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Abstract: Even though studies on forest carbon storage are relatively mature, dynamic changes in
carbon sequestration have been insufficiently researched. Therefore, we used panel data from 81
Pinus kesiya var. langbianensis forest sample plots measured on three occasions to build an ordinary
regression model and a quantile-regression model to estimate carbon sequestration over time. In the
models, the average carbon reserve of the natural forests was taken as the dependent variable and the
average diameter at breast height (DBH), crown density, and altitude as independent variables. The
effects of the DBH and crown density on the average carbon storage differed considerably among
different age groups and with time, while the effect of altitude had a relatively insignificant influence.
Compared with the ordinary model, the quantile-regression model was more accurate in residual
and predictive analyses and removed large errors generated by the ordinary model in fitting for
young-aged and over-mature forests. We are the first to introduce panel-data-based modeling to
forestry research, and it appears to provide a new solution to better grasp change laws for forest
carbon sequestration.

Keywords: panel data quantile-regression model; carbon reserve of Pinus kesiya var. langbianensis;
dynamic change of forest carbon reserve

1. Introduction

Forests are the largest terrestrial ecosystems and play an important role in the global
carbon cycle [1–4]. Recently, many studies have focused on forest biomass and carbon
storage [5–9], and accurate estimation of forest carbon storage has become an important
part of global climate change and carbon cycle research [10,11]. The traditional sample
inventory method, vorticity correlation method, and model estimation method all have
certain limitations for estimating forest carbon storage [12]. With the development of
science and technology, the forest carbon storage estimation method based on remote
sensing technology is one of the main estimation methods at present [13]. However,
data used in these carbon storage studies have been generally collected from different
geographical locations. The environment has an effect on them [14]. These data are often
not well-correlated or follow spatially non-normal distributions [15]. A large number of
spatial models have been applied [9,16,17], such as the GWR (Geographically weighted
regression model), GWRK (Geographically weighted regression kriging model) [18], LMM
(Linear mixed model), SEM (Spatial error model), and SLM (Spatial lag model), etc.

The methods of these models consider the spatial autocorrelation in the process of
spatial data modeling so that better model parameters can be obtained. More importantly,
the unbiased estimation of the model’s standard error can improve the statistical test.
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However, all of the above studies were performed by collecting data from a static cross-
section. Furthermore, even over the entire period of study, the same problem may emerge
due to constant tree growth and/or changes in forest carbon fixation capacity [19–23].

In traditional modeling, regression results can be used to evaluate and test the mean
reversion. Potential correlations between tail data of variables are difficult to capture, and,
hence, it is impossible to cover all characteristics of the spatial distribution of forest carbon
reserves. Moreover, when the average and variance for different distribution models are
the same, results obtained through the mean value regression are unable to reveal their
differences.

Quantile regression (QR) is often used to solve the problem, which relies on condi-
tional quantiles of dependent variables to realize the regression of independent variables,
expressed as Q(Y|X = x) = x′β(τ). With different quantiles of dependent variables selected,
different regression models can be obtained for interpreting the relationship between the
dependent and independent variables [24].

Panel data models are a type of model used in modern theoretical econometrics,
where data collection comes from many individuals at many time points, forming two-
dimensional data (i.e., data in time- and cross-section dimensions) [25,26]. With data
volume generally being several or even tens of times greater than one-dimensional data,
panel data can contain more information of greater estimation accuracy. Additionally,
panel data can be used to remove the problem of multicollinearity, increase the degrees of
freedom in estimations, and build and test complicated structural relationships between
variables [27].

Because panel data are two dimensional, when they are used in regression, both
significant differences among individuals at the same time and for any specific time cross-
sections can be accommodated [28]. Such differences can be expressed in different intercepts
on the time and cross-section axes. Based on these principles, a panel data quantile-
regression model [29] could be built to study the dynamic change of forest carbon reserves.

On this basis, we collected carbon sequestration measurement data from natural forests
of Pinus kesiya var. langbianensis to analyze changing trends. Then, in association with forest
and topographical factors, we searched for a way to more accurately estimate forest carbon
reserves when data were not normally distributed, such as with the occurrence of peaks or
fat tails, and the factors influencing the dynamic change of carbon reserves and exploring
laws of change. The focus of our research was to discuss whether a panel data model can
be applied to solve forest problems.

2. Research Data
2.1. Sample Plot Data

Pinus kesiya var. langbianensis is an evergreen tree in the family Pinaceae, and is a
geographical variety of Pinus kesiya Royle ex Gordon. It tends to grow in the sun and can
extend its roots deep underground. It prefers high temperature and moisture sites and
cannot tolerate cold, drought or barren soil. It is widely distributed in Yunnan provinces,
where south subtropical and tropical climates prevail, such as Malipo, Simao, Pu’er, and
Jingdong in the south and Luxi in the west. In these areas, at altitudes from 600 to 1700 m,
there are broad valleys with low mountains at the periphery of basins, hills, and mountain
land on both sides of rivers. The annual average temperature is between 17 and 22 ◦C, the
annual precipitation is more than 1500 mm, and relative humidity is above 80%. Pinus
kesiya var. langbianensis has become an important species in Yunnan plantations in recent
years because of its rapid growth and extensive uses. In distribution areas and forest
stock, it accounts for 11% of Yunnan forests and has enormous economic value, ecological
functions, and carbon sequestration benefits.

We used data from three Yunnan forest surveys of 123 permanent sample plots (in the
years 2007, 2012, and 2017) where Pinus kesiya var. langbianensis is the dominant species.
After the removal of human interference, 81 plots (with the area of 0.08 hectares) are left in
each phase. The data covered every Pinus kesiya var. langbianensis distribution area, and the
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geographic location (GPS coordinates) and origin (artificial or natural) were recorded for
each plot. Tree tallying was conducted, and forest stand variables were obtained, including
the average DBH (cm), age groups (determined on average age and origin), crown density
(ratio of canopy vertical projection area to plot area, no unit), and stock volume (m3 per
hectare).

Dem (ASTER GDEM V3) data were also collected to extract terrain characteristics. This
includes the altitude (the central point of the sample plot, m), topographic position index
(TPI, the average of the central point and the surrounding elevation), terrain ruggedness in-
dex (TRI, the average between central elevation minus surrounding elevation), topographic
wetness index (TWI, physical indicators of the influence of regional topography on runoff
direction and accumulation), and solar radiation (total annual solar radiation, kWh/m2Y).

Three years’ worth (2007, 2012, 2017) of meteorological records were collected from the
28 weather stations in the provinces of Yunnan. Kriging interpolation was used to obtain
the temperature and precipitation data from these weather stations for each sample plot in
this study at interpolation precision >80%.

Sample plot distributions are shown in Figure 1 and stand statistics in Table 1.

Table 1. Descriptive statistics of fitted variables used in this study.

Variable Year N Mean S.D. Minimum Maximum

Avg_DBH (cm)

2007 81 15.31 5.83 6.2 28

2012 81 15.81 5.57 7.6 28

2017 81 17.20 5.13 3.1 30.1

Crown Density

2007 81 54.22 19.59 22 88

2012 81 55.52 19.26 22 85

2017 81 59.24 15.67 22 85

Stock Volume
(m3 per hectare)

2007 81 96.85 54.45 2.63 272.99

2012 81 112.63 54.29 24.86 284.93

2017 81 125.35 56.55 0.54 297.8

Temp (◦C)

2007 81 19.46 0.10 17.52 21.74

2012 81 27.1 0.10 26.10 28.70

2017 81 26.2 0.07 25.28 27.78

Precipitation (mm)

2007 81 1399.98 11.26 1213.70 1614.15

2012 81 1037.76 23.18 788.06 1554.10

2017 81 1405.97 15.17 1163.18 1779.02

Topographic
Position Index (TPI) 81 0.92 0.42 −7.5 11.88

Terrain Ruggedness
Index (TRI) 81 9.42 0.47 1.63 20.88

Topographic
Wetness Index

(TWI)
81 5.49 0.31 0.32 10.69

Solar radiation
(kWh/m2Y) 81 1179.86 79.8 29.2 2602.23

Altitude (m) 81 1450 260 930 2220
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Figure 1. Sample plot distribution.

2.2. Biomass and Carbon Content Determination

Pinus kesiya var. langbianensis is concentrated in the southern part of Yunnan provinces,
and the growth characteristics will not change. Further, in this paper, due to the short time
span, the change of carbon content in the atmosphere caused by human interference has not
been considered, only the change of natural carbon sequestration capacity of Pinus kesiya
var. Langbianensis was studied in order to fully reflect the environmental characteristics
of its distribution and take the conservation of resources into consideration. Therefore,
standard trees were collected from north, central, and south counties (Mojiang, Simao and
Lancang). So, 128 standard trees of 2013 were selected in this paper to calculate the forest
carbon storage of the sample plot. Table 2 records their basic statistics. After cutting down
a sample tree, the trunk was cut into 1 m long segments, and the trunk’s fresh weight was
obtained by adding together the weight of all segments. The crown was separated into
three levels, and three to five standard branches were selected from each level to measure
the branch’s and leaf’s fresh weight. The roots were totally excavated and classified into
three groups (>5 cm, 2–5 cm, and <2 cm) for measuring the fresh weight. Samples that
weighed c. 100 g were taken from the trunk, branches, leaves, and roots of three groups of
every sample tree and dried at 105 ◦C until reaching a constant weight. The dry weight
was recorded. The biomass of the trunk, branches, leaves, and roots was obtained based on
the proportion of the dry weight to the fresh weight. Dried samples of the trunk, branches,
leaves, and roots of the three groups were grounded, and c. 50 mg powder samples were
analyzed for carbon content using a C/N analysis meter.

Using the Pinus kesiya var. langbianensis biomass model [30], the individual tree
biomass in every permanent sample plot was obtained, and sample plot carbon content
was calculated by multiplying the biomass by the carbon content. Furthermore, the average
carbon reserve of each permanent sample plot was acquired. Table 3 includes the basic
statistics of the average carbon reserve of every sample plot for each of the three surveys.
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Table 2. Descriptive statistics of sample trees used in this study.

PLOT Trees
Number

DBH
(cm)

H
(m) Age C

(Kg)

Min. Max. Mean Std. Min. Max. Mean Std. Min. Max. Mean Std. Min. Max. Mean Std.

Mojiang 28 4.4 47 27.6 9.9 6.8 23.9 17.3 3.9 8 39 30 7 1.66 605.61 191.01 155.32
Simao 64 5.9 58.3 22.9 11.9 6.1 27.4 16.7 5.4 14 82 42 18 3.42 1323.4 174.27 223.38

Lancang 36 9.7 51.5 34.5 12.5 8.7 37 24.4 7.5 14 58 43 12 12.01 924.84 352.34 230.4

Table 3. The basic statistics of carbon storage (ton per hectare).

Variable (t) Year N Mean S.D. Minimum Maximum

C1 2007 81 25.73 15.65 0.74 73.08

C2 2012 81 27.93 15.72 6.74 76.27

C3 2017 81 32.17 15.55 0.15 79.72

3. Research Method
3.1. Method for Selection of Panel Data Model

For the purpose of comparison, an ordinary panel data regression model was built
based on data obtained. Ordinary panel data comes in three types: mixed-regression,
fixed-effect, and random-effect.

For a panel data:
yit = α + Xitβ + εit (1)

where, y is the explained variable, X is the explanatory variable, α is the intercept, β is the
coefficient, ε is the interference term, i is different individuals, and t is the time.

If there is no significant difference between individuals in terms of time and cross-
sections, it is a mixed-regression model, which can be estimated by the ordinary least square
(OLS) method. If the model intercepts are different for different sections or time series,
the regression parameters can be estimated by adding dummy variables to the model,
which is called the fixed-effect model. In the fixed-effect model, individual differences are
reflected in that each individual has a specific intercept term. When all individuals have the
same intercept term, individual differences are mainly reflected in the setting of a random
interference term, which is the random-effect model. The random-effect model requires a
generalized least square (GLS) estimation.

Deciding whether to use a fixed-effect model or a mixed-regression model is decided
by the result of the F-test. The basic idea of the test is that under the null hypothesis, and
the individual effect is not significant, the following relationship should be established:

H0 : α1 = α2 = · · · = αn

The F-test can be used to check whether the above hypothesis is true. The F-test is
expressed as follow:

F =
(R2

u − R2
r )/(n− 1)

(1− R2
u)/(nT − n− T)

∼ F(n− 1, nT − n− K) (2)

where, R2
u is the sum of squared residuals of the mixed-regression model, R2

r is the sum of
squared residuals of the fixed-effect model, K is the number of explanatory variables.

The F-test results showed that the null hypothesis was rejected, which means that
individual effects were present in the model. Whether it is a random- or fixed-effect model
can be determined using the Hausman test.

The basic idea is: under the null hypothesis, where αi is not correlated with other
explanatory variables, parameter estimates obtained by OLS estimation of the fixed-effect
model and GLS estimation of the random-effect model are unbiased and consistent but the
former is not effective. That is, under the null hypothesis, there should be no significant
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difference between the parameter estimates of the two. Based on this, we can construct
statistical tests for the estimation of the two parameters.

Assuming that βFE and βRE are OLS estimations of the fixed-effect model and GLS
estimations of the random-effect model, respectively, then:

Var[βFE − βRE] = Var[βFE] + Var[βRE]− Cov[βFE − βRE]− Cov[βFE − βRE]
′ (3)

According to the above ideas, then:

Cov[(βFE − βRE), βRE] = Cov[βFE, βRE]−Var[βRE] = 0 (4)

Thus:
Cov[βFE, βRE]= Var[βRE] (5)

Plug in Equation (3):

Var[βFE − βRE] = Var[βFE]−Var[βRE] = ψ (6)

The Hausman test is based on the following Wald statistics:

W = [βFE − βRE]
′ψ̂−1[βFE − βRE] ∼ χ2(K− 1) (7)

where, ψ̂ is calculated using the covariance matrix of fixed-effect and random-effect models.
If the null hypothesis is accepted, it indicates that individual effects and explanatory
variables are independent, and the random-effect model can be used, otherwise the fixed-
effect model can be chosen. Figure 2 provides a good representation of the model selection
process.
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3.2. Quantile Model Based on Panel Data

For the panel data quantile-regression model:

y′it = αi + βX′it + εit (8)

where, y′ is the explained variable, X′ is the explanatory variable, α is the intercept, β is the
coefficient, ε is the interference term, i is different individuals, and t is the time.

The linear conditional quantile equation for estimation of the quantile-regression
parameters for panel data is generally expressed as:

Qyit(τit|Xit, αi) = X′itβ
(
τj
)
+ αi (9)

β̂ = argmin
α,β

J

∑
j=1

T

∑
t=1

N

∑
i=1

ρ
(
yit − X′ itβ

(
τj
)
− αi

)
(10)
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3.3. Division of Age Groups

According to the “Forest Mensuration” and “Yunnan Forest Planning and Design
Survey Operation Rules”, the Pinus kesiya var. langbianensis natural forest samples were
divided into several age groups; the typical quantiles of 0.1, 0.25, 0.5, 0.75 and 0.9 were
selected for building the quantile-regression model. Moreover, because our study focuses
on Pinus kesiya var. langbianensis natural growth, sample plots that had been artificially
modified were omitted, and the remaining sample plots were classified into different age
groups (as shown in Table 4, and the young-aged, middle-aged, near-mature, mature, and
over-mature forests were defined).

Table 4. Number of samples from different age groups.

Age
Groups

Young-Aged
(≤20)

Middle-Aged
(21–30)

Near-Mature
(31–40)

Mature
(41–60)

Over-Mature
(≥61) Total

2007 24 20 29 15 3 81

2012 17 21 22 18 3 81

2017 4 28 25 18 6 81

3.4. Model Evaluation

The following statistics were used to evaluate model.

R2 = 1− SSE
SST
·SSE =

n

∑
i=1

(ŷi − yi)
2·SST =

n

∑
i=1

(yi − yi)
2 (11)

MSE =
SSE

n
(12)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (13)

AIC = n× ln (
SSE

n
) + 2p (14)

where yi is the observed forest carbon, ŷi is the predicted forest carbon, p is the number of
parameters, and n is the size of the data set.

3.5. Realization of the Method

Eviews7 and Stata were used to fit the quantile regression model, and ArcGIS10.6 and
Origin2017pob were used to draw the map of the study area (Figure 1), the residual map
(Figure 3), and prediction map (Figure 4).

4. Results
4.1. Base Model

The average carbon reserve (C) of each sample plot is taken as the dependent variable
of the model. For the selection of independent variables, the effects of environmental and
stand factors on forest carbon reserve were considered. Stepwise regression was used,
combined with our experience, to select the most suitable independent variables from the
average DBH, average tree height, crown density, average age, basal area of the dominant
species, and basal area per hectare. The average DBH and crown density were chosen
to reflect the size and density of a forest stand, respectively. Altitude was selected from
the topographic factors to reflect the sample plot topography. TPI, TRI, TWI and solar
radiation were insignificant (p > 0.05 and 0.01) in the modeling process, which means they
had little influence on the dynamics of Pinus kesiya var. langbianensis carbon reserves, and,
therefore, were not included in the modeling process. Air temperature and precipitation
were also insignificant and so were not included in the model. Correlation matrices are
shown in Table 5. The result reflects that average DBH, crown density, and altitude had a
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positive effect on forest carbon sequestration. There was a negative correlation between the
average DBH and crown density. Trees get taller with the higher crown density. However,
photosynthesis only works in a limited canopy, and DBH growth is inhibited. Studies
show that with the increase in altitude, the growth of the DBH will gradually slow down,
even appearing as negative growth. So, the DBH was also negatively correlated with
altitude [31].

Table 5. Correlation matrices of the analyzed variables.

C Avg_DBH Crown Density Altitude

C 1.0000 0.6366 0.3088 0.2286

Avg_DBH 0.6366 1.0000 −0.0902 −0.0819

Crown Density 0.3088 −0.0902 1.0000 0.1560

Altitude 0.2286 −0.0819 0.1560 1.0000

Based on parameter correlation test results, a multivariate linear model was finally
selected as the base model for simulating the dynamic distribution of forest carbon reserves,
expressed as:

yt = αt + β1tX1t + β2tX2t + β3tX3t + ut (15)

where, yt is the average carbon reserve of each sample plot, βit is the fitting parameter of
the model, ut is the error term, αi is the vector of unobservable random-effects of different
samples, X1 is average DBH (Avg_DBH), X2 is crown density (Crown Density), and X3 is
altitude (Altitude).

4.2. Test of the Panel Data Model

A short panel was set up with data collected from 81 fixed Pinus kesiya var. langbianensis
sample plots every other five years in three phases (after removing the artificially disturbed
sample plots from 123 fixed sample plots). Over the entire study period, the number of
young-aged sample plots dropped from 24 to 4, middle-aged increased from 20 to 28,
near-mature dropped from 29 to 25, mature increased from 15 to 18, and over-mature
increased from 3 to 6. For every variable, a unit root test is generally performed to prevent
pseudo-regressions. However, considering that the number of time points was smaller than
the number of variables (T < N), the test was deemed unnecessary.

We determined the type of random intercepts model according to the F-value of the
covariance test and then used the Hausman test to judge whether the model is a fixed- or
random-effect. The results are shown in Table 6. Based on the test results, a random-effect
model was chosen as the ordinary panel data model. This means the error term in the model
varies across time and cross-section, which becomes two random variables (cross-sectional
and temporal random error terms), rather than the intercepts in fixed-effect models.

Table 6. Model Selection.

Testing Method Statistics p-Value Results

F-test 10.18 0.0000 Rejected mixing effect

Hausman-test 2.14 0.5432 Random-effect model was superior
to the fixed-effect model
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4.3. Quantile-Regression Model for Panel Data

In the quantile regression based on Formula (15), five quantiles of 0.1, 0.25, median,
0.75, and 0.9 were chosen to represent young-aged, middle-aged, near-mature, mature, and
over-mature forests, respectively. The results of the regression are shown in Table 7. The
overall model-fit statistics are listed in Table 8.

Table 7. Regression result.

Independent
Variable Tradition

Quantile

0.1 0.25 Median 0.75 0.9

Avg_DBH 2.1523
(0.1176)

1.4653
(0.1441)

1.828
(0.2487)

2.1615
(0.1377)

2.4218
(0.273)

2.6163
(0.364)

Crown
Density

0.2531
(0.0323)

0.1744
(0.04021)

0.273
(0.0526)

0.3528
(0.0466)

0.3478
(0.0675)

0.3002
(0.0704)

Altitude 0.0138
(0.0038)

0.008
(0.0024)

0.0093
(0.0033)

0.0137
(0.0036)

0.015
(0.0043)

0.0169
(0.004)

Constant
term

−40.5316
(6.1252)

−27.7645
(5.8006)

−35.9047
(8.8007)

−46.319
(6.3789)

−45.8981
(6.7704)

−43.3377
(4.7224)

Notes: The numbers in brackets are the standard deviations of the coefficient values, and p-value of the coefficient
values less than 0.01.

Table 8. Model fitting and testing statistics.

Models R2 MSE AIC MAE

Tradition 0.59 89.85 1099.05 7.44

QR

0.1 0.60 88.11 1094.31 7.2

0.25 0.43 126.06 1181.33 8.87

Median 0.59 89.04 1096.86 7.28

0.75 0.45 120.61 1170.6 8.6

0.9 0.62 84.35 1083.71 7.03

4.4. Residual Examination

Residuals of the ordinary model were plotted for each survey year and shown accord-
ing to age groups. Likewise, the residual plots of the quantile model were drawn for the
three surveys, as shown in Figure 3.
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4.5. Model Prediction

To better compare the prediction accuracy of the two panel data models on Pinus kesiya
var. langbianensis carbon storage, the results of the ordinary panel data model based on
least squares, the quantile model, and the measured actual values were plotted as shown in
Figure 4.
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5. Discussion

This thesis is a good attempt to apply the ideas of panel data in economics for solving
problems in forestry. Previous research on dynamic forest carbon storage involved com-
plicated processing; it had to build up models for different periods, respectively, which
was tedious and time-consuming. A panel data model can effectively solve this problem.
Through the mixing of time series and cross-sectional data, panel data provides more infor-
mative data. The variability of variables is increased, the collinearity between variables is
weakened, and the df and effectiveness are improved. Panel data can also better detect and
measure effects that cannot be observed using purely cross-sectional data or time-series
data.

In order to better understand the application of panel data in forestry, this paper used
two models: an ordinary panel data model and a quantile-regression panel data model. For
the ordinary regression model, all variables were significant (p < 0.01), and their coefficients
were all positive, except for the constant term. Therefore, in the ten years from 2007 to
2017, the DBH, crown density, and altitude all had positive effects on Pinus kesiya var.
langbianensis natural forest carbon storage. The elasticity coefficient of the DBH was the
largest, at 2.1523, indicating that the average carbon sequestration increased by 2.15% when
the average DBH increased by 1%. Crown density had the second most important influence,
followed by altitude, which had the least effect.

In the quantile-regression results, average DBH coefficients significantly increased
from 1.4635 to 2.6163, indicating a positive effect at both low- and high-quantiles and that
it increased gradually from young-aged to over-mature forests. Crown density coefficients
similarly changed from low- to high-quantiles, but the degree of change was relatively
small. These results confirm the natural law that the amount of carbon sequestered in
the forest increases as the DBH and crown density rise. Even if the DBH only increases
slightly, forest carbon sequestration will change significantly, and it is especially true for
mature and over-mature forests. Altitude, exerting similar effects as the first two variables,
is statistically significant and has a positive regression coefficient. Although the variation
remains within 0.008, it suggests that trees growing at higher elevations (cooler places)
have a greater sequestration capacity. However, the changes were small, indicating that
its influence on carbon storage of differently aged groups of Pinus kesiya var. langbianensis,
was insignificant.

Through comparisons in Table 7, we found that coefficients estimated by the ordinary
model were at average levels. For the altitude, its effect on estimated average carbon storage
was small, but for the average DBH and crown density, large errors became apparent if
their data differed among different age groups to large extents.

Secondly, residuals estimated by the ordinary panel data model were obvious, regard-
less of the survey year (2007, 2012 or 2017). The residuals increased gradually with natural
forest carbon sequestration, and in terms of the age group, they were large in mature and
over-mature forests. For the quantile-regression model, the overall residual distribution
was more random, and there was no obvious heteroscedasticity. For young-aged and
over-mature forests especially, the residual distribution was significantly more clustered
compared to the ordinary panel data model. At the same time, compared with the ordinary
model residuals, those of the quantile model were distributed in a smaller range, especially
for young-aged and middle-aged forests. This provides further evidence for the unique
advantage of quantile regression in fitting data with extreme values and outliers, and the
effect of heteroscedasticity on the model is eliminated.

Table 8 showed that the quantile-regression model fit the data better at 0.1 quantiles
and 0.9 quantiles with a lower AIC, MSE, MAE and higher R2 than the ordinary regression
model. There’s not much difference between the statistics of model fitting and testing, but
this also shows that quantile panel data regression is more advantageous in estimating
young-aged and over-mature forests. A young-aged forest is the stage of forest growth
and development. An over-mature forest is a stage that has exceeded the mature stage and
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began to decline in growth and development, which can be cut. Accurate estimation of
these two parts can provide better assistance to forestry management and harvest.

The results of the two models partially overlap with measured values (Figure 4).
In terms of the age group, the quantile-regression results were closer to the measured
values of young-aged, mature, and over-mature forests, while the ordinary regression
results were relatively close to those of middle-aged forests, but for other age groups,
the differences are generally large. It normally overestimates data for young-aged and
middle-aged forests and underestimates data for near-mature up to over-mature forests.
When considering that forests classified into different age groups change over time, the
two model results were more different from measured values, especially for young-aged
forests, and underestimation generally increased. Yet, compared with the ordinary model,
the quantile-regression model produced results closer to reality, demonstrating that it can
solve overestimation for young-aged forests and underestimation for over-mature forests.

Studies have shown that the quantile-regression model is better than the OLS model in
the estimation of forest biomass and carbon storage, regardless of model fitting or sample
testing [32], which is similar to the dynamic law discussed in this paper.

Therefore, Pinus kesiya var. langbianensis carbon sequestration at different time points
can be predicted, and with the changing coverage of age groups considered, overall
trends can be identified to facilitate dynamic predictions. As we found, average carbon
sequestration of different age groups changes with time to some extent, with the greatest
difference in the young-aged and the least in the over-mature forest. The highest carbon
density in the first two surveys was in mature forests, while in 2017, it was for near-mature
forests. This means mature and near-mature forests have the strongest carbon sequestration
capacity, which is consistent with natural laws.

The meteorological data in this study was derived from “China Annual Surface
Climatological Data Set station”. There are only 28 stations in the whole province of Yunnan.
Altitude is not considered in the interpolation, so the interpolation results only represent
the average change of the region, with little difference, whereas the forest of Pinus kesiya
var. langbianensis is distributed in mountainous areas, and altitude is a significant-influence
factor. Altitude can influence the distribution and growth of forests to a certain extent by
affecting light, heat, runoff, and soil properties, thus affecting the carbon input of forest
ecosystems. This also shows from the side that the temperature and precipitation have an
impact on the carbon sequestration capacity of forests. Meanwhile, terrain characteristics
were collected in this paper, but none of them were significant. According to the research
results of this paper, the local variation of the terrain is not the main influencing factor,
which is also related to the scale of data collection.

The model needs further improvement, possibly to set up meteorological data collec-
tion stations in the sample plots or transform the data collection scale, and for different
forest species, the rule of changes in a longer period cannot be further discussed. In a
follow-up study, we will require more data collection in the future and incorporate more
environmental factors for improvement.

6. Conclusions

We built an ordinary model and a quantile-regression model using panel data from
243 sample plots of Pinus kesiya var. langbianensis in Yunnan provinces and used them in an
age-group-based analysis. We obtained the following conclusions:

(1) Only data that indicated continuous and natural changes were considered. Sample
plots where final felling had been conducted or where they were newly established were not
considered. In linear regression modeling based on panel data, only the stand factors that
were easily measured, such as the average DBH and crown density, were adopted to make
the model simpler and easier to apply. Additional factors such as the altitude and terrain
characteristics were also included to more fully cover environmental influences. Of these,
only altitude showed a good linear correlation with average carbon sequestration of the
natural forest sample plots. In summary, we selected the average DBH, crown density, and



Forests 2022, 13, 12 14 of 15

altitude. Altitude had relatively small effects on carbon sequestration, while the average
DBH and crown density had more significant effects. Changes in carbon content with the
DBH and crown density varied among different age groups and with time, while the effect
of altitude was consistent among different age groups.

(2) From the 2007 cross-sectional data results, the overall relative error and absolute
relative error of the quantile-regression model were lower than those of the ordinary
regression model in both residual analysis and model prediction. In terms of the age group,
the quantile-regression model was more accurate than the ordinary model for accurately
predicting carbon storage in young-aged and mature forests and significantly lowered
overestimation for young-aged forests and underestimation for over-mature forests.

(3) Because the structure of age groups changes over time, estimates of carbon seques-
tration by the models differed considerably from the actual measured values, and they
often suffered underestimation, especially for some young-aged. Even though it was a
common problem for both models, quantile model errors were smaller than for the ordinary
model. This shows that in ordinary modeling, where sample plots are taken as a whole
for evaluating effects, effects on different age groups are not determined. It also confirms
that the fitting effect of the quantile model is better than that of the ordinary model. This
model can also be used to predict values of different cross-sections and better grasp carbon
sequestration changes with time.

Panel data models are usually used in the field of economics and have not yet been
introduced into forestry research. We used this method for the first time in forestry research
and showed that two panel-data-based methods could be used to model forest carbon
sequestration because of its characteristic data with obvious trends. In this way, laws could
be explored to better understand the trend of development. This paper is an approach to
explore. Due to limited data access, explanations for more general laws of change over a
longer period and for other species could not be discussed and will require more studies in
the future.

Author Contributions: Writing—original draft preparation, formal analysis, C.L.; supervision, G.O.;
writing—review and editing, Y.F.; investigation, C.Z.; supervision, C.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China: 31800537; The Ten Thousand Talents Pro-
gram: YNWR-QNBJ-2019-064; Major science and technology project of Yunnan Province Technology:
202002AA00007-015.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable. For studies not involving humans.

Data Availability Statement: The datasets analyzed during the current study are available from the
Institute of Forestry Survey and Planning, but restrictions apply to the availability of these data,
which were obtained from the second and fourth author, and so are not publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fang, J.; Guo, Z.; Hu, H.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the

relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [CrossRef]
2. Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton,

R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [CrossRef]
3. Soimakallio, S.; Kalliokoski, T.; Lehtonen, A.; Salminen, O. On the trade-offs and synergies between forest carbon sequestration

and substitution. Mitig. Adapt. Strateg. Glob. Chang. 2021, 26, 1–17. [CrossRef]
4. Mader, S. Plant trees for the planet: The potential of forests for climate change mitigation and the major drivers of national forest

area. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 519–536. [CrossRef]
5. Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Hogberg, P.; Linder, S.; et al. The

global carbon cycle: A test of our knowledge of earth as a system. Science 2000, 290, 291–296. [CrossRef]
6. Granier, A.; Ceschia, E.; Damesin, C.; Dufrêne, E.; Epron, D.; Gross, P.; Lebaube, S.; Le Dantec, V.; Le Goff, N.; Lemoine, D.; et al.

The carbon balance of a young Beech forest. Funct. Ecol. 2000, 14, 312–325. [CrossRef]

http://doi.org/10.1111/gcb.12512
http://doi.org/10.1038/s41558-020-00976-6
http://doi.org/10.1007/s11027-021-09942-9
http://doi.org/10.1007/s11027-019-09875-4
http://doi.org/10.1126/science.290.5490.291
http://doi.org/10.1046/j.1365-2435.2000.00434.x


Forests 2022, 13, 12 15 of 15

7. Law, B.E.; Thornton, P.E.; Irvine, J.; Anthoni, P.M.; Van Tuyl, S. Carbon storage and fluxes in ponderosa pine forests at different
developmental stages. Glob. Chang. Biol. 2001, 7, 755–777. [CrossRef]

8. Hazlett, P.W.; Gordon, A.M.; Sibley, P.K.; Buttle, J.M. Stand carbon stocks and soil carbon and nitrogen storage for riparian and
upland forests of boreal lakes in northeastern Ontario. For. Ecol. Manag. 2005, 219, 56–68. [CrossRef]

9. Neilson, E.T.; MacLean, D.A.; Meng, F.R.; Arp, P.A. Spatial distribution of carbon in natural and managed stands in an industrial
forest in New Brunswick, Canada. For. Ecol. Manag. 2008, 253, 148–160. [CrossRef]

10. Gundersen, P.; Thybring, E.E.; Nord-Larsen, T.; Vesterdal, L.; Nadelhoffer, K.J.; Johannsen, V.K. Old-growth forest carbon sinks
overestimated. Nature 2021, 591, 21–23. [CrossRef] [PubMed]

11. Siddiq, Z.; Hayyat, M.U.; Khan, A.U.; Mahmood, R.; Shahzad, L.; Ghaffar, R.; Cao, K.F. Models to estimate the above and below
ground carbon stocks from a subtropical scrub forest of Pakistan. Glob. Ecol. Conserv. 2021, 27, e01539. [CrossRef]

12. Silva, H.F.; Ribeiro, S.C.; Botelho, S.A.; Liska, G.R.; Cirillo, M.A. Biomass and Carbon in a Seasonal Semideciduous Forest in
Minas Gerais. Floresta E Ambiente 2018, 25, e20160508. [CrossRef]

13. Reiersen, G.; Dao, D.; Lütjens, B.; Klemmer, K.; Zhu, X.; Zhang, C. Tackling the Overestimation of Forest Carbon with Deep
Learning and Aerial Imagery. arXiv 2021, arXiv:2107.11320.

14. Nie, X.; Guo, W.; Huang, B.; Zhuo, M.; Li, D.; Li, Z.; Yuan, Z. Effects of soil properties, topography and landform on the understory
biomass of a pine forest in a subtropical hilly region. Catena 2019, 176, 104–111. [CrossRef]

15. Liu, C.; Zhang, L.; Li, F.; Jin, X. Spatial modeling of the carbon stock of forest trees in Heilongjiang Province, China. J. For. Res.
2014, 25, 269–280. [CrossRef]

16. Smeglin, Y.H.; Davis, K.J.; Shi, Y.; Eissenstat, D.M.; Kaye, J.P.; Kaye, M.W. Observing and Simulating Spatial Variations of Forest
Carbon Stocks in Complex Terrain. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005160. [CrossRef]

17. Sun, W.; Zhu, Y.; Huang, S.; Guo, C. Mapping the mean annual precipitation of China using local interpolation techniques. Theor.
Appl. Climatol. 2015, 119, 171–180. [CrossRef]

18. Sun, Y.S.; Wang, W.F.; Li, G.C. Spatial distribution of forest carbon storage in Maoershan region, Northeast China based on
geographically weighted regression kriging model. J. Appl. Ecol. 2019, 30, 1642–1650. (In Chinese)

19. Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global
carbon sinks. Nature 2008, 455, 213–215. [CrossRef]

20. Litvak, M.; Miller, S.; Wofsy, S.C.; Goulden, M. Effect of stand age on whole ecosystem CO2, exchange in the Canadian boreal
forest. J. Geophys. Res. Atmos. 2003, 108, 171–181. [CrossRef]

21. Zaehle, S.; Sitch, S.; Prentice, I.C.; Liski, J.; Cramer, W.; Erhard, M.; Hickler, T.; Smith, B. The importance of age-related decline in
forest NPP for modeling regional carbon balances. Ecol. Appl. 2006, 16, 1555–1574. [CrossRef]

22. Williams, M.; Schwarz, P.A.; Law, B.E.; Irvine, J.; Kurpius, M.R. An improved analysis of forest carbon dynamics using data
assimilation. Glob. Chang. Biol. 2010, 11, 89–105. [CrossRef]

23. Zhao, M.; Yue, T.; Zhao, N.; Sun, X.; Zhang, X. Combining LPJ-GUESS and HASM to simulate the spatial distribution of forest
vegetation carbon stock in China. J. Geogr. Sci. 2014, 24, 249–268. [CrossRef]

24. Hallock, K.F.; Koenker, R.W. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156.
25. Jin, B.; Wu, Y.; Rao, C.R.; Hou, L. Estimation and model selection in general spatial dynamic panel data models. Proc. Natl. Acad.

Sci. USA 2020, 117, e201917411. [CrossRef]
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