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Abstract: Remotely sensed imagery has been used to support forest ecology and management for
decades. In modern times, the propagation of high-spatial-resolution image analysis techniques
and automated workflows have further strengthened this synergy, leading to the inquiry into more
complex, local-scale, ecosystem characteristics. To appropriately inform decisions in forestry ecology
and management, the most reliable and efficient methods should be adopted. For this reason, our
research compares visual interpretation to digital (automated) processing for forest plot composition
and individual tree identification. During this investigation, we qualitatively and quantitatively
evaluated the process of classifying species groups within complex, mixed-species forests in New
England. This analysis included a comparison of three high-resolution remotely sensed imagery
sources: Google Earth, National Agriculture Imagery Program (NAIP) imagery, and unmanned aerial
system (UAS) imagery. We discovered that, although the level of detail afforded by the UAS imagery
spatial resolution (3.02 cm average pixel size) improved the visual interpretation results (7.87–9.59%),
the highest thematic accuracy was still only 54.44% for the generalized composition groups. Our
qualitative analysis of the uncertainty for visually interpreting different composition classes revealed
the persistence of mislabeled hardwood compositions (including an early successional class) and
an inability to consistently differentiate between ‘pure’ and ‘mixed’ stands. The results of digitally
classifying the same forest compositions produced a higher level of accuracy for both detecting
individual trees (93.9%) and labeling them (59.62–70.48%) using machine learning algorithms includ-
ing classification and regression trees, random forest, and support vector machines. These results
indicate that digital, automated, classification produced an increase in overall accuracy of 16.04% over
visual interpretation for generalized forest composition classes. Other studies, which incorporate
multitemporal, multispectral, or data fusion approaches provide evidence for further widening this
gap. Further refinement of the methods for individual tree detection, delineation, and classification
should be developed for structurally and compositionally complex forests to supplement the critical
deficiency in local-scale forest information around the world.

Keywords: visual interpretation; forest composition; digital classification; unmanned aerial systems;
unmanned aerial vehicles; precision forestry; random forests; support vector machines

1. Introduction

The accurate identification of tree species is an important component of successful
forest management [1,2]. For hundreds of years, societies have prepared land-cover maps
to better understand and manage the distribution of vegetation communities [3–5]. While
the methodologies to produce such spatial representations have changed dramatically, it is
apparent that these generalizations still serve as an important tool for solving a number of
environmental problems [6–8]. Many known drivers of ecosystem change and degradation
stem from land-cover and land-use conversion at the local scale. For forested areas, this can
mean a considerable reduction in neighboring area functionality and resource availability,
in addition to the influences of direct land-cover transformation. With land-cover maps,
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and especially forest-cover-type maps, serving to guide critical management decisions and
research understanding, it is important that their representations are as reliable and as
detailed as possible [2,9]. Remotely sensed data have come to provide some of the most
accurate and cost-effective ways of producing such forest composition information [1,10].
Modern high-spatial-resolution imagery, with 1 m or smaller pixel sizes, is becoming more
attainable and, as such, is spurring a multitude of precision forestry applications [11–14].
Freely available high-resolution imagery from sources such as Google Earth provide users
one such tool for compiling local-scale information [15–17]. Despite the undeniable benefits
that this imagery provides, the best practices to generate reliable and detailed forest-cover
information are yet undetermined.

The classification of remotely sensed imagery generates thematic maps (or layers)
by distinguishing individual features based on a selected classification scheme using the
spectral, textural, and temporal characteristics of those map classes. The creation of the-
matic maps is one of the most common applications of remotely sensed imagery [6,18].
While there is a rich history of manually interpreted thematic layers, countless techniques
have been developed using computer-based algorithms for reliably automating this proce-
dure [10,14,19–21]. Identifying tree species through visual interpretation takes a trained
specialist and remains time consuming for larger areas [2,10]. It is more common today,
that information on forest species is produced using automated approaches and high-
resolution remotely sensed data [2,14]. To sufficiently handle the increasing amount of
digital remotely sensed data, an approach called digital image processing has also been
developed to analyze and explore the characteristics of the acquired imagery [12,22,23].
The techniques for image classification are defined by several characteristics including
simple or advanced, supervised or unsupervised, pixel-based or object-based [23,24]. The
first distinction, simple or advanced, specifies whether the algorithm integrates machine
learning as a function for separating the defined classes. Following breakthroughs in
computer science, classification algorithms used in thematic mapping began to integrate
artificial intelligence (AI) or machine learning in the mid-1990s [20,24,25]. Common and
powerful examples of such classifications include decision trees (e.g., Classification and
Regression Trees (CART) or random forests) and the support vector machine (SVM) algo-
rithm [18,20,26,27]. The second distinction, supervised or unsupervised, specifies whether
the algorithm relies on training data to base its assignments (supervised classifications) or
if the user defines some clustering parameters used to divide the sample units to maxi-
mize separability (unsupervised classifications) [23]. While conventional, supervised and
unsupervised algorithms are still used frequently for remote sensing image classification,
machine learning methods have been found to generally perform better [20,28,29]. For
the final distinction, pixel-based classifications (PBC) denote algorithms which operate
on the smallest divisible unit of digital images, the pixel [23]. Object-based classifica-
tions (OBC), also known as OBIA, or GEOBIA, operate on homogenous image primitives,
also termed image areas, polygons, objects, or segments [30–33]. PBC relies heavily on
spectral data to assign class labels, taking into account only the spectral response of the
individual pixels [34–37]. The increasing spatial resolution of remotely sensed data has
caused subsequently greater challenges for positional registration. Due to these challenges,
classification methods have shifted towards using homogenous windows (e.g., 3 × 3 or
5 × 5 pixels) and/or image objects [38,39]. OBC uses region-growing, thresholding, or
clustering algorithms to segment images into more holistic units of analysis (e.g., individ-
ual tree crowns) [31,40]. OBC incorporates greater context into each individual unit, such
as size, compactness, spectral or geometric heterogeneity, and spectral averages, while
maintaining user defined thresholds for between object variability [41]. Like the preference
for OBC over PBC, machine learning algorithms often allow for a greater number of inputs,
reducing the reliance on spectral properties of individual pixels alone [41,42]. Deciding
between remote sensing platforms (e.g., satellite, airborne, UAS, etc.), algorithms and
classification approaches is a choice dictated by the specific needs of the project and the
characteristics of the source imagery [36,43]. In recent years, the increased flexibility and
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level of detail afforded by the culmination of technologies, such as in the case of Unmanned
Aerial Systems (UAS or UAV), have made such decisions even more difficult.

To confront the constraints of time, money, and effort on site-specific (i.e., precision)
forestry data collection, improved technologies need to be embraced [44–47]. No longer
considered ‘Dangerous, Dirty, and Dull contraptions’ [48], UAS have been used in recent
years for numerous high-precision applications [45,49–52]. Apart from the collection of raw
imagery and videos, UAS imagery provides valuable information from 3D models created
using Structure from Motion (SfM). The mathematical process behind SfM provides a nearly
autonomous workflow for reconstructing 3-dimensional (3D) surfaces from numerous 2D
projections (images) [53–55].

In our study we have two objectives. We compared the proficiency of visual interpre-
tation to digital processing for forest plot composition and individual tree identification
using UAS and other high-spatial resolution remotely sensed imagery, such as satellite and
airborne imagery. A similar investigation by Holbling et al., [56], compared manual and
semi-automated classification approaches for landslide mapping. They determined that
while there were obvious trade-offs in the techniques, the final accuracy varied depending
on the study site. Therefore, in our first objective, we quantify the accuracy achieved
when visual interpreting forest composition classes from three different sources of remotely
sensed imagery (Google Earth, National Agriculture Imagery Program (NAIP), and Un-
manned Aerial Systems (UAS)). We also provide a qualitative assessment of the uncertainty
in forest composition mapping from visual interpretation when using these image sources.
In our second objective, to provide a comparison of these results with digital (automated)
approaches, we quantified the individual tree identification accuracy achieved using the
NAIP and UAS imagery. Three supervised classification algorithms were used for this
test: CART, random forests, and SVM. This investigation provided a critical evaluation
of the methods used to support local scale forest management, which for many parts of
the world face a severe deficiency in coverage [14,57,58]. We also specifically targeted
UAS applications which can be adopted by a broad audience by implementing only true
color sensors and straightforward classification frameworks. Our research counters studies
which have adopted multispectral, multi-temporal, Light Detection and Ranging (lidar),
or hyperspectral data to UAS-based classifications of individual tree species [59–62]. In
doing so, we provided a novel investigation of the capability for UAS to enhance forest
inventory assessments and extend the availability of structurally diverse and species rich
forest species composition data and the most relevant methods to do so [45].

2. Materials and Methods
2.1. Study Areas

A combination of nine forested properties, located in southeastern New Hampshire
were studied during this research. The properties included a total of 605.15 hectares (ha) of
forested land comprising a variety of species compositions, forest successional classes, and
stand structures (Figure 1). These sites were selected due to their availability of field-based
inventory data (i.e., Continuous Forest Inventory (CFI) plots), and because of their limited
management. The average size of these properties is 70.36 ha, while the smallest (Moore
Fields) contains 17.2 ha of forested land cover. All but one of the properties, the Blue
Hills Foundation lands, are owned and managed by the University of New Hampshire
(Figure 2). These include College Woods, Kingman Farm, Thompson Farm, Moore Fields,
East Foss Farm, West Foss Farm, Dudley, and Burley-Demeritt [63]. The Blue Hills study
site is a contiguous forest conservation land, managed by the Harvard Forest.



Forests 2021, 12, 1290 4 of 30

Forests 2021, 12, x FOR PEER REVIEW 4 of 32 
 

 

Fields, East Foss Farm, West Foss Farm, Dudley, and Burley-Demeritt [63]. The Blue Hills 
study site is a contiguous forest conservation land, managed by the Harvard Forest. 

 
Figure 1. Representation of the forest diversity found within each of the woodland properties. Dis-
played are the plot center (blue dot) for a singular Continuous Forest Inventory (CFI) plot, as well 
as a 30 × 30 m buffer placed around this plot. This UAS image shows a complex New England Forest 
with a variety of species including eastern white pine (Pinus strobus, Linnaeus), eastern hemlock 
(Tsuga canadensis, (L.) Carrière), northern red oak (Quercus rubra, F. Michaux), red maple (Acer rubrum, 
L.), and American beech (Fagus grandifolia, (Ehrh.)). Each study site consisted of similarly high stem 
densities, with diverse and overlapping tree crowns. 

Figure 1. Representation of the forest diversity found within each of the woodland properties.
Displayed are the plot center (blue dot) for a singular Continuous Forest Inventory (CFI) plot, as
well as a 30 × 30 m buffer placed around this plot. This UAS image shows a complex New England
Forest with a variety of species including eastern white pine (Pinus strobus, Linnaeus), eastern hemlock
(Tsuga canadensis, (L.) Carrière), northern red oak (Quercus rubra, F. Michaux), red maple (Acer rubrum,
L.), and American beech (Fagus grandifolia, (Ehrh.)). Each study site consisted of similarly high stem
densities, with diverse and overlapping tree crowns.
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Ground-based inventory designs are unique for each land manager. For UNH prop-

erties, forest inventory data are collected so that communities can be managed to maintain 
research integrity and characteristics of the broader New England region [63]. Individual 
CFI plots are positioned systematically throughout each property with one plot per hec-
tare (2.47 acres) [64]. At each plot, an angle gauge methodology is used to elicit a proba-
bility proportional to the size selection of each measured tree [65]. The UNH woodlands 
office follows the regional recommendation of a basal area factor (BAF) 4.59 m2/ha·(20 
ft2/acre) inventory [64,66]. Any tree with a sufficient basal area and proximity from the 
plot center is recorded as a representative of the broader forest stand. Such methods give 
each plot a variable radius instead of a fixed size. Each selected tree had several biophys-
ical measurements taken, including species name, diameter at breast height (dbh), collec-
tion date, and a silvicultural code (i.e., live or dead). Bearing and distance from the plot 
center were also recorded for all measured trees. 

For several of the UNH woodlands included in this study, we elected to resample the 
plot locations and attributes ourselves to correct specific uncertainties. The newly 
resampled locations were chosen because the recorded positional accuracy appeared poor 
during exploratory data analysis and initial study [38]. The GPS receivers now available 
include Wide Area Augmentation System (WAAS) positional averaging for improved 

Figure 2. Location and unmanned aerial system (UAS) orthoimagery coverage of the nine study
areas in southeastern New Hampshire (NH). In blue: the Blue Hills conservation lands in Strafford,
NH. In red: the eight University of New Hampshire (UNH) study areas located near Durham, NH.

2.2. Field Reference Data

Ground-based inventory designs are unique for each land manager. For UNH proper-
ties, forest inventory data are collected so that communities can be managed to maintain
research integrity and characteristics of the broader New England region [63]. Individual
CFI plots are positioned systematically throughout each property with one plot per hectare
(2.47 acres) [64]. At each plot, an angle gauge methodology is used to elicit a probability
proportional to the size selection of each measured tree [65]. The UNH woodlands office
follows the regional recommendation of a basal area factor (BAF) 4.59 m2/ha·(20 ft2/acre)
inventory [64,66]. Any tree with a sufficient basal area and proximity from the plot center
is recorded as a representative of the broader forest stand. Such methods give each plot a
variable radius instead of a fixed size. Each selected tree had several biophysical measure-
ments taken, including species name, diameter at breast height (dbh), collection date, and
a silvicultural code (i.e., live or dead). Bearing and distance from the plot center were also
recorded for all measured trees.
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For several of the UNH woodlands included in this study, we elected to resample
the plot locations and attributes ourselves to correct specific uncertainties. The newly
resampled locations were chosen because the recorded positional accuracy appeared poor
during exploratory data analysis and initial study [38]. The GPS receivers now available
include Wide Area Augmentation System (WAAS) positional averaging for improved
registration with remotely sensed imagery. These study sites included College Woods,
Kingman Farm, East Foss Farm, and Thompson Farm.

At the Blue Hills conservation lands in Strafford, NH, CFI plots follow a randomly
generated distribution. Plot data, first collected in 2008, were distributed across upland
forests following a GIS analysis which removed areas within 50 m of parcel boundaries and
non-forested land cover. To minimize spatial autocorrelation and capture a larger extent of
the forest, a 50 m minimum spacing between plots was also defined. Individual inventory
plots were resampled in 2010 and 2017, with the addition of 20 new plots in 2017. At each
plot location, fixed area (20× 20 m) plots were generated in which all trees taller than 1.4 m
and with a dbh greater than or equal to 2.5 cm were measured (in cm). Vegetation recorded
with a dbh smaller than 12.7 cm (5 inches) was filtered, however, during our inventory
processing, non-tree vegetation was removed to present an estimate of species composition
following a similar procedure to that used for the other study sites.

The training data used for analysis of the digital classification approaches (i.e., indi-
vidual tree classifications) in this study were generated from a combination of (1) ground-
based inventory trees that were remeasured specifically for this analysis and (2) visual
interpretations of CFI plot measured trees that were cross-referenced by two experienced,
undergraduate technicians [67]. A high-precision EOS Arrow 200 RTK GPS (EOS Position-
ing Systems Inc, Montreal, QC, Canada) with positional averaging was used to gather the
locations of individual training trees for each class across several study areas [68]. These
individual tree measurements (reference data) consisted of trees from a variety of sizes
(dbh and height), as well as both dominant and co-dominant canopy classes. All of these
trees were located within the core area of the contiguous forest and, as such, were a part
of the contiguous forest canopy (see Figure 1 for stand heterogeneity). To ensure that a
minimum number of both training and validation trees for each class were available, visual
interpreters used a combination of the ground-based inventory trees, their local forestry
knowledge (i.e., elements of visual interpretation for coniferous and deciduous trees),
and specifically generated species-based training keys to generate additional reference
data for several classes. For each class, 70 reference trees were collected for use in both
the NAIP and the UAS supervised classifications. These reference data included each
composition class found within our forest inventory plot classification scheme: white pine
(Pinus strobus), eastern hemlock (Tsuga canadensis), other conifers (e.g., red pine (Pinus
resinosa, Ait.)), American beech (Fagus grandifolia), oaks (Quercus spp.), red maple (Acer
rubrum), other hardwoods (e.g., shagbark hickory (Carya ovata, (P. Mill. Koch))), and early
successional forest species.

2.3. Remotely Sensed Imagery

To evaluate the use of visual interpretation for forest plot composition three image
types were selected in this study. These are: Google Earth imagery, NAIP imagery, and
UAS imagery. To evaluate the use of digital image analysis for forest plot composition and
tree identification only the NAIP and UAS imagery were used. Our analysis began with
evaluating visual interpretation because numerous research projects opt for visual interpre-
tation of remotely sensed imagery as their source for reference data (e.g., Google Earth or
airborne imagery) [14,16,69,70]. These data yield a synoptic view, can be cost effective, in
modern times are high resolution, and in some cases provide multi-date or multispectral
inferences. The Google Earth images are based on true color (RGB) high-resolution satellite
imagery composites with the most current, cloud free, and seamless appearance [71]. For
our study areas these included satellite imagery captured during the beginning of October
2018 and October 2020, with a variety of sensors including Landsat, Sentinel, and digital
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aerial photography (https://support.google.com/earth/answer/6327779?hl=en#zippy=
%2Csatellite-aerial-images, last accessed 18 September 2021). The maximum resolution for
the global coverage in Google Earth, however, is 15 m, with many areas featuring a much
higher spatial resolution. The 2018 U.S. National Agriculture Imagery Program (NAIP)
imagery maintains the same specifications as the imagery collected in 2016 [12,72]. That is,
New Hampshire was collected at a 60 cm spatial resolution with 4 spectral bands (Blue,
Green, Red, and near infrared (NIR)). For our study sites, NAIP imagery was collected
between 6 August and 16 October 2018.

Two fixed-wing unmanned aircraft, the senseFly eBee Plus and eBee X, deployed with
true-color sensors, were used to capture the UAS imagery for this research [73,74]. The eBee
Plus was deployed with its associated Sensor Optimized for Drone Applications (SODA)
while the eBee X was operated with the senseFly Aeria X sensor [75,76]. While the eBee X
flight characteristics and camera quality are an improvement over the eBee Plus, hardware
and logistical constraints required that several study areas were flown using the eBee
Plus to ensure that summer leaf-on imagery (e.g., May–August in 2018, 2019, and 2020)
could be captured. Both UASs were piloted using the eMotion flight management software
(v3.15 and v3.19) (eMotion 2021), (senseFly, Genève, Switzerland) [77]. The preferred
flight parameters were based on the results of previous research [34,78]. All missions
were conducted with 85% forward overlap, 90% side overlap, winds perpendicular to the
flight lines, consistent sun angle and exposure, and flight height at the Federal Aviation
Administration (FAA) sUAS limit of 121.92 m (400 ft) [34,51,78].

Following the collection of the UAS imagery, the individual image locations were
post-processed using the National Oceanic and Atmospheric Administration (NOAA)
Continuously Operating Reference Stations (CORS) network RINEX files and the given
eBee flight log [79]. These positionally corrected images were then transferred to Agisoft
MetaShape, v1.5.5. (Agisoft LLC, St. Petersburg, Russia) for SfM modeling. Our processing
workflow started with a ‘high-accuracy’ image alignment to ensure that the maximum
number of images could be aligned while still maintaining a precise alignment. Next, the
‘ultrahigh-quality’ settings were selected to create the dense point cloud, digital elevation
model (DEM), and orthomosaic. This maximum-quality setting ensured that DEM was
generated using the full resolution of the imagery, which is the foundation of the segmenta-
tion process in the next section [80]. For each study area, an ultrahigh-resolution true-color
(RGB) orthomosaic and DEM were generated. These spatial data products ranged in spatial
resolution from 2.53 cm to 3.6 cm with an average pixel size (ground sampling distance) of
3.02 cm.

2.4. Classification Scheme

The characterization of New England Forest cover types is inherently difficult because
of the density and species diversity of the trees [58,81]. Due to New England being a
transition zone between boreal forests (to the north) and temperate hardwoods (to the
south), there is a heterogeneous distribution of communities which must be captured
even over small areas [43]. Several classification schemes exist for forest-cover types
in this region including Eyre [82], Pugh [43], Justice et al. [83], and MacLean et al. [84].
Each classification scheme uses the overstory tree species composition as a means of
subdividing community types. The goal of our classification was to provide knowledge
of the distribution of ecologically and economically similar forest stands. To best suit
this goal and capture prominent and unique communities, we adopted and modified the
scheme given by Pugh [43]. We began by defining forested land-cover areas and individual
trees. Here, we used the definition by Anderson [85] as areas that have 10% or more aerial
tree-crown density (coverage), capable of producing timber, and influential on the climate
or water regime. Our definition of trees, based on the above forest-inventory methods,
reflect woody vegetation with a minimum height of 3 m and a minimum diameter of
12.7 cm (5 inches). The first level of our classification hierarchy (i.e., the generalized
composition classes) distinguishes coniferous forests, mixed forests, deciduous forests,

https://support.google.com/earth/answer/6327779?hl=en#zippy=%2Csatellite-aerial-images
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and early successional forests. Coniferous forests are forests which are dominated by tree
species, comprising an overstory with greater than 66.6% basal area per unit area coniferous
species. Mixed forests are forests which are dominated by tree species, comprising an
overstory with less than or equal to 66.6% basal area per unit area and greater than or equal
to 33.3% basal area per unit area coniferous species. Deciduous forests are forests which are
dominated by tree species, comprising an overstory with less than 33.3% basal area per unit
area coniferous species. Lastly, early successional forests include forests which represent
highly distinct tree composition and structure, are representative of unique ecosystem
function and management, and are a key element of the New England landscape [86]. Here,
we included birch (Betula spp., Marsh.), ash (Fraxinus spp., L.), and aspen (Populus spp.
Michx. (Salicaceae)) mixtures (not found in the previous classification scheme) within this
‘early successional’ category as an example of distinct early successional forests. The full
definitions of each class within the next, more specific, level of forest classification are as
follows:

Coniferous (Softwood)

� White pine—any forested land surface dominated by tree species, comprising an
overstory canopy with greater than 70% basal area per unit area eastern white pine.

� Hemlock—any forested land surface dominated by tree species, comprising an over-
story canopy with greater than 70% basal area per unit area eastern hemlock.

� Mixed conifer—any forested land surface dominated by tree species, comprising
coniferous species other than white pine or eastern hemlock (or a combined mixture of
these species) that comprises greater than 66% basal area per unit area of the overstory
canopy.

Mixed Forest

� Mixed forests—any forested land surface dominated by tree species, comprising a
heterogenous mixture of deciduous and coniferous species each comprising greater
than 20% basal area per unit area composition. Important species associations include
eastern white pine and northern red oak (Quercus rubra), red maple (Acer rubrum),
white ash (Fraxinus americana, Marsh.), eastern hemlock, and birches.

Deciduous (Hardwood)

� Red maple—any forested land surface dominated by tree species, comprising an
overstory canopy with greater than 50% basal area per unit area red maple.

� Oak—any forested land surface dominated by tree species, comprising an overstory
canopy with greater than 50% basal area per unit area white oak (Quercus alba, L.),
black oak (Quercus velutina, Lam.), northern red oak, or a mixture.

� American beech—any forested land surface dominated by tree species, comprising
an overstory canopy with greater than 25% basal area per unit area American beech
composition. This unique class takes precedence over other mentioned hardwood
classes if present.

� Mixed hardwoods—any forested land surface dominated by tree species, comprising
deciduous species other than red maple, oak, or American beech (or a combined
mixture of these species) that comprises greater than 66% basal area per unit area of
the overstory canopy.

Early Successional

� Early successional—any forested land surface dominated by tree species, comprising
an overstory composition that is highly distinct including areas dominated by early
successional species such as paper birch (Betula papyrifera, Marsh.), white ash (Fraxinus
americana), or aspen (Populus spp.).
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2.5. Forest Composition from Visual Interpretation
Accuracy/Uncertainty in Visual Interpretation

At each CFI plot location, a 30 × 30 m fixed area was registered to the plot center. Two
trained, forest technicians interpreted and independently assigned a forest composition
class to each NAIP, Google Earth, and UAS inventory plot sample. Any plot that was
not interpretable in the imagery or was not labeled forest on any of the imagery sources
was removed. This filtering of poor-image-quality locations resulted in a final sample
size of 408 inventory plots. Each individual sample was interpreted a minimum of three
times by each technician so that a combined consensus for each interpreter (rather than
a single estimation) was determined. The majority composition, or mixture of classes
was then used to label the final plot composition for each source of imagery (see Fraser
and Congalton, [38]). A thematic map accuracy assessment error matrix was then used
to quantitively compare the plot level agreement for each imagery source to the field
reference data [39]. To aid the manual interpretation, training keys for each composition
class were created for selected CFI plot locations for each image source. These training
keys provided clear examples of each individual species and a distinct threshold between
the forest classes. Additionally, both visual interpreters were trained using local reference
imagery and the elements of visual interpretation regarding both coniferous and deciduous
forest canopy characteristics. To ensure that each inventory plot was labeled on the basis of
a consensus and not a single visual assessment, both interpreters classified each sample
three times, leading to a total of six trials for each source of imagery. The consensus of these
six trials was used to label the final composition for each inventory plot. The agreement (or
conversely variability) of these six trials was investigated during our qualitative analysis
of visual interpretation uncertainty.

Following the quantitative analysis of visual interpretation accuracy using each of
the three remotely sensed imagery sources, we conducted a qualitative assessment of
both specific and generalized composition class uncertainty. This qualitative assessment
included a review a minimum of four inventory plots, randomly selected from each
composition class. In total, 36 of the original 408 plots were sampled. We then analyzed
the variability and misclassification of such plots across each of the three interpretation
trials that both visual interpreters conducted (six in total). This test was completed for
each of the three imagery sources so that similarities and differences in their ability to
label individual classes could be better understood. We applied this qualitative analysis to
both the more specific scheme of nine composition classes and the generalized scheme of
four composition classes. A flow chart for both the visual interpretation and the digital
classification methodologies can be seen in Figure 3.

2.6. Forest Composition from Digital Classification
2.6.1. Image Segmentation and Tree Detection

To evaluate the digital classification approaches, both NAIP and UAS imagery was
segmented and classified using three supervised classification algorithms. The Google
Earth imagery was not classified using these methodologies as the data were only hosted
within the Google Earth Pro software v7.3.4 (Google, Mountain View, CA, USA) and,
therefore, could not be digitally processed.
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We used a multiresolution segmentation technique found within eCognition v9.1
(Trimble, Munich, Germany) to delineate individual tree crowns on the NAIP imagery.
This segmentation algorithm was selected due to the lack of tree crown morphology data
(such as a DEM) matching the resolution of this imagery. A range of segmentation scale,
color/shape, and compactness/smoothness parameters were tested (e.g., scale ranging
from 10 to 600 (intervals of 10), color/shape ranging from 0.1 to 0.7 (intervals of 0.1), and
compactness/smoothness ranging from 0.3 to 0.8 (intervals of 0.1)). The results of these
segmentation parameter combinations were evaluated both qualitatively (i.e., visually) and
quantitatively in comparison to manually digitized reference trees (i.e., polygons) at several
of our study areas. For the quantitative assessment, we calculated the over-segmentation
accuracy (Oa), under-segmentation accuracy (Ua), and quality rate (QR) of each parameter
(see Gu et al. [80]) combination for over 200 digitized reference trees [87,88]. The equations
for Oa, Ua, and QR are included below. The goal of this segmentation was to provide
pure tree species segments, which dictated that over-segmentation took priority over the
other evaluation metrics. A subset of the best-performing (quantitatively) results were then
visually reviewed to select the best fit. Following the selection of an optimal parameter
combination, individual tree crowns were delineated on the NAIP imagery. A total of
29 object-level features (spectral, textural, and geometric attributes) were calculated for
use in the supervised classification algorithms (see Table A1 in Appendix A). Two of these
features, the mean and the standard deviation of the near-infrared (NIR) band were unique
to the NAIP imagery.

In these three equations, ri denotes the i-th reference polygon, and si represents the
i-th segmented polygon that overlaps with ri. The symbol ∩ is defined at the intersection
between two polygons, while ∪ is their union [80,87,88].

Oa =
1
n

n

∑
i=1

(
area (ri ∩ si)

area (ri)
). (1)
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Ua =
1
n

n

∑
i=1

(
area (ri ∩ si)

area (si)
). (2)

QR =
1
n

n

∑
i=1

(1− area (ri ∩ si)

area (ri ∪ si)
). (3)

Segmentation of the UAS imagery was conducted using a marker-controlled water-
shed segmentation (MCWS) technique [80,88]. This MCWS workflow consisted of several
stages, each reliant on the 3D tree crown data available for each study area. We began by
creating an ultrahigh-resolution canopy height model (CHM) based on the DEMs. A 2 m
New Hampshire lidar bare earth dataset was used to adjust the SfM DEMs to height above
elevation (i.e., terrain) values [89]. Next, we applied a Gaussian filter to this raster dataset to
diminish excessive pits and peaks (i.e., noise) in the data [80,88,90]. To begin the individual
tree detection and delineation (ITDD) process, we applied a local maxima filter, with a fixed
window size, to the final filtered CHM to establish the MCWS marker (i.e., individual tree
crowns). A fixed, circular, window size of 45 cells (~1.65 m) was chosen for this step. This
window size was selected during initial testing because it met our objective of avoiding
under-segmentation (omission error) as much as possible, thus allowing the generation of
tree segments which represented only single species. Other similar studies for this region
selected larger fixed window sizes for the purpose of determining the best performance
for individual tree delineation as represented by QR at the expense of greater omission
error [52,67,80]. To quantify the individual tree detection error, we calculated the object
detection rate (ODR), as well as the over-detection (over-segmentation or commission) and
under-detection (under-segmentation or omission) by comparison with over 200 digitized
reference trees [67,80,91]. The next stage in the MCWS process consisted of masking the
non-forested areas and large canopy gaps on the basis of a minimum height threshold. A
height threshold of 6 m was applied to the CHM prior to delineating the individual tree
crowns [92]. The final stage of the MCWS process applied the segmentation algorithm,
which was initialized at the given markers and delineated tree boundaries using the height
gradients from the CHM [80]. Similar to the NAIP segmentation results, the final UAS
tree segments were quantitatively and qualitatively evaluated against manually digitized
reference trees using the Oa, Ua, and QR metrics [88]. After this assessment of segmentation
quality, 26 spectral, geometric, and textural features were generated for each tree segments
using eCognition, which were then available for use the digital classification approaches
(see Table A1 in Appendix A).

2.6.2. Automated Classifications

Three supervised classification algorithms were applied to tree segments generated
from the NAIP and UAS data to label the segment into one of the classes in the classification
scheme. Multiple classification algorithms were implemented because of their often-
contradictory performance in other studies [20]. First, we applied a singular decision tree
(CART) to determine if the complexity of our forests could be differentiated by a more
simplistic classifier [18,27]. Secondly, we applied a random forest (RF) ensemble classifier,
made up of 500 decision trees, to these same tree segments [20,26]. We used the Gini
index for this classification to control the decision tree splits [93,94]. For both of these
decision tree-based classifications, the mean decrease in impurity (MDI) was calculated for
each of the included features to ensure that an optimal confluence of input data could be
enforced. In other words, individual features with the lowest scores could be pruned to
both reduce the dimensionality of the classification and improve the overall accuracy. For
the final supervised classification algorithm, we implemented a support vector machine
(SVM) classifier based on the one-against-one form [29,95]. A linear kernel was selected
for the kernel function [20]. All three of these classifications were performed in Python
using the Sickit-learn package and with all of the available geometric, spectral, and textural
features [29,96–98]. Using this package, a number of procedures for selecting the training
and validation samples were implemented. These included (1) splitting the reference data
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to achieve a minimum validation sample size of 30 samples per class (i.e., 55% training and
45% validation), (2) splitting the reference data to achieve a minimum validation sample
size of 30 samples per class and performing removing negatively influential features
based on the MDI scores, (3) splitting the reference data to achieve a 65% training/35%
testing split, and (4) conducting a permutation-based out-of-bag validation with 3% of
the total sample size selected for validation. We then elected to apply the procedure that
both achieved the highest overall accuracy and maintained a statistically valid accuracy
assessment [39]. Each accuracy assessment for each of the classification methods and
imagery sources was performed 10 times so that an average of the overall accuracy could
be recorded.

3. Results
3.1. Accuracy/Uncertainty in Visual Interpretation

The accuracy achieved when visually interpreting forest inventory plot-level com-
positions using the Google Earth, NAIP, and UAS imagery was evaluated for both the
nine-class and the four-class composition schemes. The sample sizes and labels for these
classes can be seen in Table 1. In total, 408 forest inventory plots were classified for each of
the three imagery sources. A large portion of these plots, according to the field-inventory
data, were coniferous (a combination of white pine, eastern hemlock, and mixed conifer
composition classes).

Table 1. Forest inventory plot sample sizes (in individual plots), for each composition class during
both the nine-composition class visual interpretation and the generalized four-class visual interpreta-
tion. Composition classes found within this table include white pine (WP), eastern hemlock (EH),
mixed conifer (MC), mixed forest (MF), oak mixtures (OAK), American beech (AB), red maple (RM),
mixed hardwoods (MH), and early successional (ES).

Visual Interpretation Sample (Inventory Plot) Sizes

WP EH MC MF OAK RM AB MH ES

85 10 44 131 40 23 10 37 28

Conifer MF Deciduous ES

139 131 110 28

Plot-level classification accuracies using the each of the three high-resolution imagery
sources were low given the species complexity of these forests (see Table A2 in Appendix A).
The overall accuracy for interpreting nine classes using the Google Earth imagery was
29.9%. Classes such as AB, EH, RM, and OAK showed the lowest thematic accuracies.
When generalized to only four classes, the overall accuracy using the Google Earth imagery
increased to only 44.85%. Interpreting these same plots using the NAIP imagery resulted in
a similar performance. Our nine-class thematic accuracy was 31.86%, while the generalized
four-class assessment resulted in an overall accuracy of 46.57%. Both the nine-class and the
four-class interpretation accuracies were higher when using the highest-spatial-resolution
UAS imagery. The forest inventory plot compositions reached an overall accuracy of 39.46%
for nine classes (Table 2) and 54.44% for four composition classes (Table 3).
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Table 2. Plot-level forest composition thematic accuracy for UAS visual interpretations of nine classes.
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We conducted a qualitative assessment of the uncertainty incurred during the visual

interpretation of complex, mixed-species forests. Our assessment included the labeling
of plot-level composition across Google Earth, NAIP, and UAS imagery. Table 4 shows
a subsample of 36 plots where the results of the field data are compared to the visual
interpretation results. For example, we see that the first OAK plot (Table 4) comprised
81.2% OAK, with the remainder of the composition (18.2%) being American beech. With
the proportion of OAK being greater than 50%, according to the field data, each of the
interpretations should have also labeled the plot as OAK; however, there were several
instances in which the interpreter labeled the plot as mixed hardwoods (MH). An MH
classification would indicate that the plot was visually interpreted as having greater than
66% deciduous composition, while also consisting of less than 50% OAK composition
and less than 20% AB composition. The final eastern hemlock (EH) plot, containing
87.5% EH, was mislabeled once as mixed forest (MF) and twice as mixed conifer (MC).
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These interpretations indicated that the interpreters did not recognize a composition
containing greater than 70% EH. For each of the four AB plots, with six interpretation trials
each, these plots were only mislabeled as coniferous-dominated once. The most common
misclassification of AB plots was MH. This misclassification of AB as MH indicated that
both interpreters did not recognize forest compositions containing greater than 20% AB.
Visual interpretations conducted using the Google Earth imagery showed large amounts
of uncertainty for all plots other than those heavily dominated by white pine (WP) or
mixed forest (MF). Of the 36 plots that were included in this analysis, only three reported
a consensus (four or more labels in agreement) for the correct forest composition. The
NAIP imagery visual interpretations fared slightly better. For these assessments, most
classes were identified correctly labeled at least once for most plots. Composition classes
such as WP, MH, and early successional (ES) were correctly identified more often with the
NAIP imagery than the Google Earth imagery. Nevertheless, only five of the 36 plots were
interpreted with a majority agreement for the correct composition. When interpreting the
UAS imagery, there was a noticeable decrease in the uncertainty for identifying individual
species (e.g., American beech and red maple). MH, however, showed a noticeable drop in
successful identifications when using the UAS imagery. Although individual classes were
correctly identified more often, there was still a low percentage of classes which formed an
agreement for the correct forest composition. Six of the 36 plots (16.7%) interpreted using
the UAS imagery resulted in a majority agreement for correct composition class.

Table 4. Unmanned aerial system (UAS) qualitative assessment of visual interpretation uncertainty for individual forest
inventory plots of varying species composition (nine classes) across six trials. Note: the green box indicates agreement with
the field data, while the red box indicates disagreement. The two visual interpreters are referenced as ‘J’ and ‘H’ with their
three trials labeled each as ‘1’, ‘2’, and ‘3’. Composition classes found within this table include white pine (WP), eastern
hemlock (EH), mixed conifer (MC), mixed forest (MF), oak mixtures (OAK), American beech (AB), red maple (RM), mixed
hardwoods (MH), and early successional (ES).
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Field Data Field-based Composition (%) J-1 J-2 J-3 H-1 H-2 H-3 
WP 87.5% WP, 6.3% EH, 6.3% AB WP MC MC WP MC MC 

WP 75% WP, 12.5% RM, 12.5% MH WP MC MC WP MC MC 

WP 83.3% WP, 8.3% OAK, 8.3% ES MF MF MF WP MF MF 

WP 91.7% WP, 8.3% RM WP MC WP WP MC WP 

EH 75% EH, 25% WP WP WP WP MC WP WP 

EH 90% EH, 10% ES EH MF MF EH EH MC 

EH 85.7% EH, 14.3% ES EH WP EH MC MF EH 
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We also assessed the uncertainty in visual interpretations when the forest classes

were generalized to conifer forest (C), deciduous forest (D), mixed forest (MF), and early
successional forest (ES). For the Google Earth and NAIP interpretation assessments of forest
composition, there was a less obvious contrast between the uncertainty incurred in labeling
four classes and the uncertainty in labeling nine classes. Much of the misclassification
for both imagery sources resulted in commission to the MF class, instead of a similar
species dominance. Using the Google Earth imagery, nine of the 36 inventory plots were
labeled correctly, according to a majority agreement. With the NAIP imagery, 11 of the
36 plots reported a majority agreement for the correct forest composition. In Table 5, we
see the plot-level interpretations using the UAS imagery. Classes such as WP, OAK, and
American beech (AB) had fewer misclassifications at this level of generalization. The third
ES plot (from the top), containing a 100% ES basal area composition, was still mislabeled
as deciduous during all trials. The third WP plot (third from the top) was incorrectly
labeled MF during five of the six trials, despite containing only 8.3% OAK and 8.3% ES
composition. Many of the MF classes were incorrectly labeled as either coniferous- or
deciduous-dominated. Using the UAS imagery to visually interpret four generalized forest
composition classes at the plot level resulted in the lowest amount of uncertainty. Overall,
28 of the 36 (77.78%) were labeled with a consensus for the correct forest composition.
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Table 5. Unmanned aerial system (UAS) qualitative assessment of visual interpretation uncertainty for individual forest
inventory plots of varying species composition (four classes) across six trials. Note: the green box indicates agreement with
the field data, while the red box indicates disagreement. The two visual interpreters are referenced as ‘J’ and ‘H’ with their
three trials labeled each as ‘1’, ‘2’, and ‘3’. Composition classes found within this table include white pine (WP), eastern
hemlock (EH), mixed conifer (MC), mixed forest (MF), oak mixtures (OAK), American beech (AB), red maple (RM), mixed
hardwoods (MH), early successional (ES), as well as coniferous forests (C), and deciduous forests (D).
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3.2. Image Segmentation and Tree Detection

Quantitative metrics (Oa, Ua, and QR) were used to determine an optimal set of mul-
tiresolution segmentation parameters to delineate individual tree crowns within the NAIP
imagery. The optimal selection of segmentation parameters (for use in eCognition for the
multiresolution segmentation technique) included a scale parameter of 10, a color/shape
of 0.2, and a compactness/smoothness of 0.5. Measuring the correspondence of these tree
segments to 230 reference trees resulted in an Oa of 0.382, a Ua of 0.849, and a QR of 0.657.

For the MCWS of the UAS CHM and orthomosaic, we began by assessing the individ-
ual tree detection accuracy. A total of 231 samples were used for this assessment (Table 6).
The 45-cell fixed window size led to an overall detection accuracy of 93.9%. This detection
rate is a combination of the 231 reference trees that were detected as a singular canopy
(correct or 1:1 detection) and those that were detected as multiple trees. In other words,
only 6.1% of the reference trees were not detected (under detection or omission error).
While a smaller window size did eventually remove the omission error, it caused every tree
to be heavily over segmented. A larger window size increased the omission error (under
detection) to greater than 10%.

Table 6. Individual tree detection accuracy for the unmanned aerial system (UAS) imagery segmentation.

Correct Detection Over-Detection
(Commission Error)

Under-Detection
(Omission Error) Total

85 132 14 231

36.80% 57.14% 6.1% Overall Detection Accuracy

93.9%

Continuing through the MCWS process, we quantitatively evaluated the final seg-
mentation results against these same 231 reference samples [93]. These UAS tree segments
resulted in a Oa of 0.73, a Ua of 0.523, and a QR of 0.6438.

3.3. Digital Classifications

Both NAIP and UAS imagery was evaluated for the effectiveness in identifying
individual trees using three supervised digital classification algorithms. The sample sizes
for each of the eight composition classes for both imagery sources are included in Table 7.
Since this approach was conducted for labeling individual trees, the mixed forest class was
not possible.
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Table 7. Reference data samples sizes by class for individual tree classifications conducted using the
UAS and NAIP automated approaches. Additional acronyms include other conifer (OC) and other
hardwood (OH).

Individual Tree Reference Data Sample Sizes

WP EH OC ES OH OAK RM AB

NAIP 97 76 90 79 77 135 95 77

UAS 102 77 85 74 88 152 97 77

Individual tree digital classifications using the segmented NAIP imagery were gen-
erated using the CART, RF, and SVM classifiers. Following the examination of feature
importance scores (see Figure A1 in Appendix A), we removed the gray-level co-occurrence
matrix (GLCM) contrast, GLCM dissimilarity, border index, and gray-level difference vec-
tor (GLDV) contrast for the NAIP imagery CART and RF classifications. This removal
resulted in an increase in overall accuracy of 1.13% and 1.55% for CART and RF, respec-
tively. The overall accuracy of labeling eight classes for the three classifiers was 21.44%
(CART), 29.23% (RF), and 29.36% (SVM).

The digital classification of eight composition classes using UAS imagery resulted in
higher overall accuracies for each of the three supervised classifiers. For this imagery, the
least important features were asymmetry, density, shape index, radius of the short ellipsoid,
and compactness (see Figure A2 in Appendix A). The removal of these features improved
the overall accuracies by 0.235% (CART) and 1.33% (SVM). The overall accuracies for eight
composition classes using the UAS imagery, based on an average of 10 iterations, were
33.27% (CART) (see Table A3 in Appendix A), 46.67% (RF) (see Table A4 in Appendix A),
and 46.90% (SVM) (Table 8). These UAS thematic accuracies represented, on average, a
15.60% increase over the same methods when using the NAIP imagery.

Table 8. Thematic map accuracy assessment error matrix for individual trees using the UAS imagery and the SVM algorithm
for eight classes.
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The overall classification accuracies for both NAIP and UAS imagery increased when
the eight classes were collapsed to conifer, deciduous, and early successional. We again
evaluated the feature importance for both the NAIP and the UAS image classifications
(see Figure A3 in Appendix A), to determine the optimal feature selection for classifying
coniferous, deciduous, and early successional cover types. Both imagery sources showed
a general consensus for the most important (e.g., greenness and brightness) and least
important (e.g., border index and compactness) features. The NAIP imagery correctly
classified, on average, 45.32% of the tree segments using the CART algorithm. Using the
RF and SVM algorithms, the average overall accuracies increased to 53.58% and 52.69%
respectively. Classifying these same image segments using the UAS imagery produced
average overall accuracies of 59.62% (CART), 70.48% (RF) (Table 9), and 68.59% (SVM).

Table 9. Thematic map accuracy assessment error matrix for individual trees using the UAS imagery
and the RF algorithm for three classes.
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4. Discussion
4.1. Analysis of Visual Interpretation Uncertainty

The qualitative analysis of visual interpretation uncertainty showed regular progres-
sion in the ability to differentiate composition classes within complex forests. When
classifying more specific composition classes (i.e., nine groups), we saw that all three
remotely sensed imagery sources struggled to provide a consensus across six interpretation
trials. Such a consensus is needed to provide both an accurate and a confident label for the
composition of each inventory plot. The UAS imagery also showed slightly less variability
in the identification of more pure species classes, in comparison to the Google Earth and
NAIP imagery. The perceived ability to identify individual species, however, also led to a
lower percentage of plots labeled as mixed hardwoods or mixed conifers. Other classes,
such as EH, demonstrated that, even with nearly absolute plot composition (>85%), there
was a significant amount of confusion and misclassification with other species. Such classes
likely require further training or revision of the classification scheme [2,10]. When the
forest composition was generalized to only four classes, all three imagery sources showed a
considerable reduction in misclassifications. While there was still some confusion between
specific mixtures or dominance, many of the plots for each source of imagery could be
identified at least in these basic compositional groups. Additional classification rules such
as forming a hierarchical classification by first identifying the plot as coniferous, deciduous,
mixed, or other forest could have bridged this gap in misclassifications [18]. One potential
source of confusion in the labeling of these inventory plots could have been the presence
and visual perception of large trees. Large trees are known to disproportionately account
for stand structure and function [67,99]. A few large trees (or even a single tree in some
cases) could have accounted for a large portion of the perceived plot composition based
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on the synoptic view of the visual interpretations. These same trees, however, may not be
representative of the same compositional dominance when measured using the variable
plot radius design that was used to collect our field-based reference data. This research
was conducted within the transition forest region of New England forests [58]. These
mixed-species forests comprise a rich diversity of hardwood species at local scales, as
well as contain a common white pine and eastern hemlock component. The lower-spatial-
resolution Google Earth and NAIP imagery may suffer from this tendency for species
mixtures, as both resulted in a large amount of MF commission error, even during the
labeling of four composition classes. Lastly, certain classification scheme edge cases (e.g., a
plot with 33% coniferous composition which could be interpreted as deciduous-dominated
or MF depending on the interpreter) were found during this qualitative analysis.

When looking at the overall thematic accuracies for the Google Earth, NAIP, and UAS
plot-level interpretations, we formed several important insights. For both the nine-class
composition accuracy and the four-class composition accuracy, the Google Earth and NAIP
imagery produced approximately equal results. Both sources of imagery demonstrated
a considerable amount of commission error for the MF class. The NAIP imagery acqui-
sition (influencing phenology) and image characteristics were not consistent, leading to
challenges in interpretations across study areas [12]. Further spatial data exploration and
preprocessing before using the NAIP imagery could be integrated to influence species
classification success. The UAS imagery exhibited an ability to discern nine classes with
a higher accuracy than even the generalized composition accuracy for either of the other
imagery sources. Despite the increased spatial resolution to only 3.02 cm using the UAS
imagery, however, the highest overall accuracy achieved using visual interpretation was
still only 51.96%. As with other studies, specific hardwood classes and early successional
species mixtures (ES) showed a high amount of thematic classification error [59].

4.2. Analysis of Digital Classifications

Despite watershed segmentation being one of the most common and powerful meth-
ods for delineating tree crowns given the availability of 3D data, the visual assessment of
tree segment quality was never absolute for all species [80,88]. Our individual tree detec-
tion accuracy produced a final omission error of 6.1%, similar to other studies conducted
using remotely sensed data [1,61]. During the manual refinement of the digital classifi-
cation training samples, it was observed that many tree segments still contained some
portion of a species mixture. The occurrence of mixed species tree segments was especially
common for the large coniferous trees, which displayed the lowest classification accuracy.
The individual segments for these large coniferous trees commonly absorbed neighboring
subdominant canopy deciduous trees. A more advanced segmentation technique could be
adopted in future studies to better produce pure tree segments [52].

Turning to the automated individual tree classification results, the UAS imagery pro-
duced, on average, a 15.65% increase in overall accuracy over the NAIP imagery. Digital
classification of the NAIP imagery, as with the interpretation analysis, likely suffers from
inconsistencies in collection date and spectral characteristics [12]. The highest overall
accuracy for eight classes was achieved using the UAS imagery and the SVM classifier,
at 46.90%. This classification accuracy represents a 7.44% higher accuracy than visual
interpretations at the plot level. Both NAIP and UAS imagery supervised classifications
still resulted in low accuracies for more specific classes such as EH and RM, however. In
the automated classification of generalized (three) classes, we again observed an increase
in performance for the UAS imagery over the NAIP imagery. The accuracy of the UAS
imagery was, on average, 15.70% higher for the three supervised algorithms in compari-
son with the NAIP imagery. The highest overall accuracy for the three-class automated
classification was produced using the UAS and the RF algorithm, at 70.48%, which is an
increase over the four-class visual interpretation accuracy of 16.04%. Achieving a higher
overall accuracy for eight classes using the SVM algorithm and for four classes using
the RF algorithm is not inconsistent with other findings. Many studies either evaluated
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the results of multiple machine learning algorithms or found that the best classifier is
application-dependent [20,100,101]. As part of our initial testing, we compared various
procedures for training and validating these individual tree classifications (Table 10). These
methods included (1) splitting the reference data to achieve a minimum validation sample
size of 30 samples per class, (2) splitting the reference data to achieve a minimum valida-
tion sample size of 30 samples per class and performing removing negatively influential
features, (3) splitting the reference data to achieve a 65% training/35% testing split, and
(4) conducting a permutation-based out-of-bag validation with 3% of the total sample size
selected for validation. On the basis of both the performance and the statistical validity, we
applied the second method for each of the digital classification evaluations [21,39].

Table 10. Impacts of digital classification training/testing split designs using the RF classifier, UAS imagery, and eight
composition classes.

Individual Tree Classification Accuracies using the RF classifier, UAS Imagery, and 8 and 4 Composition Classes.

55% Training/
45% Testing

55% Training/45% Testing
with Feature Reduction

65% Training/
35% Testing

Out-of-Bag (OOB)
Validation

Minimum Sample Size 30 per Class 30 per Class 26 Per Class Permutations of 3%
from the total

Average Accuracy 8 Classes 45.84% 46.67% 43.07% 45.84%

Average Accuracy 4 Classes 64.01% 70.48% 65.36% 65.51%

Similar studies employing the use multispectral and multitemporal UAS have been
known to produce higher overall accuracies. In Gini et al. [60], accuracies were produced
which ranged from 58% to 87%. These findings, however, were for the classification of
several hardwood species within a private nursery, which is different from the species-rich
New England forests evaluated here. Xu et al. [61] produced comparable accuracies for
eight subtropical species (conifer and deciduous) by incorporating both multispectral
imagery and use of the photogrammetric point cloud. For the classification of eight conifer
and deciduous species, they found a 65% overall accuracy and an 80% overall accuracy for
labeling only coniferous and deciduous species. The inclusion of multispectral bands and
indices or simply an increase in spectral resolution would likely increase the classification
accuracy when using the UAS imagery [60,102–104]. One of the most important features,
as reported in Figures A1 and A3 (see Appendix A), for the NAIP imagery individual
tree classifications was the NIR band. Numerous studies have outlined the importance of
NIR reflectance in tree species classification [12,105,106]. Our results, however, show that
true color ‘photogrammetric’ sensors, which may provide a more efficient and sometimes
more effective platform for surveying contiguous forests, can be used with a decrease
in classification accuracy of approximately 10% [34,75,76]. One important factor for this
success was the selection of and reduction in classification features [107]. Our MDI test
and feature reduction, while only resulting in a 2% difference in classification accuracy
here, will become more important as the number of features and the spectral complex-
ity are increased [21,108]. Lastly, image segmentation quality improvements could be
explored to enhance individual tree classification. High-resolution image segmentation
techniques and individual tree detection and delineation methods are being developed
at a rapid pace [52,88,109–111]. The ability to accurately detect and delineate the range
of tree species and crown morphologies present in this landscape would provide more
representative training samples for each species and, therefore, enhance the potential of
each classification algorithm.
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4.3. Future Perspectives

Future research should continue to investigate the best methods for adopting UAS for
fine-scale (i.e., precision) forest management [57–59]. Data fusion techniques, such as the
integration of both satellite and UAS data [112] or of optical and lidar data [1,62] present
methods for overcoming the limitations of UAS digital photogrammetry and achieving
high accuracies for individual tree identification. Advanced classification algorithms
may also present a variety of methods for better handling of the data dimensionality.
However, such techniques would require a far greater amount of training data and technical
expertise to complete [20,21]. The extension of forest composition data from one location
for classification of another could provide several advantages to forest managers, such
as semiautomated classifications, considerable gains in time, cost reductions, and lower
expert user knowledge required when given proper consideration for potential sources of
uncertainty [113]. Unlike satellite-based generalizations of forest composition data across
study sites, UASs are not prone to the same dissimilarities in image characteristics [18,113,114].
Instead, UAS applications face a myriad of rapidly evolving computer vision and data science
challenges and solutions [115]. The development of these disciplines and tools is hoped to
lead to achieving sufficient tree-level accuracies, which can then be aggregated to the plot or
forest stand levels.

5. Conclusions

Trends in automated and semiautomated forest classifications using high-resolution
remotely sensed data have made the thematic classification of individual trees a realistic
aspiration. In this study, we evaluated, both qualitatively and quantitatively, the appli-
cation of Google Earth, NAIP, and UAS imagery for plot composition and individual
tree identification. For this analysis, we compared visual interpretation and digital pro-
cessing approaches. Our results indicated that supervised machine learning classifiers
outperformed visual interpreters for specific (+7.44%) and generalized (+16.04%) species
composition. While visual interpretation is commonly applied for broad-scale inferences
of forest composition, the uncertainty in labeling more specific classes, as well as the
costs required to train interpreters, makes fine-scale assessments impractical. Our results
indicate that automated machine learning approaches can be a capable alternative for
local-scale forest surveys, even with only single-date true-color imagery. In comparison
with other research, the inclusion of multitemporal imagery, multispectral imagery, or more
advanced segmentation techniques would likely further increase this divide. Subsequent
studies should continue to examine diverse forests and geospatial analysis techniques for
delineating the trees within them.
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Appendix A

Appendix A.1. Classification Features

Table A1. Classification features (i.e., attributes or variables) used for the supervised classification of the NAIP (29 total)
and UAS (26 total) imagery.

Classification Features

Spectral
Greenness

Mean of red band
Mean of green band
Mean of blue band

Mean of NIR
HIS transformation

HIS = hue, intensity, saturation

SD red band
SD green band
SD blue band
SD NIR band

Greenness = (Mean Green−Mean Red)+(Mean Green−Mean Red)
(2∗Mean Green)+(Mean Red)+(Mean Blue)

Texture
GLCM homogeneity

GLCM contrast
GLCM dissimilarity

GLCM entropy

GLCM = gray−level co-occurrence matrix

GLCM mean
GLCM correlation

GLDV mean
GLDV contrast

GLDV = gray−level difference vector

Geometric
Area (m2)

Border index
Border length
Length/width

Roundness

*NAIP imagery only

Compactness
Asymmetry

Density
Radius of longest ellipsoid
Radius of shortest ellipsoid

Shape index

Appendix A.2. Visual Interpretation Uncertainty

Table A2. Thematic (overall) accuracy for plot-level visual interpretations using each of the three high-spatial-resolution
remotely sensed data sources.

Plot-Level Visual Interpretation Accuracy for High-Resolution Remotely Sensed Data Sources

Google Earth NAIP UAS

9 Composition Classes 24.51% 25.25% 41.67%

4 Composition Classes 39.95% 39.46% 51.96%
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Appendix A.3. Automated Classification
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Table A3. Thematic map accuracy assessment error matrix for individual trees using the UAS imagery and the CART
algorithm for eight classes.
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