coldest month ◦C
Bio7 Temperature annual range (Bio5–Bio6) ◦C
Bio8 Mean temperature of wettest quarter ◦C
Bio9 Mean temperature of driest quarter ◦C 19.1
Bio10 Mean temperature of warmest quarter ◦C
Bio11 Mean temperature of coldest quarter ◦C
Bio12 Annual precipitation mm
Bio13 Precipitation of wettest month mm 0.5
Bio14 Precipitation of driest month mm
Bio15 Precipitation seasonality (coefficient of variation) - 2.1
Bio16 Precipitation of wettest quarter mm
Bio17 Precipitation of driest quarter mm 64.3
Bio18 Precipitation of warmest quarter mm
Bio19 Precipitation of coldest quarter mm

http://www.worldclim.org
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The representative concentration pathways (RCPs), consisting of a series of different
concentrations of greenhouse gas, are widely used in studies related to climate change
responses [37]. In each period, three typical CO2 representative concentration pathways
(RCP) were selected, namely, RCP 2.6 (minimum CO2 emission scenario), RCP 4.5 (medium
CO2 emission scenario), and RCP 8.5 (maximum CO2 emission scenario).

Problems such as multicollinearity among bioclimatic variables may lead to model
overfitting, thus affecting the accuracy of the prediction results [38]. In order to avoid
introducing redundant information in the process of model prediction, the preliminary
simulation of bioclimatic data was performed in the MaxEnt model, and variables that
contributed the most to the model gain were selected [39]. Then, the Spatial Analyst Tools
in ArcGIS 10.6 were used to extract the values of 19 bioclimatic variables at 115 distribution
points. The Pearson correlation coefficient (r) between bioclimatic variables was tested
by R 4.1.3 to eliminate the variables with the lower percent contribution among those
|r| > 0.8 [40,41]. Finally, six bioclimatic variables were selected to build the final model
(Table 1).

2.3. MaxEnt Modeling

The occurrence data and selected climate variables were imported into the ENMeval
package in R software (version 4.1.3) to optimize the MaxEnt model [42]. The range of
the regularization multiplier (RM) values was set to 0.5–4, with each interval of 0.5, and
thereby there were a total of eight RMs. Generally, MaxEnt provides five feature classes
(FC): linear features (L), quadratic features (Q), product features (P), threshold features (T),
and hinge features (H). In this optimization, six feature classes (L, H, LQ, LQH, LQHP, and
LQHPT) were selected to optimize the MaxEnt model. The minimum information criterion
AICc value (delta. AICc) was used to test the model fitting degree [43].

In total, 75% of the distribution points were randomly selected as the training set and
the remaining 25% as the test set in MaxEnt software (version 3.4.4). To ensure the predictive
accuracy of models, the operation was repeated 15 times using the Bootstrap method. The
combination of the area under curve (AUC value) of receiver operating characteristic and
the true skill statistic (TSS value) was used to assess the model performance [15,44]. The
AUC value ranges from 0 to 1. A higher value of AUC indicates better model performance.
AUC values can be divided into failing (0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good (0.8–0.9),
and excellent (0.9–1) [45,46]. The TSS value ranges from −1 to +1. The TSS score close to
1 indicates an almost perfect model, while the score close to zero or less indicates a model
no better than random [44]. The average AUC and TSS across the 15 replicates of each
algorithm were used to evaluate the model performance [47].

2.4. Geospatial Analysis

ArcMap 10.6 was used to visualize the operation results of the MaxEnt model. When
mapping the predicted distribution of P. subaequalis, the model’s results were classified
based on “maximizing test sensitivity plus specificity threshold”, given the nature of
the studied species. This threshold was considered as best practice for presence-only
models [48,49]. Thus, the habitat suitability was divided into four levels: unsuitable
area (0–0.1), low suitable area (0.1–0.4), moderately suitable area (0.4–0.7), and highly
suitable area (0.7–1.0) [50,51]. The suitable areas of each level were calculated separately to
determine the influence of climate change on the distribution of P. subaequalis.

3. Results
3.1. Model Performance

The habitat suitability of P. subaequalis under current and future climate scenarios was
simulated based on 115 occurrence records and six bioclimatic variables. When FC was
LQHP and RM was 0.5, delta. AICc = 0, indicating that the model was optimal under
such a combination. The mean AUC values including the training and test data of the
MaxEnt model for 15 repetitions were all greater than 0.9 (Table 2), which was significantly
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higher than the AUC value of random prediction (0.5). Therefore, the MaxEnt model was
considered to work at an excellent level. The mean TSS values of 15 repetitions in each
scenario were also greater than 0.9, very close to 1 (Table 2). Similarly, this also indicated
that model prediction had high credibility and accuracy. Moreover, the current predicted
distribution of the model is consistent with the known occurrence records of P. subaequalis.
Therefore, the MaxEnt model is reliable for predicting the potential habitat suitability of
P. subaequalis in China.

Table 2. The mean value (±SD) of the area under curve (AUC) and true skill statistic (TSS) under
different climate scenarios.

Scenarios AUCtraining AUCtest TSS

Current 0.994 ± 0.0002 0.994 ± 0.0011 0.971 ± 0.0115

2050s
RCP 2.6 0.994 ± 0.0003 0.993 ± 0.0013 0.972 ± 0.0097
RCP 4.5 0.994 ± 0.0003 0.993 ± 0.0013 0.971 ± 0.0178
RCP 8.5 0.994 ± 0.0002 0.994 ± 0.0008 0.976 ± 0.0094

2070s
RCP 2.6 0.994 ± 0.0002 0.994 ± 0.0008 0.974 ± 0.0133
RCP 4.5 0.995 ± 0.0001 0.994 ± 0.0008 0.976 ± 0.0114
RCP 8.5 0.995 ± 0.0002 0.994 ± 0.0012 0.976 ± 0.0078

3.2. Key Bioclimatic Variables

The MaxEnt model calculated the percent contribution of each bioclimatic variable
through the iterative algorithm and normalization processing (Table 1). The results showed
that among the six bioclimatic variables, the first leading variable was precipitation in
the driest quarter (Bio17), contributing 64.3% to the potential distribution of P. subaequalis,
followed by mean temperature of driest quarter (Bio9) and annual average temperature
(Bio1), with percent contributions of 19.1% and 13.1%, respectively. The sum of the percent
contribution of the three variables was more than 90%, so they were identified as the key
bioclimatic variables affecting the habitat suitability of P. subaequalis.

The response curve, representing the relationship between bioclimatic variables and
the probability of species presence, reflects the biological tolerance and habitat preference
of species [16]. When the species existence probability is greater than 0.5, corresponding
to moderately and highly suitable area [15], this indicates that the range of bioclimatic
variables is suitable for the growth of P. subaequalis. As shown in Figure 3a concerning
the response curves of climate variables, when the precipitation of the driest quarter
(Bio17) exceeded 117.6 mm, P. subaequalis was in a suitable survival condition (existence
probability > 0.5). With the increase in Bio17, the existence probability gradually increased
and reached a peak (0.67) at 128.9 mm (Figure 3). The probability of existence then decreased
in the range of 128.9–146.4 mm. The mean temperature of the driest quarter (Bio9) ranged
from 2.3 ◦C to 5.8 ◦C, which was suitable for its growth, and the survival probability first
increased and then decreased in this case, reaching the maximum at 3.1 ◦C (0.59) (Figure 3b).
Similarly, when annual mean temperature (Bio1) was above 12.6 ◦C, the survival probability
exceeded 0.5. With the increase in Bio1, the probability of P. subaequalis’s establishment
increased to a maximum as high as 0.65 at 13.8 ◦C (Figure 3c).

Therefore, P. subaequalis preferred habitats as follows: the precipitation of the driest
quarter (Bio17) between 117.6 mm and 146.4 mm, the mean temperature of the driest
quarter (Bio9) between 2.3 ◦C and 5.8 ◦C, and the annual mean temperature (Bio1) between
12.6 ◦C and 15.4 ◦C (Figure 3).
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Figure 3. Response curves of P. subaequalis to key bioclimatic variables. (a) Precipitation of driest
quarter (Bio17, mm); (b) Mean temperature of driest quarter (Bio9, ◦C); (c) Annual mean temperature
(Bio1, ◦C).

3.3. Current Distribution of Habitat Suitability

Currently, the predicted suitable habitat (i.e., the moderately and highly suitable
habitat) of P. subaequalis was mostly located in eastern China, mainly concentrated in west
and southeast Anhui, southwest Jiangsu, and northwest Zhejiang. In addition, fragmented
distributions were also forecasted in south Henan, east Hubei, provincial boundary between
southwest Hubei and northwest Hunan, northeast Guizhou, and other areas. The suitable
habitat covered a total area of 2.325 × 104 km2, only accounting for 2.42‰ of China’s total
territory; the highly suitable habitat areas only accounted for 1.93‰, mainly concentrated
in west Anhui (Table 3; Figure 4).

Table 3. Potential suitable areas of P. subaequalis under different climate scenarios. Up arrow (↑)
means increase; down arrow (↓) means decrease.

Scenarios

Low
Suitable Area

Moderately
Suitable Area

Highly
Suitable Area

Suitable Area
(Moderately and Highly)

Area
(×104 km2) Trend (%) Area

(×104 km2) Trend (%) Area
(×104 km2) Trend (%) Area

(×104 km2) Trend (%)

Current 10.980 - 2.140 - 0.185 - 2.325 -

2050s
RCP 2.6 11.819 ↑7.64 2.467 ↑15.28 0.246 ↑32.97 2.713 ↑16.69
RCP 4.5 10.973 ↓0.07 3.057 ↑42.87 0.121 ↓34.70 3.178 ↑36.71
RCP 8.5 9.322 ↓15.10 2.184 ↑2.07 0.187 ↑1.05 2.371 ↑1.99

2070s
RCP 2.6 9.457 ↓13.87 2.411 ↑12.67 0.116 ↓37.33 2.527 ↑8.70
RCP 4.5 8.615 ↓21.54 1.797 ↓16.01 0.218 ↑17.86 2.015 ↓13.32
RCP 8.5 9.652 ↓12.10 2.142 ↑0.08 0.149 ↓19.36 2.291 ↓1.46
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Additionally, under the current climate scenario the suitable habitat of P. subaequalis
was roughly divided into three different regions: the Central-China Mountain Area (CC),
the Dabie Mountain Area (DB), and the Tianmu Mountain Area (TM) (Figure 4).

3.4. Future Changes in Habitat Suitability

Overall, the future suitable habitats of P. subaequalis also included three regions: CC,
DB, and TM (Figure 5). Firstly, compared with the current scenario, the suitable habitat
of P. subaequalis populations in TM would increase slightly under the six future scenar-
ios, mainly migrating northeastward. However, the degree of its habitat fragmentation
increased under future climate change relative to currently (Figures 4 and 5). In contrast,
although its suitable habitat in DB changed insignificantly, the habitat fragmentation also
increased. In addition, its suitable habitat in CC presented a slight decrease, and mainly
migrated to the north, but the degree of habitat fragmentation also increased.

The mean suitable habitat area covered 2.516 × 104 km2 under six climate scenarios
in the 2050s and 2070s, with an increase of 8.23% compared with the current condition,
among which the proportion of highly suitable area was very small. Compared with the
current scenario, the highly suitable area reduced by an average of 6.59% under the six
future scenarios.

In the future, the suitable habitat of P. subaequalis in different periods (2050s and 2070s)
would respond distinctively to climate change. The mean suitable habitats under three
scenarios (RCP 2.6, RCP 4.5, and RCP 8.5) in the 2050s increased by 18.47% relative to the
current scenario, while the mean suitable habitats in the 2070s decreased by 2.00%. This is
consistent with the change trend of the suitable habitat of three Fritillaria species [52], which
first rises and then declines, in suitable habitats. Our results indicated that P. subaequalis
may be differently adapted to the range of concentration pathways.

Likewise, the suitable habitat of P. subaequalis would also respond differently under
different emission scenarios during the same period. In the 2050s, the suitable habitat in
all three scenarios increased to varying degrees compared to the current. The maximum
increase occurred in RCP 4.5, accounting for 36.71%. In the 2070s, P. subaequalis showed a
different trend in the habitat area under the three scenarios. Its suitable habitat increased
under low concentration (RCP 2.6), while it decreased under both medium and high
concentration (RCP 4.5 and RCP 8.5).
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4. Discussion
4.1. Modeling Evaluation and Variable Influence

At present, there are a variety of SDMs used for predicting species potential distri-
bution [53]. Being one of the correlative models, the MaxEnt model based on species
distribution and environmental factors has been widely used in recent years and is consid-
ered as one of the most reliable bioclimatic models [21]. This model has multiple advantages,
such as its ability to work with small sample sizes, its ease of use, and its claimed superior
performance. Simultaneously, it also has some disadvantages. Because this model fits with
limited presence-only data, these data should be random or representative in the entire
landscape. Otherwise, the sampling data may be processed with bias. However, in some
cases, researchers may be unclear about the degree of the sampling bias [20]. Collinearity is
likely to exist among multiple environmental variables, thus leading to the uncertainty of
modeling prediction. Furthermore, for a certain species, the MaxEnt model usually needs
to optimize the algorithms in order to reduce the fitting bias.

In this study, P. subaequalis, endemic to China, is an ancient tree species. As a tertiary
relict plant, it has a quite conservative correlation with its environment. More recently, a
new study finds that the interaction between the species of Parrotia and their herbivores
persisted over at least 15 million years, expanding from eastern Asia to western Europe [54].
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Therefore, we screened the collected records and eliminated the collinearity among biocli-
matic variables. Meanwhile, the ENMeval package was used to optimize the regularization
multiplier (RM) and feature classes (FC) in MaxEnt, reducing the model overfitting and
complexity while maintaining its predictive power. The AUC and TSS values of the en-
semble model were both close to 1 (Table 2), indicating that the model performed well.
Therefore, the model explains the potential distribution of P. subaequalis based on current
occurrence records.

Our study showed that the key bioclimatic variables affecting the distribution of the
P. subaequalis population were the precipitation of the driest quarter (Bio17), the mean
temperature of the driest quarter (Bio9), and the annual mean temperature (Bio1), respec-
tively. This indicated that precipitation-related variables may play a more significant role
in limiting the potential distribution of P. subaequalis than temperature-related variables
(Table 1). Moreover, the precipitation of the driest quarter (Bio17) made the most substantial
contribution of 64.3%. According to species-response curves, this species preferred habitats
with a mean precipitation of the driest quarter from 117.6 to 146.4 mm. This was confirmed
by the results of the water requirement and the growth characteristics of P. subaequalis
seedlings in the greenhouse experiment [55]. In their experiments, Yue et al. (2006) [55]
showed that when the soil relative water content was 60.0%, P. subaequalis had the highest
photosynthetic rate and the highest light saturation point. Namely, relatively moist soil is
more conducive to the growth of P. subaequalis. This is in line with our field investigation
that P. subaequalis usually grows well in well-drained hillsides or nearby valleys (Figure 1f).
In addition, P. subaequalis is less drought-resistant than other dominant tree species in
the forest stand [56], which may affect its competitiveness in harsh environments. This
is also consistent with the finding that there is strong interspecific competition between
P. subaequalis and its associated trees [9,26].

4.2. Predicted Habitat Suitability for P. subaequalis under Current Scenario

The MaxEnt model produces distribution predictions based on the presence-only data
of species, and thereby its logistic output should not be merely illustrated as occurrence
probability [20]. However, recently some studies have probably ignored the problem
when predicting the potential distribution of rare and endangered plants. For example,
Horsfieldia tetratepala, an evergreen tree endemic to China, is projected by MaxEnt to expand
to Hainan, Taiwan, Guangdong, and other provinces in southern China under future climate
conditions [57], although the endemic tree now only occurs in the southern boundary of
Yunnan and Guangxi, mainland China. In fact, dispersal limitation, interspecies interaction,
and anthropogenic influences may affect the potential distribution of endangered species.
However, different species are affected by these factors to varying degrees. In this study,
we analyzed the suitable habitats of P. subaequalis under different climate scenarios based
on the prediction results and their biological characteristics.

Our MaxEnt model predicted, for the first time, 2.325 × 104 km2 of suitable habitat
area, which is larger than the known distribution area. This is mainly due to the short
history of its discovery [58] and apetalous flowers (Figure 1c), thus making it difficult to
identify in the field. Our model also shows that Dabie Mountain Area (DB), the Tianmu
Mountain Area (TM), and the Central-China Mountain Area (CC) are predicted to be the
suitable habitats (i.e., the moderately and highly suitable habitats) of P. subaequalis under
the current climate scenario. However, the Central-China Mountain Area (CC) is unlikely
to be a suitable habitat of P. subaequalis according our field survey (Figure 1) and its tree
traits. Firstly, there is a long distance of more than 650 km between the Central-China
Mountain Area (CC) and the Dabie Mountain Area (DB)/Tianmu Mountain Area (TM), in
which occurred all known natural populations of this species at present [59]. Secondly, as a
small deciduous tree, its fruits are woody capsules that have two chambers, each with two
fusiform seeds (Figure 1d). Furthermore, the mean weight of each ten seeds of P. subaequalis
is approximately 0.305 g [2], which makes it unsuitable for such a long distance wind
dispersal. Although it is unclear concerning its seed dispersal mechanism, we think that it
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is impossible for this tree to spread and reach the Central-China Mountain Area (CC) by
seeds based on our field observations. Thirdly, the suitable habitat in the Central-China
Mountain Area (CC) is extremely fragmented, which has a negative impact on the growth
and reproduction of P. subaequalis. In addition, this species has not yet been reported by the
botanical surveys from Hubei, Hunan, and Guizhou in recent decades [60–62].

The prediction results inform us that the current suitable habitat of P. subaequalis
is distributed in both the Dabie Mountain Area (DB) and the Tianmu Mountain Area
(TM), which is congruent with the known distribution records [27]. Furthermore, we
estimate that there may be wild populations in south Henan and east Hubei (Figure 4).
P. subaequalis is mainly concentrated in the mountainous areas of east China. The Dabie
Mountain Area (DB) stretches about 380 km from east to west and 175 km from north to
south; accordingly, it covers a large mountainous range, including Hubei, Henan, and
Anhui provinces [63]. Wanfoshan in Anhui Province has the largest natural population of
P. subaequalis at present [26]. The forecasted suitable habitats in south Henan and east Hubei
are close to the P. subaequalis population in Dabie Mountain Area (DB), and this enables the
species to spread viable seeds there. Secondly, the two sites have highly and moderately
suitable areas, which may be conducive to its survival and growth. More recently, a new
locality of P. subaequalis has been recorded in Mt. Huangbo, Henan Province [64]. Hence,
this supports our estimation that there may well be new populations of P. subaequalis in
these two sites.

4.3. Geographical Shift in Habitat Suitability under Future Climate

Our study indicated that P. subaequalis populations in the three regions differently
responded to future climate change. Firstly, under the future climate scenarios, the Tianmu
Mountain Area (TM) population of P. subaequalis increased in a suitable habitat, largely
migrating northeast. Meanwhile, the projected suitable habitat became more fragmented
relative to that under the current condition. This may be associated with low habitat
heterogeneity in this region. This area is located in the subtropical mountains of eastern
China, mainly consisting of low hills and plains, with an average elevation of less than
500 m [65]. In addition, there is a long history of agriculture, with developed social
economy and intense human activities over the last few decades [10,66,67]. Climate change,
human activities, and habitat features may limit the future distribution of the P. subaequalis
population in the Tianmu Mountain Area (TM).

In contrast, the Dabie Mountain Area (DB) population of P. subaequalis changed slightly
in terms of suitable habitat but with more fragmented habitat in the future scenarios. The
Dabie mountains span Hubei, Henan, and Anhui provinces, with a total area of more than
6.0× 104 km2. This region features wavy terrain, most of which is subtropical mountainous
areas. There are dozens of peaks above 1000 m, among which the highest peak is the Baima-
jian at Anhui, with an elevation of 1777 m [68]. Compared with the Tianmu Mountain Area
(TM), the Dabie Mountain Area (DB) has higher habitat heterogeneity owing to complex
and diverse topography, inconvenient transportation, an under-developed economy, and
little human interference. Therefore, the Dabie Mountain Area (DB) population may suffer
little from global warming, and it will be able to expand suitable habitats within this region
where there is great variation in altitude and microhabitat.

For the Central-China Mountain Area (CC) population, its suitable habitat decreased
and migrated northward in future scenarios (Figure 5). In addition, the habitat fragmenta-
tion in the Central-China Mountain Area (CC) strikingly intensified, which is similar to
that in the Tianmu Mountain Area (TM) and the Dabie Mountain Area (DB). Due to the
geographical isolation and limited spread, it is plausible for P. subaequalis to grow therein
in the future.

In brief, our findings indicate that the current distribution of P. subaequalis in the two
regions (i.e., the Tianmu Mountain Area (TM) and the Dabie Mountain Area (DB)) exhibits
different response patterns to future climate change. Specifically, for the two populations,
their habitat fragmentation intensified in the future, while a significant difference was
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found between them in terms of suitable habitat and migration direction. This is similar to
Paeonia mairei, an endemic herb in southwest China, whose two local populations respond
differently to future climate change [35]. Therefore, such a practice can be adopted for
other endangered tree species, whose natural populations in different regions respond
distinctively to climate change.

4.4. Conservation Implications for P. subaequalis

This study delineates the projected suitable habitats of P. subaequalis and identifies the
major drivers of its distribution for the first time using MaxEnt model. We set the cut-off
threshold for species presence and absence through maximizing the sum of test sensitivity
and specificity, and thus such an approach can ensure the reliability of suitability classifica-
tion of P. subaequalis. The predicted results show that its current potential distribution is
larger than the known distribution range. However, our analysis has demonstrated that
the actual distribution area of P. subaequalis should be smaller than the projected suitable
range, which is mainly concentrated in the regions of the Dabie Mountain Area (DB) and
the Tianmu Mountain Area (TM), eastern China (Figure 5). Therefore, we should prioritize
investigating its natural populations in these two areas in the future.

Secondly, the two populations presented different responses to climate change under
global warming. The habitats of the P. subaequalis population in the Dabie Mountain Area
(DB) and the Tianmu Mountain Area (TM) became more fragmented under all future
climate scenarios than those under current conditions. However, the Dabie Mountain Area
(DB) population changed slightly in a suitable habitat, while the Tianmu Mountain Area
(TM) population increased slightly, migrating to the northeast as a whole. Therefore, it is
proposed to enhance the in situ conservation of the Dabie Mountain Area (DB) population
in the future. Indeed, P. subaequalis has been enlisted in the national checklist of Plant Species
with Extremely Small Population (PSESP) of China for urgent protection since 2012 [69]. At
present, the populations of P. subaequalis in the Dabie Mountain Area (DB) are mostly
separated from each other and grow in the form of small populations. This tree has
abundant genetic diversity but with a low inter-population gene flow according to the
combined analysis of chloroplast and nuclear microsatellites [64]. Moreover, these small
populations are mainly distributed in various nature reserves that are under the jurisdiction
of several administrative departments in different provinces. Therefore, it is suggested to
establish an integrated supervision system and strengthen the coordinating management
for natural protected areas [67]. In contrast, it is suggested to enlarge the current protected
area for the Tianmu Mountain Area (TM) population of P. subaequalis.

Thirdly, the suitable habitats of P. subaequalis were predicted to increase in the future
climate scenario on the whole, but they became much more fragmented (Figure 5). As a
result, this may have been due to an adverse effect on its growth and distribution. Our
model also shows that the dominant variable affecting the distribution of P. subaequalis
is the precipitation of the driest quarter (Bio17), and that the species will move to the
northeast in China. So, we infer that the water demand of P. subaequalis will increase with
global warming. Consequently, it is of great importance to monitor the dynamics of the
P. subaequalis population over time, and its soil water content in forest communities.

In addition, the Central-China Mountain Area (CC) can also be used as an alternative
site to cultivate P. subaequalis for ex situ conservation, though there is no wild population
therein based on our analysis.

5. Conclusions

In this study, we applied the MaxEnt model to predict the current and future potential
distribution of P. subaequalis in China. Our results indicated that the first three leading
factors influencing its distribution were precipitation in the driest quarter (Bio17), the
mean temperature of the driest quarter (Bio9), and the annual average temperature (Bio1),
suggesting that precipitation-related variables may play a more significant role in limiting
the potential distribution of P. subaequalis than temperature-related variables. Our results
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also indicated that its actual distribution area was smaller than the projected suitable range,
which was mainly concentrated in the regions of DB and TM, eastern China. Our findings
highlighted that the two populations presented different responses to climate change under
global warming. Namely, the DB population changed insignificantly in a suitable habitat,
while the TM population increased slightly in area, migrating to the northeast on the whole.
Therefore, we propose to enhance the in situ conservation of the DB population in the
future and to enlarge the current protected area of the TM population for P. subaequalis. This
study contributes to the improvement of the conservation and management of P. subaequalis
in China, and it is also helpful for other endangered tree species with local populations that
respond differently to climate change.
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