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Abstract: This study was designed to estimate the variation in non-volatile carbon (C) content
in different above- and belowground tree parts (stem, living branches, dead branches, stumps,
coarse roots and small roots) and to develop country-specific weighted mean C content values for
the major tree species in hemiboreal forests in Latvia: Norway spruce (Picea abies (L.) H. Karst.),
Scots pine (Pinus sylvestris L.), birch spp. (Betula spp.) and European aspen (Populus tremula L.).
In total, 372 sample trees from 124 forest stands were selected and destructively sampled. As the
tree samples were pre-treated by oven-drying before elemental analysis, the results of this study
represent the non-volatile C fraction. Our findings indicate a significant variation in C content
among the tree parts and studied species with a range of 504.6 ± 3.4 g·kg−1 (European aspen, coarse
roots) to 550.6 ± 2.4 g·kg−1 (Scots pine, dead branches). The weighted mean C content values for
whole trees ranged from 509.0 ± 1.6 g·kg−1 for European aspen to 533.2 ± 1.6 g·kg−1 for Scots
pine. Only in Norway spruce was the whole tree C content significantly influenced by tree age and
size. Our analysis revealed that the use of the Intergovernmental Panel on Climate Change (IPCC)
default C content values recommended for temperate and boreal ecological zones leads to a 5.1%
underestimation of C stock in living tree biomass in Latvia’s forests. Thus, the country-specific
weighted mean C content values for major tree species we provide may improve the accuracy of
National Greenhouse Gas Inventory estimates.

Keywords: living biomass; greenhouse gas inventory; Norway spruce; Scots pine; birch; European aspen

1. Introduction

Forest ecosystems continuously exchange carbon dioxide (CO2) with the atmosphere
and are significant components of the global carbon (C) cycle [1–3]. In forests, living tree
biomass is a key CO2 sink due to the photosynthetic assimilation of CO2 from the atmo-
sphere [4,5]. During photosynthesis, atmospheric CO2 is converted into carbohydrates
and further integrated into the organic compounds that make up a plant’s structure [4–6].
The durability and inertness of tree tissue maintain C in organic form over a relatively
long period before it is returned to the atmosphere through respiration (oxidation of carbo-
hydrates), decomposition or disturbance [4,5,7]. Worldwide since 2020, many countries
have begun to count CO2 sequestration and storage in living tree biomass in their national
climate-change mitigation efforts as part of international climate policy agreements [2,8].
Thus, precise knowledge of the variation in C content of living tree biomass by species and
biome is required to accurately quantify forest C stocks, validate forest C accounting models
and support forest management strategies intended to maximize CO2 sequestration [9–11].

In tree tissues, C is bound in organic compounds, mainly cellulose, hemicelluloses,
lignin, extractable components and low molecular weight volatile compounds such as
alcohols, phenols, terpenoids and aldehyde [9,10,12]. As the C content of these compounds
varies considerably, the variation in total C content in tree tissues is largely determined
by the proportions of these organic compounds. The proportions of organic compounds
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also vary widely among tree species and are affected by a particular tree’s genetics and
age, the location in the tree (including tissue type and proportion of heartwood to sap-
wood and earlywood or latewood), environmental and growth conditions such as cli-
mate, soil characteristics, sunlight and concentration of tropospheric ozone (O3) and
other factors [5,9,10,12–17]. The lignin content and ratio of lignin to cellulose are com-
monly considered the most important predictors of C content in tree tissues because lignin
contains proportionally higher C content (up to 72% C) compared with other organic
compounds [9,13,18].

An increasing number of studies conclude that the widely used assumption of 50% C
content for all tree species and tissues as well as the simplified conversion factors recom-
mended by the Intergovernmental Panel on Climate Change (IPCC) [19] may significantly
over- or underestimate forest C stock in living biomass [5,9,10,13,15,18,20–22]. Thus, rec-
ommendations to use region-, species- and tissue-specific C fraction values aimed to reduce
the uncertainty of forest C stock estimates are becoming increasingly important for calcu-
lations for National Greenhouse Gas (GHG) Inventories [9–11,20,23]. The importance of
developing higher tier methods for calculating C turnover in the land use, land-use change
and forestry (LULUCF) sector is determined by the targets set to transform the European
Union (EU) economy and society to meet climate goals. According to the Revision of
the Regulation on the inclusion of GHG emissions and removals in the LULUCF sector,
Latvia must decrease GHG emissions in the LULUCF sector by more than 25 million tons
of CO2-eq (double the annual GHG emissions excluding LULUCF in Latvia in 2019) by
2030 and ensure continuous reduction of GHG emissions to compensate for emissions
in the agricultural and other sectors before 2050. Meanwhile, the ageing of forests and
disturbances caused by climate change is increasing pressure on forest ecosystems and tend
to turn forests into a net source of GHG emissions. These processes require urgent action
to ensure the resilient increase of forest C pools and to avoid increased GHG emissions
from soils. Accurate and verified tools for modelling C turnover in forests are key to
implementing the climate policy, particularly in the selection and projection of the effect
of measures intended to reduce GHG emissions and increase CO2 sequestration. Latvia’s
GHG inventory uses static (tree species and dimensions determined) biomass expansion
factors and default IPCC values to estimate C content in biomass, which leads to potential
over- or underestimation of C stock changes in living biomass and other C pools.

The main aims of this study were: (1) to evaluate variation in non-volatile C content
across different above- and belowground parts of major tree species in Latvia (Norway
spruce, Scots pine, birch and European aspen); (2) to develop country-specific weighted
mean C content values for major tree species and species-dominated forest stands.

2. Materials and Methods
2.1. Study Area

Our study was conducted in the hemiboreal forests in Latvia. The hemiboreal zone is
a transitional zone between the boreal and temperate forest of the nemoral zone in Europe
characterised by the coexistence of boreal coniferous species on poor soils and temperate
broadleaved tree species on fertile soils [24]. In total, 124 forest stands dominated by
4 different tree species (Norway spruce (Picea abies (L.) H.Karst.), Scots pine (Pinus sylvestris
L.), birch spp. (mainly silver birch (Betula pendula Roth)) and European aspen (Populus
tremula L.)) were selected. The selected forest stands represent different regions and tree
populations in Latvia. In this study, we analysed material chosen to study the national
biomass equations in Latvia [25]. In each of the selected forest stands, 3 sample trees
representing the range of the dimensions of the dominant tree species in the stand were
selected. Thus, the study material comprised a total of 372 sample trees (Table 1). Damaged
and rotten trees were not accepted as sample trees. The collection of study material was
performed from 2012 to 2014 during the dormant period when deciduous trees were leafless
and young shoots had matured.
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Table 1. Characteristics of sample trees.

Parameter, Unit Value
Tree Species

Norway Spruce Scots Pine Birch European Aspen

Number of
sample trees total number 81 102 105 84

Age 1, years
average 41 54 35 23
range 9–97 6–141 8–92 5–76

Stem height, m average ± S.E. 16.6 ± 1.0 17.3 ± 0.9 18.1 ± 0.8 16.6 ± 0.9
range 2.8–30.8 1.9–34.5 4.9–32.3 3.7–29.9

Diameter at breast
height, cm

average ± S.E. 17.5 ± 1.0 19.0 ± 0.9 14.7 ± 0.7 13.8 ± 0.9
range 2.4–36.3 1.5–45.3 2.7–37.2 2.8–34.1

1 Average tree age in stand.

2.2. Sampling Design and Chemical Analysis

A detailed sampling design for biomass estimation is described in Liepin, š et al.
(2018) [25]. The biomass was estimated by individual tree part: stem, living branches
(including needles for coniferous tree species), dead branches, stump and roots. Foliage as
a separate tree part was not included in the analysis. Not all the biomass fractions were
measured for all the sampled trees. In addition, there was a technical problem during
sample pre-treatment, during which several samples were damaged and excluded from
further analysis. The entire root system of the sampled trees was excavated manually
for 145 trees. The total fresh weight of the stem and branches was measured in the field
using field scales. The total weight of the stump and roots was determined in the spring or
summer following tree felling.

After tree felling, the crown was divided into 3 sections of equal length, and one
average-sized live branch was selected subjectively from the middle of each section. The
3 sample branches were weighed together in the field and sampled to determine the
average moisture of the living crown. In addition, one average-sized dead sample branch
per tree was collected from the lower part of the crown. After measuring the branches that
were selected for subsequent dry weight determination, all remaining branches were cut
off and weighed. The dry matter of the crown was calculated using the fresh to oven-dried
weight ratio.

The stems were cross-cut into 1 or 2 m sections starting from the base of the stem and
depending on the stem length (1 m sections for stems shorter than 20 m, 2 m sections for
stems longer than 20 m). To calculate the dry stem biomass, sample discs were collected at
the beginning of each stem section. Sample discs were also collected at the height of 1.3 m
and the midpoint of the first section. The section biomass was calculated by multiplying
the section mass by the section fresh to dry weight ratio calculated from the sample discs
located at the ends of the stem sections; for the top section, however, only the base sample
disc was used. The biomass of individual stem sections was summed to obtain the total
stem biomass.

The entire root system of the sampled trees was excavated manually with hand tools
to minimise the loss of the smallest roots. After root excavation and transportation to the
processing location, the belowground parts were washed with a high-pressure water pump
to remove all soil particles. To calculate the dry root biomass, each root system was divided
into 3 sections:

• Stump—monolith (both above- and belowground portions), nondifferentiated parts
of some roots;

• Coarse roots—diameter greater than or equal to 2 cm;
• Small roots—diameter less than 2 cm.

To calculate the dry weight of each belowground fraction, 1 sample disc was collected
from the middle of the stump, 3 different diameter root discs were collected from the coarse
roots, and 3 full-length roots less than 2 cm in diameter were collected to represent the
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small root biomass. The total belowground dry biomass was represented by the sum of the
root fractions based on the individual fresh to oven-dry weight ratios of each part.

The dry weight of all samples was measured in the laboratory after drying at a
temperature of 105 ◦C until a constant weight was reached.

For C content analysis, 1 medium-sized live branch (including needles for coniferous
tree species), 1 dead branch and the belowground samples used for dry weight determina-
tion were used. In addition, 2 sample discs were collected from the stem at 1/6 and 2/3 of
the total height (Figure 1). All samples used for dry weight and C content determination
contained proportional shares of heartwood, sapwood and bark.
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Figure 1. Tree part sampling design for C content analysis. All samples contained proportional shares
of heartwood, sapwood and bark. Living branches of coniferous tree species contained proportional
shares of needles, deciduous trees were leafless.

In the laboratory, each of the individual tree part samples (oven-dried at 105 ◦C until
a constant mass was reached) was cut into small pieces and ground into a homogenous
powder using Retsch SM 100 (Retsch GmbH, Hahn, Germany). Samples were analysed for
non-volatile C content using the LECO CR-12 elemental analyser (LECO Corporation, St.
Joseph, MI, USA) and recorded as C (g·kg−1).
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2.3. Data Analysis

The C content data were grouped according to tree species and part. Normality
of data distribution was tested with Quantile-Quantile plots (QQ Plots) and Shapiro–
Wilk tests, which approved that not all tested groups follow the normal distribution.
Thus, non-parametric Kruskal-Wallis tests were used to evaluate differences in average
C content values (including weighted mean C content values) between different tree
parts or species. Correlation (Pearson’s r) and regression analyses were used to quantify
associations between the C content in different tree parts and several tree parameters (age,
stem height, diameter at breast height). Both Kruskal-Wallis tests and Pearson’s r were
conducted with a significance level of p < 0.05. All statistical analyses were carried out with
R [26].

Using the biomass and C content values of each tree part, the weighted mean C content
(WMCC) for a single tree was calculated as follows [21]:

WMCC =
∑(Bi × Ci)

∑ Bi
× 100, (1)

where Bi is the dry biomass of tree parts (kg tree−1), Ci is the C content in tree parts (g·kg−1)
and i is the tree part.

The total C stock in living trees, including both above- and belowground tree parts in
Latvian forests, was calculated using the species-specific weighted mean C content values
determined within the present study (Table 2) and the National Forest Inventory (NFI)
data (3rd cycle, 2014–2018) on tree biomass in forest land in Latvia. Values for tree species
not included in the present study were estimated by type; the average weighted mean
C content value of Scots pine and Norway spruce was used for other conifers, and the
average weighted mean C content value of birch and European aspen was used for other
deciduous tree species.

Table 2. Weighted means of C content in the tree for four main tree species in Latvia. Weighted means
were calculated based on the proportional distribution of biomass of different tree parts. Different
letters show statistically significant differences (p < 0.05) between different tree species within the
same tree part.

Tree Part Values
Weighted Mean C Content in Tree, g·kg−1

Norway Spruce Scots Pine Birch European Aspen

Aboveground parts
average ± S.E. 524.4 ± 1.4 a 530.4 ± 1.3 b 520.6 ± 1.4 c 510.2 ± 1.3 d

median 524.2 531.3 520.4 509.8
range 483.9–551.7 467.2–562.9 487.8–559.7 480.9–534.6

Belowground parts
average ± S.E. 529.9 ± 2.6 a 531.5 ± 2.4 a 527.9 ± 1.7 a 507.4 ± 2.1 b

median 529.0 529.4 528.9 508.4
range 497.2–559.3 486.5–567.0 502.9–549.6 482.1–531.9

Whole
average ± S.E. 526.5 ± 2.3 a 533.2 ± 1.6 b 521.4 ± 1.5 c 509.0 ± 1.6 d

median 526.4 535.5 521.5 507.9
range 489.8–546.2 502.1–554.7 501.3–550.5 490.0–527.4

Figure S1 shows the differences between C content values of different tree species
estimated within the present study (WMCC) and the IPCC 2006 [19] or Martin et al.
(2018) [18] values for temperate and boreal biomes.

3. Results

The C content in different tree parts varied significantly both within tree species
(Figure 2) and across tree species (Figure 3). The mean C content in different tree parts of
the studied tree species ranged from 504.6 ± 3.4 g·kg−1 (European aspen, coarse roots) to
550.6 ± 2.4 g·kg−1 (Scots pine, dead branches).
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outliers of the datasets. Different letters show statistically significant differences (p < 0.05) between different tree species
within the same tree part. The number of samples (N) for each grouping is shown.

In aboveground tree parts, living and dead branches were found to have the highest
mean C content for all tree species, while in belowground tree parts, small roots were found
to have the highest mean C content for all tree species except for Scots pine (Figure 2). The
smallest difference between the C content of dead branches and stem was 0.8% in birch,
whereas the largest difference was 2.5% in Norway spruce. The mean difference between
the C content of living branches and stem varied in a slightly narrower range from 1.1%
(Scots pine) to 2.5% (Norway spruce). Stumps and small roots tended to have higher C
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content than the stem for all tree species, reaching a maximum difference of 2.2% between
the mean C content values of small roots and the stem in Norway spruce.

Among the studied tree species, the highest C content in dead branches, stem and
stump was found for Scots pine; in living branches and coarse roots for Norway spruce
and small roots for birch. European aspen showed the lowest mean C content in all tree
parts (Figure 3).

Because the C content varied significantly between different tree parts (Figure 2), the
weighted mean C content was calculated for each tree species (Table 2) based on biomass
allocation in different tree parts. The largest weighted mean C content both in above- and
belowground parts was found in Scots pine, while the lowest weighted mean C content
was found in European aspen. More generally, conifers showed larger (p < 0.001) weighted
mean C content compared with deciduous tree species: 527.7 ± 1.0 g·kg−1 (N = 183) in
conifers to 516.0 ± 1.0 g·kg−1 (N = 189) in deciduous species for aboveground parts and
530.8 ± 1.8 g·kg−1 (N = 67) in conifers to 518.9 ± 1.8 g·kg−1 (N = 75) in deciduous specie
for belowground parts.

Our estimated C content values were higher than the IPCC 2006 [19] or Martin et al.
(2018) [18] values, and the greatest differences were observed when they were compared
with Martin et al. (2018) [18] values for angiosperms in temperate biomes (Figure S1).
The smallest difference (less than 2%) was observed for Norway spruce when compared
with IPCC 2006 [19] values and for European aspen when compared with Martin et al.
(2018) [18] values for boreal biomes (Figure S1).

A significant correlation (r > 0.50, p < 0.05) was found only between the C content
of the stem at 1/6 and 2/3 of tree height as well as between the C content in the stump
and coarse roots. In addition, correlation and regression analysis was used to identify the
most influential variables affecting both tree part-specific and weighted mean C content.
For Norway spruce, we found a moderate negative correlation between the C content of
belowground parts (stump and coarse roots) and tree age and stem height (r values from
−0.53 to −0.57, p < 0.01), but moderate positive correlations were found between the C
content of small roots and tree age, stem height and diameter at breast height (r values
of 0.54, 0.57 and 0.59, respectively, p < 0.01). For European aspen, a moderate negative
correlation was found between the C content of dead branches and stem height (r = −0.57,
p < 0.001), but for birch, moderate negative correlations were found between the C content
of living branches and tree age, stem height and diameter at breast height (r values of
−0.58, −0.62, −0.62, respectively, p < 0.001). In analyses of weighted mean C content
values for each tree species separately, only the Norway spruce weighted mean C content
of the whole tree was significantly influenced by tree age and size (Figure 4).
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Considering the proportional distribution of the living biomass of admixed tree species
in stands dominated by different tree species, weighted mean C content values for forest
stands were developed (Table 3). This confirmed that the effect of admixed tree species on
average weighted means of C content was negligible—the difference in weighted mean
C content values between dominant tree species and forest stands dominated by those
species was 0.01% for birch, 0.2% for Norway spruce, 0.4% for Scots pine and 0.7% for
European aspen, respectively.

Table 3. Weighted means of C content for forest stands dominated by Norway spruce, Scots pine,
birch or European aspen in Latvia. Weighted means were calculated based on the proportional
distribution of whole tree biomass of different species in forest stands, taking into account the
proportional distribution of admixed tree species. Different letters show statistically significant
differences (p < 0.05) between stands with different dominant tree species.

Values
Weighted Mean C Content for Forest Stands, g·kg−1

Stands Dominated
by Norway Spruce

Stands Dominated
by Scots Pine

Stands Dominated
by Birch

Stands Dominated
by European Aspen

Average ± S.E. 525.6 ± 0.1 a 531.3 ± 0.1 b 521.4 ± 0.1 c 512.7 ± 0.1 d

Median 526.4 532.1 521.4 512.0
Range 518.7–529.6 518.4–533.2 513.9–527.9 509.0–523.4

For all tree species other than coniferous tree species between 0 and 20 years old, most
of the C in living trees was stored in stems followed by living branches. The percentage
of C stock allocated to the stem trended higher with age for all tree species, reaching a
maximum mean value of 77.5% of the total C stock in birches more than 60 years old. On
the contrary, the C stock allocated to living branches trended lower with age for all tree
species, with a maximum mean value of 53.2% found in Norway spruces 0 to 20 years old.
The minimums mean value of 5.5% was found in birches more than 60 old. Similarly, the C
stock allocated to small roots trended lower with age for all tree species; the highest mean
value of 9.0% was found in birches 0 to 20 years old, and the lowest mean value of 1.9%
was found in Scots pine more than 60 years old (Figure 5).

In forest land in Latvia covering 3472 thousand ha, including proportional shares of
burned forest areas (0.06%), clear-cuts (1.39%), windrows (0.04%) and forested agricultural
lands (10.39%), the estimated total C stock in living tree biomass was 251.6 Mt, including
198.5 Mt C in aboveground parts and 53.1 Mt C in belowground parts. The use of IPCC
(2006) default C fraction values (48% for broad-leaved tree species and 51% for conifers [19])
may lead to an underestimation of the total C stock in living tree biomass in forest land
in Latvia by 12.8 Mt C or 5.1%. The underestimation of C stock in living whole tree
biomass using IPCC (2006) default C fraction values [19] may reach 18.8 t C ha−1 in forest
stands dominated by Scots pine, 24.1 t C ha−1 in forest stands dominated by Norway
spruce, 39.5 t C ha−1 in forest stands dominated by birch, and 27.1 t C ha−1 in forest stands
dominated by European aspen.
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4. Discussion

The total C content in tree tissues can be divided into fractions of non-volatile C and
volatile C, in which the volatile C fraction consists of C compounds of low molecular
weight [9,10]. As the tree samples were pre-treated by oven-drying before elemental analy-
sis, the results of this study represent the non-volatile C fraction. We estimated that the
weighted mean C content (whole tree) in the main tree species of hemiboreal forests in
Latvia ranged from 50.9 ± 0.2% (European aspen) to 53.3 ± 0.2% (Scots pine), respectively.
Although conifers showed statistically significantly higher weighted mean C content com-
pared with deciduous tree species (53.0 ± 0.1% vs. 51.6 ± 0.1%), the variation in weighted
mean C content within tree species exceeded the variation in weighted mean C content
between species. Substantial variations in wood C content both among tree species as
well as within individual trees were reported by both global level synthesis (e.g., [9,15,18])
and regional level studies (e.g., [5,21,27]). Our results were also consistent with previous
findings that conifers have higher wood C content than deciduous tree species [5,9] and
agree that the lignin content in the wood of conifer tree species is approximately 10% higher
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than that of deciduous tree species; lignin has the highest percentage of C compared with
all other organic compounds in the wood [5,28].

Within recent global estimates of wood C content across the world’s trees and forests,
Martin et al. (2018) calculated that mean C content in trees (divided into conifers and an-
giosperm trees) in boreal and temperate forests ranged from 46.5% (angiosperm, temperate
forests) to 50.1% (conifer, temperate forests) [18]. Ma et al. (2018), based on global estimates,
reported that the mean C content in stem wood was 47.7% in deciduous broad-leaved trees
and 50.5% in conifers but 46.6% and 48.4%, respectively, in roots [15]. Furthermore, they
concluded that plant C content showed significant latitudinal trends induced by climatic
factors and life forms [15]. Previously, Thomas and Martin (2012) estimated that, in tem-
perate/boreal biomes, the wood C content across species ranged from 43.4% to 55.6%, but
observed that the mean C fraction in stem wood was 48.8% in angiosperm tree species and
50.8% in conifer tree species [9]. The values Martin et al. (2018) [18], Ma et al. (2018) [15] and
Thomas and Martin (2012) found for mean C content in the wood of boreal and temperate
forests [9], as well as the IPCC 2006 values [19] (based on Lamlom and Savidge (2003) [5]),
were lower than those estimated in this study. Nevertheless, species-specific and regional
scale studies show C content values that are more similar to our estimates. For instance,
Laiho and Laine (1997) in Finland reported C content values in different tree parts ranging
from 51.8% (stem wood without bark) to 53.8% (foliage) for Scots pine; 50.9% (stem wood
without bark) to 54.0 (foliage) for Norway spruce and 49.7% (stem wood without bark) to
55.7% (bark) for birch, respectively [29]. In north-western Turkey, the weighted mean C
content in aboveground parts of Scots pine was found to be 52.0% [21], but, in Belgium,
Janssens et al. (1999) reported C content in different tree parts of Scots pine ranging from
48.9% (stem) to 55.4% (fine roots) [27]. In North America, the mean C content of poplars
(Populus tremuloides Michx. and Populus trichocarpa Torr. & Gray) wood was found to be
48.2% [5]. Gao et al. (2016) reported that the average total C content (sum of volatile and
non-volatile C) in the stem wood and bark of the major tree species in the boreal forests of
Canada were 50.5% and 56.2%, respectively [10]. When interpreting results and comparing
C content values obtained in different studies for selected tree species both natural aspects
(e.g., geographical location, climate, soil conditions, tree age, provenance, social position in
the stand) and methodological nuances such as the sampling method (for instance, stem
sample with or without bark), the selected sampling point on the tree, the sampling time
(as the content of mobile C compounds varies by season), the sample pre-treatment method
(for instance, oven-drying, ambient-temperature desiccating or freeze-drying) and the
analysis method must be considered [5,9,10,13,21,30]. Thus, any comparison of C content
values must be performed cautiously.

In comparing the C content of different tree parts, living and dead branches (wood
with a proportional share of bark) were found to have the highest mean C content of above-
ground tree parts for all tree species, while small roots were found to have the highest mean
C content of belowground tree parts for all tree species except Scots pine, which showed
the highest mean C content in the stump. Similarly, Tolunay (2009) [21] and Janssens et al.
(1999) [27] reported that the highest C content in the aboveground parts of Scots pine was
found in the branches, which aligns with our results. Furthermore, a trend of decreasing
C content in branches by diameter was found [13]. In our study, stem bark and foliage
(needles and leaves) were not included as separate tree parts, but several other studies
showed relatively higher C content values in these parts in particular (e.g., [10,29,31]). This
may be explained by a higher proportion of C-rich organic compounds, such as extractives,
lignin and suberin, in stem bark compared with other tree parts [10,13]. For instance,
Martin et al. (2015) [23] and Gao et al. (2016) [10] found extremely high bark C content
in boreal paper birch (Betula papyrifera) (65.0 ± 3.6% and 60.7 ± 1.4%, respectively) and
stressed that much of the variation in wood C content attributable to tissue type can be as-
sociated with variable C content in the bark. Furthermore, they revealed that the difference
in C content between bark and stem wood was generally higher for boreal tree species than
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for temperate tree species [10,23]. Our results represent wood with a proportional share of
bark for all tree parts.

The tree part-specific C content values obtained in the present study tend to show
negative correlations with stand age and tree size (stem height and diameter at breast
height). A similar pattern was found for Scots pine by Bert and Danjon (2006) [13], Be-
mbenek et al. (2015) [30] and Wegiel and Polowy (2020) [31]. Tree age determines the
sapwood to heartwood ratio as well as the proportional distribution of juvenile and mature
wood [9,13]. Juvenile wood generally has a higher proportion of earlywood [30,32] and
thus a higher extractive and lignin content than mature wood to support mechanical stabil-
ity and defence mechanisms [10]. Juvenile trees, therefore, have a higher C content [5,9,13].
More recent findings by Gao et al. (2016) [10] and Martin et al. (2013) [33] highlighted that
the tree age- and size-associated trend of total C content was likely led by variations in
the proportion of volatile C compounds. Furthermore, they speculate that the amount of
volatile C was the most important predictor of the overall variation in the total C content in
trees [10,33]. Most importantly, increasing evidence shows that disregarding the differences
in C content among different tree parts as well as the size- and age-dependent changes in C
content in tree biomass could lead to errors in estimating the C stock in living tree biomass
(e.g., [31,34]).

Along with other factors, tree age strongly determines the total C stock in living tree
biomass and the allocation of C stock across different tree parts [27]. The results of this
study showed that the relative contribution of living branches and small roots decreased
with tree age for all tree species, but the contribution of the stem trended higher with tree
age, reaching 77.5% of the total C stock in birches more than 60 years old. The C stock sum
of all aboveground parts ranged from 74.4% in European aspens 0 to 20 years old to 84.4%
in Scots pines 21 to 40 years old, and the highest C stock of belowground parts was found
in young European aspens (25.6%), with the lowest found in Scots pines 21 to 40 years old
(15.6%). In general, our estimates of C stock distribution across tree parts fell within the
ranges reported by previous studies (e.g., [21,27,29,35]).

Other studies have reported a much wider range of tree species- and tree part-specific
C content values for different biomes [9,15,33] than the default IPCC (2006) values [19].
Thus, the use of the default IPCC (2006) C content values may over- or underestimate C
stock in living tree biomass. Our study shows that using the default IPCC (2006) C content
values to estimate C stock in the living biomass of forest land in Latvia may lead to an
underestimation of 5.1% or 12.8 Mt C.

In forest stands dominated by Norway spruce, Scots pine, birch or European aspen,
the admixture of other tree species is common in hemiboreal forests. A combination of
weighted mean C content values for each tree species and NFI data (3rd cycle) showed that
the average proportion of C stock in living biomass formed by admixed tree species ranged
from 17% in forest stands dominated by Norway spruce to 30% in forest stands dominated
by European aspen. Customised weighted mean C content values were developed for forest
stands dominated by Norway spruce, Scots pine, birch or European aspen considering
the admixture of other tree species (Table 3). The difference in weighted mean C content
values for living tree biomass between dominant tree species and forest stands dominated
by those species reached 0.7% for European aspen (509.0 ± 1.6 vs. 512.7 ± 0.1 g·kg−1). The
difference for stands dominated by birch, Norway spruce and Scots pine was even more
negligible (<0.4%).

5. Conclusions

The results of this study provided tree part-specific and weighted means of C content
values for the main tree species in Latvia. Statistically significant C content variation
was found among different tree parts as well as among tree species with a range of
504.6 ± 3.4 g·kg−1 (European aspen, coarse roots) to 550.6 ± 2.4 g·kg−1 (Scots pine, dead
branches). Weighted mean C content values based on proportional biomass distribution of
different tree parts for each tree species are recommended to increase the accuracy of C
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stock in living tree biomass estimates in the National GHG Inventory (weighted mean C
content values for whole trees: 526.5 ± 2.3 g·kg−1 for Norway spruce, 533.2 ± 1.6 g·kg−1

for Scots pine, 521.4 ± 1.5 g·kg−1 for birch and 509.0 g·kg−1 for European aspen). Fur-
thermore, the results highlight that using the default IPCC C content values [19] results in
underestimation of the C stock in living tree biomass in Latvia.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12091292/s1, Figure S1: the difference in C content of different tree species between values
as estimated in this study (weighted means) and IPCC 2006 values for temperate/boreal biomes or
Martin et al. (2018) values for temperate and boreal biomes separately.
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