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Abstract: Defects on a solid wood board have a great influence on the aesthetics and mechanical
properties of the board. After removing the defects, the board is no longer the standard size;
manual drawing lines and cutting procedure is time-consuming and laborious; and an optimal
solution is not necessarily obtained. Intelligent cutting of the board can be realized using a genetic
algorithm. However, the global optimal solution of the whole machining process cannot be obtained
by separately considering the sawing and splicing of raw materials. The integrated consideration
of wood board cutting and board splicing can improve the utilization rate of the solid wood board.
The effective utilization rate of the board with isolated consideration of raw material sawing with
standardized dimensions of wood pieces and board splicing is 79.1%, while the shortcut splicing
optimization with non-standardized dimensions for the final board has a utilization rate of 88.6%
(which improves the utilization rate by 9.5%). In large-scale planning, the use of shortcut splicing
optimization also increased the utilization rate by 12.14%. This has certain guiding significance for
actual production.

Keywords: wood processing; cutting stock problem; global optimization; genetic algorithm

1. Introduction

Solid wood furniture is preferred by people due to its unique aesthetic feeling and
superior material characteristics, and wood-based products can contribute to climate change
mitigation by prolonging the storage of carbon in the anthroposphere [1,2]. Unlike other
industrial products, wood is a naturally grown material and may present defects in random
positions on the board. In the production process, these defects have a certain impact on
the performance and aesthetics of the wood materials. Therefore, it is necessary to saw off
the defects on the raw materials, to apply a finger joint, and finally to piece together the
board. Wood is an anisotropic and orthotropic material with unique properties, color and
texture. Thus, the splicing of solid wood pieces usually needs to be conducted along one
direction [3]. Then, several pieces are connected in parallel according to the requirements.
As such, the splicing board surface is not a complete 2D layout problem. At present, most
enterprises adopt a manual layout in order to obtain a reasonable cutting scheme, and the
calculation process is very complex and does not necessarily yield a good layout result. In
addition, at present, most enterprises only consider a sheet cutting or splicing layout. If
the sheet material and layout are integrated together, the utilization rate of the solid wood
board will be greatly improved, and the production efficiency will be improved.

The wood board cutting stock problem (CSP) [4,5] refers to placing the required
standard boards of different lengths on original boards of different lengths. Under the
condition of meeting the size of standard boards, the original boards are fully utilized
to maximize the board utilization rate. In this integrated algorithm, there are two solid
wood board cutting stock problems: cutting and placing. The cutting stock problem, as a
typical NP-hard problem, has been widely studied. Cerqueira [6] proposed a change in
the constructive greedy heuristic that consists of building a cutting pattern by sorting in
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descending order the items of pair or odd length, with priority being given to those which
appear more frequently. Ayres [7] introduced a new model for integrated lot sizing, one-
dimensional cutting stock, and two-dimensional cutting stock problems, using a column
generation heuristic algorithm and applying a relax-and-fix technique to evaluate the
proposed model from a series of experiments. Wang [8] addressed an integrated scheduling
optimization of flow-shop production with a one-dimensional cutting stock in make-to-
order environments and developed a hybrid algorithm by integrating a local search method
and some efficient strategies under the nested partitions framework. Generally speaking,
the common solutions include the linear programming method, heuristic method, and
intelligent algorithms such as the genetic algorithm.

With the development of computer technology, artificial intelligence has continued
to develop. Artificial intelligence algorithms have been widely used in many fields [9],
such as image processing [10,11], path planning, and the cutting stock problem. The
genetic algorithm is the most classical intelligent algorithm, and many variants with better
performance have been produced under the continuous exploration of scholars. Tseng [12]
proposed a new block-based genetic algorithm for disassembly sequence planning based
on a comparison of Kongar and Gupta’s genetic algorithm [13] and Dijkstra’s algorithms.
Hacioglu [14] used an existing technique which combines a genetic algorithm and a neural
network to rapidly improve populations to overcome the disadvantage of evolutionary
algorithms for airfoil design problems, such as the high computational costs associated with
the usage of computational fluid dynamics solvers. Ruholla [15] proposed the fluid genetic
algorithm (FGA), changing the concepts such as chromosomes, individuals, crossover,
and mutation in GA, and as a result a better success rate and better convergence control
were presented. Li [16] proposed a hybrid genetic algorithm based on information entropy
and game theory in order to cope with the drawback of the traditional genetic algorithm
easily falling into a local optimum. Lopes [17] found that genetic algorithm combined
with random forest and random forest performs best and with high accuracy to estimate
machine productivity. Juan [18] introduced a genetic algorithm to minimize the waste
produced during the cutting process of rectangular figures on a sheet, and applied this
algorithm in a real case situation problem. The implementation of genetic algorithms
yielded savings of 10.55 % of the total waste area. The genetic algorithm keeps innovating
and improving the stability and efficiency of the algorithm.

In this paper, in order to obtain the global optimal solution of the layout of the board
after reassembly, a mathematical model considering the global processing loss is established.
The utilization rate of the whole board is optimized from the raw material to obtain the
global optimal solution of shear-splice. The exact loss between shearing and splicing and
direct splicing is compared by the experiments.

2. Materials and Methods
2.1. Imaging

In actual production, defect detection is performed on the image of a solid wood board
through several processing steps. The structure of the image acquisition system built in
this study is shown in Figure 1.

The core device of the CCD camera in the image acquisition system was a Linea
LA-GC-02K05B color line scan camera (Teledyne DALSA Co., Waterloo, ON, Canada).
The camera adopts high-sensitivity CMOS (complementary metal oxide semiconductor)
technology and the line frequency can reach up to 26 kHz, with high acquisition speed,
low noise, high single-line resolution, and high sensitivity. To improve the imaging quality
of the acquired image, it was necessary to reduce the influence of light conditions on the
acquisition effect during the data acquisition process, thus ensuring uniform illumination
and minimizing the light reflection in the data acquisition area. Therefore, a linear light
source LCOL-300-25 (HZN, shanghai, China) was selected to meet the requirement of
uniform illumination in the single-line area required by the linear CCD camera. When
collecting data, the scanning frequency was set to 1280 lines for processing once, and, after



Forests 2022, 13, 26 3 of 12

collecting data on the front of each sheet, a 2048 × 18,000 pixel image of the solid wood
board with a depth of eight bits was obtained. 
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Figure 1. Image acquisition device: (1) photoelectric sensor, (2) solid wood board, (3) linear light 
source, (4) CCD camera, (5) belt conveyor 

  

Figure 1. Image acquisition device: (1) photoelectric sensor, (2) solid wood board, (3) linear light
source, (4) CCD camera, (5) belt conveyor, and (6) sample solid wood floorboard.

2.2. Mathematical Model

Assuming that there are still t small pieces of boards after removing the defect, that s
types of standard boards need to be placed, and that the k-th wood specification i is sawn
to obtain the number of segments xki, the first constraint is as follows: x11 · · · x1s

...
. . .

...
xt1 · · · xts

×
 a1

...
as

 ≤
 l1

...
lt

. (1)

It can also be written as
∑

i
aixki ≤ lk, (2)

where ai denotes the standard length of wood of the first specification.
Considering the loss when cutting wood, each cutting will produce a certain loss;

taking the loss as cl, we get

∑
i

aixki − cl ×
(

∑
i

xki − 1

)
≤ lk. (3)

Thus, in order to achieve the highest utilization rate of wood, we can directly take the
total length of the final board length as the optimization goal; then, we need to obtain the
maximum of the total length, i.e.,

f1 = max

(
∑
i,k

aixki

)
. (4)

In order to maintain the consistency of the solid wood board’s texture, the splicing of
the board surface is generally first spliced according to the direction of texture, and then
several rows of wood board are glued according to the dimensions demand. Assuming that
the splicing board does not use wood from other sources, then the total number of each
specification wood required for splicing the desktop is less than or equal to the number
of each specification wood cutout; furthermore, assuming that a total of r pieces of board
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splicing are required and that the number of boards of the i-th specification used in row j is
mji, the second constraint is as follows:

∑
j

mji ≤∑
k

xki. (5)

Similar to Equation (1), the third constraint is as follows: m11 · · · m1s
...

. . .
...

mr1 · · · mrs

×
 a1

...
as

 =

 L1
...

Lr

. (6)

It can also be written as
Lj = ∑

i
aimji. (7)

Each time the board is fingered, a certain loss will be generated. Taking the loss of the
board during fingering as gl, we get

Lj = ∑
i

aimji − gl ×
(

∑
i

mji − 1

)
. (8)

The fingered board is bonded with glue according to the specification requirements,
and the final effective area is the maximum rectangle inscribed on the spliced graph. The
length of one edge of the rectangle is determined by the number of rows of the spliced
board, and the length of the other edge is determined by the length of the board with the
shortest row. Then, the optimization objective can be written as

f2 = max
(
min

(
Lj
))

. (9)

Thus, the final number of variables to be calculated is (r + t) × s, and the problem of
optimal cutting of boards is transformed into solving an (r + t) × s element optimization
problem. The final constraint number is r + t, where t is the number of wood segments after
removing defects, r is the number of long board blocks that need to be assembled, and s is
the number of standard sizes. The optimization problem can be written as

f2 = max
(
min

(
Lj
))

, Lj = ∑
i

aimji − gl ×
(

∑
i

mji − 1
)

s.t.


∑
i

aixki − cl ×
(

∑
i

xki − 1
)
≤ lk

∑
j

mji ≤ ∑
k

xki
, xki, mji ∈ N

. (10)

In the above process, in order to meet the standards of the factory’s processing and
circulation, there are two wastes. One is the standardized waste which comes from re-
moving defects to satisfied the standard size, and the other is the waste of materials cut
into rectangles after splicing. If the two processes of removing defects of the solid wood
board and finger-jointed board are optimized together, the utilization rate of wood can be
greatly improved in theory. Then, the first constraint will disappear. The corresponding
assumption is that there are still t small pieces of wood after removing defects, and that the
length of the k-th small piece of wood is lk. Thus, it is only necessary to consider the line
where the t small piece is, as well as whether the k-th small piece is arranged in the j-th
row, denoted as qjk.  q11 · · · q1t

...
. . .

...
qr1 · · · qrt

×
 l1

...
lt

 =

 L1
...

Lr

. (11)
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Considering the fingering consumption, the length of the j-th row for stitching can be
expressed as

Lj = ∑
k

qjklk − gl × (∑
k

qjk − 1), (12)

where qti is 0 or 1. The constraint is that small pieces of wood can only be used once; thus,

∑
i

qti ≤ 1. (13)

Accordingly, the final number of variables to be calculated is r × t, and the problem
of optimal cutting of boards is transformed into solving an r × t element optimization
problem. The final number of constraints is t, where r is the number of wood segments
after removing defects, and t is the number of long board blocks to be pieced out. The
optimization problem can be written as

f3 = max
(
min

(
Lj
))

, Lj = ∑
k

qjklk − gl × (∑
k

qjk − 1)

s.t. ∑
i

qti ≤ 1, qti ∈ [0, 1]
. (14)

The flow chart of solid wood board defect removal/board reconstruction is shown in
Figure 2.

The quality of the restitching method can be evaluated as follows:

f ′1 = f1
∑ lk

.

f ′2 = r× f2
∑ lk

.

f ′3 = r× f3
∑ lk

.

(15)

2.3. Elite Retention Strategy Genetic Algorithm

Genes in the genetic algorithm are not necessarily able to truly reflect the nature of
the problem to be solved. Thus, each gene is not necessarily independent of each other.
Rudolph [19] used the finite Markov chain theory to prove that the canonical genetic
algorithm (CGA), which only uses three genetic operators of crossover, mutation, and
selection, cannot converge to the global optimal value. This is due to the existence of
statistical error, according to the random number generated by the selection, whereby
using the proportional selection method may incorrectly reflect the individual fitness
selection, and high-fitness individuals may be eliminated. Secondly, crossover and mutation
operators may destroy the hidden high-order length and schema in individuals, which
may lead to the loss of optimal individuals in the current population in the next generation
(which will occur in the evolutionary process).

Elite individuals are the individuals with the highest fitness value searched by the
genetic algorithm, which have the best gene structure and excellent characteristics. The
advantage of elite retention is that, in the evolutionary process of the genetic algorithm, the
optimal individuals will not be lost and destroyed by selection, crossover, and mutation
operations. The elite retention algorithm [20] flow chart is presented in Figure 3.
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Figure 2. Defect removal/board reconstruction flow chart.

Forests 2022, 13, x FOR PEER REVIEW 3 of 9 
 

 

T≤ITER

Start

Initialize N individuals

End

Record population information

Select N parent from current 
population independently

Cross the N parent from current 
population independently

Mutate these N crossed 
individuals independently

Merge the two generation and get 
the population of 2N

Select N Individuals 

N

Y

 
Figure 3. Elite genetic algorithm flow chart. 

To find the best answer of 푥 , 푚  and 푚  in the best result of 푓 , 푓  and 푓 , real 
integer mixed coding was used to encode 푥 , 푚  and 푚  and the population was set to 
10,000, iteration was set to 2000, the mutation scaling factor of differential evolution was 
set to 0.6 and the single point crossover probability was set to 0.6 in the elite genetic algo-
rithm. 

  

Figure 3. Elite genetic algorithm flow chart.



Forests 2022, 13, 26 7 of 12

To find the best answer of xki, mji and mji in the best result of f1, f2 and f3, real integer
mixed coding was used to encode xki, mji and mji and the population was set to 10,000,
iteration was set to 2000, the mutation scaling factor of differential evolution was set to 0.6
and the single point crossover probability was set to 0.6 in the elite genetic algorithm.

3. Results

Figure 4 shows five pieces of solid wood board raw materials randomly selected from
a batch of SPF (Spruce-pine-fir), plain sawn, which are 1000 mm long, 100 mm wide, and
10 mm thick. Each board has some defects. The defects in the board will have a certain
impact on the mechanical properties and aesthetics of the splicing board. Therefore, it is
necessary to cut the defects from the board according to certain standard sizes.
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Figure 4. Five pieces of wood board.

3.1. Solid Wood Splicing Board with Standardized Pieces

According to the principle that knots need to be removed, the target detection algo-
rithm was used to identify the types and sizes of defects, and the cutting point of defects
was obtained, as shown in Figure 5a. After the wood defects were removed according to the
blue line, several segments of wood were obtained, as shown in Figure 5b. The wood size
after sawing is no longer in line with the standard size of processing. Thus, it is necessary
to cut it into a standard size.
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Figure 5. Defect removal. (a) The cutting points of defects. (b) Segments after removing defects.

After removing defects, the length of each segment of each board is listed in Table 1.
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Table 1. Length of each segment of each board.

Source Lengths

From board 1 27 441 224 241
From board 2 240 226 462 26
From board 3 317 278 239
From board 4 350 331 234
From board 5 199 93 120 246 297

There are six standard specifications of the factory, namely, 100 mm, 133 mm, 167 mm,
200 mm, 233 mm, and 267 mm. The genetic algorithm was used to optimize the segments,
and the planned cutting points are shown in Figure 6a. The remaining small blocks were
sawn, yielding the small blocks shown in Figure 6b. The red lines in Figure 6a are the
planned cutting points, and in Figure 6b, the small pieces with standardized length after
removing defects are presented.
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Figure 6. Elite retention genetic algorithm sawing results. (a) Planned cutting points. (b) Wood
after sawing.

The number and the standardized lengths of the small pieces obtained is listed in
Table 2.

Table 2. Length of each segment of each board.

Standardardized Lengths (mm) Number of Segments

100 10
133 5
167 4
200 3
233 4
267 1

The demanded width was 500 mm. Thus, the small pieces were spliced into rows
and then rows were jointed forming a board. As shown in Figure 7, the surface of the
board with standardized pieces was: width 500 mm, length 727 mm, and wood utilization
rate 79.1%.
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Figure 7. The layout of wood splicing board with standardized pieces. (a) Board spliced by row.
(b) Rectangular board.

3.2. Solid Wood Splicing Board without Standardized Pieces

Without the standardization process, by directly joining of pieces obtained after de-
fects removing, as shown in Figure 8, the final splicing board would have the following
dimensions: width 500 mm, length 814 mm, and wood utilization rate 88.6%.
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3.3. Two Methods in Large Scals

Random numbers (1–5), random positions, and random size defects were generated
on the 1 m long board. After removing the defects, a small block of solid wood boards with
random lengths was obtained. Similarly, the elite retention genetic algorithm was used
to arrange 20, 50, and 100 solid wood boards with defects according to two optimization
methods. Then different surfaces of the splicing boards were obtained from different
number of pieces with defects. In order to reduce the extreme situation in each case, ten
optimization experiments were carried out. The best result and average result of each case
are both presented in Table 3.

Table 3. Results of optimization experiments.

Number of Boards
Standardized Non-Standardized

Average Best Average Best

20 0.4479 0.6404 0.6844 0.8359
50 0.4955 0.6637 0.6465 0.8743
100 0.5122 0.6663 0.7034 0.8134
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Obviously, the wood utilization rate of the board after the removal of defects was
higher without the standardization process. Under the current specifications, the utilization
rate of the board processing strategy through the standardization process was about 60–80%
at best, while the utilization rate of the nonstandard board processing strategy was about
80–90% at best. Thus, the utilization rate of the board processing strategy without the
standardization process planned by the elite retention genetic algorithm could be increased
compared with the standardized process. With the increase in production volume, the non-
standardized board processing strategy was also improved compared with the standardized
board processing strategy. The utilization rate of scales of 20, 50, and 100 were increased
by 19.55%, 21.06%, and 14.71%. The flexible sawing and splicing of solid wood board
processing on the wood production line can greatly improve the utilization rate of wood.

4. Discussion

Method 1 requires (r + t) × s variables and r + t constraints, while Method 2 requires
r × t variables and t constraints. Thus, when

s <
r× t
r + t

, (16)

Method 1 has fewer variables. In large-scale applications, t is a constant; hence, with
the increase in the number of boards, r is usually much larger than t, yielding

s <
t

1 + t
r
≈ t. (17)

Therefore, when s < t, Method 1 requires fewer variables than Method 2. However,
l is always larger than s, so Method 1 can obtain higher time and space superiority in
processing.

The genetic algorithm objective function increases with the number of iterations
according to the curves shown below. The blue curve in Figure 9 is the function value of
optimal individuals in the genetic algorithm iteration, and the red curve is the average
function value of individuals in the population although the highest board utilization
cannot be obtained.

The function value of optimal individuals in Figure 9a is f ′1, which converges quickly,
with the best value of 0.83 after 750 generations in the elite genetic algorithm. The function
value of optimal individuals in Figure 9b is f2, with the best value of 727 after 1390 genera-
tions in the elite genetic algorithm. The function value of optimal individuals in Figure 9c
is f3, with the best value of 814 after 899 generations in the elite genetic algorithm.

Due to the randomness of wood defects, most of the board are difficult to meet the
standard specifications after removing defects, so Method 1 performs poorly in large-scale
simulation experiments.
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Figure 9. Genetic algorithm. (a) Cutting from raw board. (b) Arrangement of new board. (c) Short-
cut method.

5. Conclusions

In this paper, a shortcut method for defect removal in the board splicing of solid
wood was proposed, and a mathematical model was established and solved by the genetic
algorithm. The utilization ratio of two processing strategies was compared. The effective
utilization rate of the board using Method 1 was 79.1%, while the utilization rate when
using Method 2 was 88.6%, i.e., an improvement in utilization rate by 12.0%. For the
defects randomly generated on 1 m of board, at scales of 20, 50, and 100, the direct planning
results also obtained a higher board utilization rate. Compared with two-stage planning, the
utilization of wood boards in scales of 20, 50, and 100 were increased by 19.55%, 21.06%, and
14.71%. Thus, the effectiveness of Method 2 is confirmed. In industrial applications, larger
scale wood boards will be used, and the elimination of the intermediate standardization
process can greatly improve the utilization rate of solid wood.

Author Contributions: Conceptualization, Z.Z. and Y.Y. (Yutu Yang); methodology, Y.Y. (Yutu Yang);
software, Z.Z.; validation, Y.Y. (Yabin Yu) and Y.Y. (Yutu Yang); formal analysis, Z.Z.; investigation,
Y.Y. (Yutu Yang); resources, Z.Z.; data curation, Y.Y. (Yabin Yu); writing—original draft preparation,
Y.Y. (Yutu Yang); writing—review and editing, Y.Y. (Yabin Yu); visualization, Z.Z.; supervision, Y.Y.
(Yutu Yang); project administration, Y.Y. (Yutu Yang); funding acquisition, Y.Y. (Yutu Yang) All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the 2019 Jiangsu Province Key Research and Development
Plan by the Jiangsu Province Science and Technology under grant BE2019112.

Data Availability Statement: Not applicable.



Forests 2022, 13, 26 12 of 12

Acknowledgments: In addition to the funds we received, we should also like to thank China Jiangsu
Jiangjia Machinery Co., Ltd. (Jiangsu, China) for providing us with materials and support for the
image collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eslami, H.; Jayasinghe, L.B.; Waldmann, D. Nonlinear three-dimensional anisotropic material model for failure analysis of timber.

Eng. Fail. Anal. 2021, 130, 105764. [CrossRef]
2. Aryapratama, R.; Pauliuk, S. Life cycle carbon emissions of different land conversion and woody biomass utilization scenarios in

Indonesia. Sci. Total Environ. 2022, 805, 150226. [CrossRef] [PubMed]
3. Tang, M.; Liu, Y.; Ding, F.; Wang, Z. Solution to Solid Wood Board Cutting Stock Problem. Appl. Sci. 2021, 11, 7790. [CrossRef]
4. Sarper, H.; Jaksic, N.I. Evaluation of procurement scenarios in one-dimensional cutting stock problem with a random demand

mix. In Proceedings of the 28th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM)—Global
Integration of Intelligent Manufacturing and Smart Industry for Good of Humanity, Columbus, OH, USA, 11–14 June 2018;
pp. 827–834.

5. Cui, Y.D.; Song, X.; Chen, Y.; Cui, Y.P. New model and heuristic solution approach for one-dimensional cutting stock problem
with usable leftovers. J. Oper. Res. Soc. 2017, 68, 269–280. [CrossRef]

6. Cerqueira, G.R.L.; Aguiar, S.S.; Marques, M. Modified Greedy Heuristic for the one-dimensional cutting stock problem. J. Comb.
Optim. 2021, 42, 657–674. [CrossRef]

7. Ayres, A.O.C.; Campello, B.S.C.; Oliveira, W.A.; Ghidini, C.T.L.S. A Bi-Integrated Model for coupling lot-sizing and cutting-stock
problems. OR Spectr. 2021, 43, 1047–1076. [CrossRef]

8. Wang, W.; Shi, Z.; Shi, L.; Zhao, Q. Integrated optimisation on flow-shop production with cutting stock. Int. J. Prod. Res. 2019,
57, 5996–6012. [CrossRef]

9. Zhu, H.; Xie, C.; Fei, Y.; Tao, H. Attention Mechanisms in CNN-Based Single Image Super-Resolution: A Brief Review and a New
Perspective. Electronics 2021, 10, 1187. [CrossRef]

10. Xie, C.; Tao, H. Generating Realistic Smoke Images With Controllable Smoke Components. IEEE Access 2020, 8, 201418–201427.
[CrossRef]

11. Xie, C.; Zhu, H.; Fei, Y. Deep coordinate attention network for single image super-resolution. IET Image Processing 2021, 16, 273–284.
[CrossRef]

12. Tseng, H.E.; Chang, C.C.; Lee, S.C.; Huang, Y.M. A Block-based genetic algorithm for disassembly sequence planning. Expert Syst.
Appl. 2018, 96, 492–505. [CrossRef]

13. Alshibli, M.; El Sayed, A.; Kongar, E.; Sobh, T.M.; Gupta, S.M. Disassembly Sequencing Using Tabu Search. J. Intell. Robot. Syst.
2016, 82, 69–79. [CrossRef]

14. Hacioglu, A. Fast evolutionary algorithm for airfoil design via neural network. AIAA J. 2007, 45, 2196–2203. [CrossRef]
15. Jafari-Marandi, R.; Smith, B.K. Fluid Genetic Algorithm (FGA). J. Comput. Des. Eng. 2017, 4, 158–167. [CrossRef]
16. Li, J.C.; Li, L. An Improvement Proposal of Genetic Algorithms Based on Information Entropy and Game Theory. In Proceedings

of the 6th International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain, 22–25
October 2019; pp. 36–43.

17. e Lopes, I.L.; Araújo, L.A.; Miranda, E.N.; Bastos, T.A.; Gomide, L.R.; Castro, G.P. A comparative approach of methods to estimate
machine productivity in wood cutting. Int. J. For. Eng. 2021, 1–13. [CrossRef]

18. Rodríguez Noriega, J.C.; Coronado-Hernández, J.R.; Leottau, S. Waste reduction in Rectangular Figure Cutting using a Genetic
Algorithm. Cienc. Y Tecnol. De Buques 2016, 10, 19–26. [CrossRef]

19. Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96–101. [CrossRef] [PubMed]
20. Chen, J.; Xiao, Z. Research on Adaptive Genetic Algorithm Based on multi-population Elite Selection Strategy. In Proceedings of

the 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), Beijing, China, 8–11 September
2017; pp. 108–112.

http://doi.org/10.1016/j.engfailanal.2021.105764
http://doi.org/10.1016/j.scitotenv.2021.150226
http://www.ncbi.nlm.nih.gov/pubmed/34536883
http://doi.org/10.3390/app11177790
http://doi.org/10.1057/s41274-016-0098-y
http://doi.org/10.1007/s10878-021-00695-4
http://doi.org/10.1007/s00291-021-00647-8
http://doi.org/10.1080/00207543.2018.1556823
http://doi.org/10.3390/electronics10101187
http://doi.org/10.1109/ACCESS.2020.3036105
http://doi.org/10.1049/ipr2.12364
http://doi.org/10.1016/j.eswa.2017.11.004
http://doi.org/10.1007/s10846-015-0289-9
http://doi.org/10.2514/1.24484
http://doi.org/10.1016/j.jcde.2017.03.001
http://doi.org/10.1080/14942119.2021.1952520
http://doi.org/10.25043/19098642.138
http://doi.org/10.1109/72.265964
http://www.ncbi.nlm.nih.gov/pubmed/18267783

	Introduction 
	Materials and Methods 
	Imaging 
	Mathematical Model 
	Elite Retention Strategy Genetic Algorithm 

	Results 
	Solid Wood Splicing Board with Standardized Pieces 
	Solid Wood Splicing Board without Standardized Pieces 
	Two Methods in Large Scals 

	Discussion 
	Conclusions 
	References

