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Abstract: Remotely sensed imagery has been used to support forest ecology and management for 
decades. In modern times, the propagation of high-spatial-resolution image analysis techniques and 
automated workflows have further strengthened this synergy, leading to the inquiry into more com-
plex, local-scale, ecosystem characteristics. To appropriately inform decisions in forestry ecology 
and management, the most reliable and efficient methods should be adopted. For this reason, our 
research compares visual interpretation to digital (automated) processing for forest plot composi-
tion and individual tree identification. During this investigation, we qualitatively and quantitatively 
evaluated the process of classifying species groups within complex, mixed-species forests in New 
England. This analysis included a comparison of three high-resolution remotely sensed imagery 
sources: Google Earth, National Agriculture Imagery Program (NAIP) imagery, and unmanned aer-
ial system (UAS) imagery. We discovered that, although the level of detail afforded by the UAS 
imagery spatial resolution (3.02 cm average pixel size) improved the visual interpretation results 
(7.87–9.59%), the highest thematic accuracy was still only 54.44% for the generalized composition 
groups. Our qualitative analysis of the uncertainty for visually interpreting different composition 
classes revealed the persistence of mislabeled hardwood compositions (including an early succes-
sional class) and an inability to consistently differentiate between ‘pure’ and ‘mixed’ stands. The 
results of digitally classifying the same forest compositions produced a higher level of accuracy for 
both detecting individual trees (93.9%) and labeling them (59.62–70.48%) using machine learning 
algorithms including classification and regression trees, random forest, and support vector ma-
chines. These results indicate that digital, automated, classification produced an increase in overall 
accuracy of 16.04% over visual interpretation for generalized forest composition classes. Other stud-
ies, which incorporate multitemporal, multispectral, or data fusion approaches provide evidence 
for further widening this gap. Further refinement of the methods for individual tree detection, de-
lineation, and classification should be developed for structurally and compositionally complex for-
ests to supplement the critical deficiency in local-scale forest information around the world. 

Keywords: visual interpretation; forest composition; digital classification; unmanned aerial  
systems; unmanned aerial vehicles; precision forestry; random forests; support vector machines 
 

1. Introduction 
The accurate identification of tree species is an important component of successful 

forest management [1,2]. For hundreds of years, societies have prepared land-cover maps 
to better understand and manage the distribution of vegetation communities [3–5]. While 
the methodologies to produce such spatial representations have changed dramatically, it 
is apparent that these generalizations still serve as an important tool for solving a number 
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of environmental problems [6–8]. Many known drivers of ecosystem change and degra-
dation stem from land-cover and land-use conversion at the local scale. For forested areas, 
this can mean a considerable reduction in neighboring area functionality and resource 
availability, in addition to the influences of direct land-cover transformation. With land-
cover maps, and especially forest-cover-type maps, serving to guide critical management 
decisions and research understanding, it is important that their representations are as re-
liable and as detailed as possible [2,9]. Remotely sensed data have come to provide some 
of the most accurate and cost-effective ways of producing such forest composition infor-
mation [1,10]. Modern high-spatial-resolution imagery, with 1 m or smaller pixel sizes, is 
becoming more attainable and, as such, is spurring a multitude of precision forestry ap-
plications [11–14]. Freely available high-resolution imagery from sources such as Google 
Earth provide users one such tool for compiling local-scale information [15–17]. Despite 
the undeniable benefits that this imagery provides, the best practices to generate reliable 
and detailed forest-cover information are yet undetermined. 

The classification of remotely sensed imagery generates thematic maps (or layers) by 
distinguishing individual features based on a selected classification scheme using the 
spectral, textural, and temporal characteristics of those map classes. The creation of the-
matic maps is one of the most common applications of remotely sensed imagery [6,18]. 
While there is a rich history of manually interpreted thematic layers, countless techniques 
have been developed using computer-based algorithms for reliably automating this pro-
cedure [10,14,19–21]. Identifying tree species through visual interpretation takes a trained 
specialist and remains time consuming for larger areas [2,10]. It is more common today, 
that information on forest species is produced using automated approaches and high-res-
olution remotely sensed data [2,14]. To sufficiently handle the increasing amount of digital 
remotely sensed data, an approach called digital image processing has also been devel-
oped to analyze and explore the characteristics of the acquired imagery [12,22,23]. The 
techniques for image classification are defined by several characteristics including simple 
or advanced, supervised or unsupervised, pixel-based or object-based [23,24]. The first 
distinction, simple or advanced, specifies whether the algorithm integrates machine learn-
ing as a function for separating the defined classes. Following breakthroughs in computer 
science, classification algorithms used in thematic mapping began to integrate artificial 
intelligence (AI) or machine learning in the mid-1990s [20,24,25]. Common and powerful 
examples of such classifications include decision trees (e.g., Classification and Regression 
Trees (CART) or random forests) and the support vector machine (SVM) algorithm 
[18,20,26,27]. The second distinction, supervised or unsupervised, specifies whether the 
algorithm relies on training data to base its assignments (supervised classifications) or if 
the user defines some clustering parameters used to divide the sample units to maximize 
separability (unsupervised classifications) [23]. While conventional, supervised and un-
supervised algorithms  are still used frequently for remote sensing image classification, 
machine learning methods have been found to generally perform better [20,28,29]. For the 
final distinction, pixel-based classifications (PBC) denote algorithms which operate on the 
smallest divisible unit of digital images, the pixel [23]. Object-based classifications (OBC), 
also known as OBIA, or GEOBIA, operate on homogenous image primitives, also termed 
image areas, polygons, objects, or segments [30–33]. PBC relies heavily on spectral data to 
assign class labels, taking into account only the spectral response of the individual pixels 
[34–37]. The increasing spatial resolution of remotely sensed data has caused subse-
quently greater challenges for positional registration. Due to these challenges, classifica-
tion methods have shifted towards using homogenous windows (e.g., 3x3 or 5x5 pixels) 
and/or image objects [38,39]. OBC uses region-growing, thresholding, or clustering algo-
rithms to segment images into more holistic units of analysis (e.g., individual tree crowns) 
[31,40]. OBC incorporates greater context into each individual unit, such as size, compact-
ness, spectral or geometric heterogeneity, and spectral averages, while maintaining user 
defined thresholds for between object variability [41]. Like the preference for OBC over 
PBC, machine learning algorithms often allow for a greater number of inputs, reducing 
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the reliance on spectral properties of individual pixels alone [41,42]. Deciding between 
remote sensing platforms (e.g., satellite, airborne, UAS, etc.), algorithms and classification 
approaches is a choice dictated by the specific needs of the project and the characteristics 
of the source imagery [36,43]. In recent years, the increased flexibility and level of detail 
afforded by the culmination of technologies, such as in the case of Unmanned Aerial Sys-
tems (UAS or UAV), have made such decisions even more difficult.  

To confront the constraints of time, money, and effort on site-specific (i.e., precision) 
forestry data collection, improved technologies need to be embraced [44–47]. No longer 
considered ‘Dangerous, Dirty, and Dull contraptions’ [48], UAS have been used in recent 
years for numerous high-precision applications [45,49–52]. Apart from the collection of 
raw imagery and videos, UAS imagery provides valuable information from 3D models 
created using Structure from Motion (SfM). The mathematical process behind SfM pro-
vides a nearly autonomous workflow for reconstructing 3-dimensional (3D) surfaces from 
numerous 2D projections (images) [53–55].  

In our study we have two objectives. We compared the proficiency of visual inter-
pretation to digital processing for forest plot composition and individual tree identifica-
tion using UAS and other high-spatial resolution remotely sensed imagery, such as satel-
lite and airborne imagery. A similar investigation by Holbling et al., [56], compared man-
ual and semi-automated classification approaches for landslide mapping. They deter-
mined that while there were obvious trade-offs in the techniques, the final accuracy varied 
depending on the study site. Therefore, in our first objective, we quantify the accuracy 
achieved when visual interpreting forest composition classes from three different sources 
of remotely sensed imagery (Google Earth, National Agriculture Imagery Program 
(NAIP), and Unmanned Aerial Systems (UAS)). We also provide a qualitative assessment 
of the uncertainty in forest composition mapping from visual interpretation when using 
these image sources. In our second objective, to provide a comparison of these results with 
digital (automated) approaches, we quantified the individual tree identification accuracy 
achieved using the NAIP and UAS imagery. Three supervised classification algorithms 
were used for this test: CART, random forests, and SVM. This investigation provided a 
critical evaluation of the methods used to support local scale forest management, which 
for many parts of the world face a severe deficiency in coverage [14,57,58]. We also spe-
cifically targeted UAS applications which can be adopted by a broad audience by imple-
menting only true color sensors and straightforward classification frameworks. Our re-
search counters studies which have adopted multispectral, multi-temporal, Light Detec-
tion and Ranging (lidar), or hyperspectral data to UAS-based classifications of individual 
tree species [59–62]. In doing so, we provided a novel investigation of the capability for 
UAS to enhance forest inventory assessments and extend the availability of structurally 
diverse and species rich forest species composition data and the most relevant methods 
to do so [45].  

2. Materials and Methods 
2.1. Study Areas 

A combination of nine forested properties, located in southeastern New Hampshire 
were studied during this research. The properties included a total of 605.15 hectares (ha) 
of forested land comprising a variety of species compositions, forest successional classes, 
and stand structures (Figure 1). These sites were selected due to their availability of field-
based inventory data (i.e., Continuous Forest Inventory (CFI) plots), and because of their 
limited management. The average size of these properties is 70.36 ha, while the smallest 
(Moore Fields) contains 17.2 ha of forested land cover. All but one of the properties, the 
Blue Hills Foundation lands, are owned and managed by the University of New Hamp-
shire (Figure 2). These include College Woods, Kingman Farm, Thompson Farm, Moore 
Fields, East Foss Farm, West Foss Farm, Dudley, and Burley-Demeritt [63]. The Blue Hills 
study site is a contiguous forest conservation land, managed by the Harvard Forest. 
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Figure 1. Representation of the forest diversity found within each of the woodland properties. Dis-
played are the plot center (blue dot) for a singular Continuous Forest Inventory (CFI) plot, as well 
as a 30 × 30 m buffer placed around this plot. This UAS image shows a complex New England Forest 
with a variety of species including eastern white pine (Pinus strobus, Linnaeus), eastern hemlock 
(Tsuga canadensis, (L.) Carrière), northern red oak (Quercus rubra, F. Michaux), red maple (Acer rubrum, 
L.), and American beech (Fagus grandifolia, (Ehrh.)). Each study site consisted of similarly high stem 
densities, with diverse and overlapping tree crowns. 
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Figure 2. Location and unmanned aerial system (UAS) orthoimagery coverage of the nine study 
areas in southeastern New Hampshire (NH). In blue: the Blue Hills conservation lands in Strafford, 
NH. In red: the eight University of New Hampshire (UNH) study areas located near Durham, NH. 

2.2. Field Reference Data 
Ground-based inventory designs are unique for each land manager. For UNH prop-

erties, forest inventory data are collected so that communities can be managed to maintain 
research integrity and characteristics of the broader New England region [63]. Individual 
CFI plots are positioned systematically throughout each property with one plot per hec-
tare (2.47 acres) [64]. At each plot, an angle gauge methodology is used to elicit a proba-
bility proportional to the size selection of each measured tree [65]. The UNH woodlands 
office follows the regional recommendation of a basal area factor (BAF) 4.59 m2/ha·(20 
ft2/acre) inventory [64,66]. Any tree with a sufficient basal area and proximity from the 
plot center is recorded as a representative of the broader forest stand. Such methods give 
each plot a variable radius instead of a fixed size. Each selected tree had several biophys-
ical measurements taken, including species name, diameter at breast height (dbh), collec-
tion date, and a silvicultural code (i.e., live or dead). Bearing and distance from the plot 
center were also recorded for all measured trees. 

For several of the UNH woodlands included in this study, we elected to resample the 
plot locations and attributes ourselves to correct specific uncertainties. The newly 
resampled locations were chosen because the recorded positional accuracy appeared poor 
during exploratory data analysis and initial study [38]. The GPS receivers now available 
include Wide Area Augmentation System (WAAS) positional averaging for improved 
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registration with remotely sensed imagery. These study sites included College Woods, 
Kingman Farm, East Foss Farm, and Thompson Farm. 

At the Blue Hills conservation lands in Strafford, NH, CFI plots follow a randomly 
generated distribution. Plot data, first collected in 2008, were distributed across upland 
forests following a GIS analysis which removed areas within 50 m of parcel boundaries 
and non-forested land cover. To minimize spatial autocorrelation and capture a larger 
extent of the forest, a 50 m minimum spacing between plots was also defined. Individual 
inventory plots were resampled in 2010 and 2017, with the addition of 20 new plots in 
2017. At each plot location, fixed area (20 ×  20 m) plots were generated in which all trees 
taller than 1.4 m and with a dbh greater than or equal to 2.5 cm were measured (in cm). 
Vegetation recorded with a dbh smaller than 12.7 cm (5 inches) was filtered, however, 
during our inventory processing, non-tree vegetation was removed to present an estimate 
of species composition following a similar procedure to that used for the other study sites. 

The training data used for analysis of the digital classification approaches (i.e., indi-
vidual tree classifications) in this study were generated from a combination of (1) ground-
based inventory trees that were remeasured specifically for this analysis and (2) visual 
interpretations of CFI plot measured trees that were cross-referenced by two experienced, 
undergraduate technicians [67]. A high-precision EOS Arrow 200 RTK GPS (EOS Posi-
tioning Systems Inc, Montreal, QC, Canada) with positional averaging was used to gather 
the locations of individual training trees for each class across several study areas [68]. 
These individual tree measurements (reference data) consisted of trees from a variety of 
sizes (dbh and height), as well as both dominant and co-dominant canopy classes. All of 
these trees were located within the core area of the contiguous forest and, as such, were a 
part of the contiguous forest canopy (see Figure 1 for stand heterogeneity). To ensure that 
a minimum number of both training and validation trees for each class were available, 
visual interpreters used a combination of the ground-based inventory trees, their local 
forestry knowledge (i.e., elements of visual interpretation for coniferous and deciduous 
trees), and specifically generated species-based training keys to generate additional refer-
ence data for several classes. For each class, 70 reference trees were collected for use in 
both the NAIP and the UAS supervised classifications. These reference data included each 
composition class found within our forest inventory plot classification scheme: white pine 
(Pinus strobus), eastern hemlock (Tsuga canadensis), other conifers (e.g., red pine (Pinus res-
inosa, Ait.)), American beech (Fagus grandifolia), oaks (Quercus spp.), red maple (Acer 
rubrum), other hardwoods (e.g., shagbark hickory (Carya ovata, (P. Mill. Koch))), and early 
successional forest species. 

2.3. Remotely Sensed Imagery 
To evaluate the use of visual interpretation for forest plot composition three image 

types were selected in this study. These are: Google Earth imagery, NAIP imagery, and 
UAS imagery. To evaluate the use of digital image analysis for forest plot composition 
and tree identification only the NAIP and UAS imagery were used. Our analysis began 
with evaluating visual interpretation because numerous research projects opt for visual 
interpretation of remotely sensed imagery as their source for reference data (e.g., Google 
Earth or airborne imagery) [14,16,69,70]. These data yield a synoptic view, can be cost 
effective, in modern times are high resolution, and in some cases provide multi-date or 
multispectral inferences. The Google Earth images are based on true color (RGB) high-
resolution satellite imagery composites with the most current, cloud free, and seamless 
appearance [71]. For our study areas these included satellite imagery captured during the 
beginning of October 2018 and October 2020, with a variety of sensors including Landsat, 
Sentinel, and digital aerial photography (https://support.google.com/earth/an-
swer/6327779?hl=en#zippy=%2Csatellite-aerial-images, last assessed September 18, 2021). 
The maximum resolution for the global coverage in Google Earth, however, is 15 m, with 
many areas featuring a much higher spatial resolution. The 2018 U.S. National Agriculture 
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Imagery Program (NAIP) imagery maintains the same specifications as the imagery col-
lected in 2016 [12,72]. That is, New Hampshire was collected at a 60 cm spatial resolution 
with 4 spectral bands (Blue, Green, Red, and near infrared (NIR)). For our study sites, 
NAIP imagery was collected between August 6th and October 16th, 2018.  

Two fixed-wing unmanned aircraft, the senseFly eBee Plus and eBee X, deployed 
with true-color sensors, were used to capture the UAS imagery for this research [73,74]. 
The eBee Plus was deployed with its associated Sensor Optimized for Drone Applications 
(SODA) while the eBee X was operated with the senseFly Aeria X sensor [75,76]. While 
the eBee X flight characteristics and camera quality are an improvement over the eBee 
Plus, hardware and logistical constraints required that several study areas were flown 
using the eBee Plus to ensure that summer leaf-on imagery (e.g., May–August in 2018, 
2019, and 2020) could be captured. Both UASs were piloted using the eMotion flight man-
agement software (v3.15 and v3.19) (eMotion 2021), (senseFly, Genève, Switzerland) [77]. 
The preferred flight parameters were based on the results of previous research [34,78]. All 
missions were conducted with 85% forward overlap, 90% side overlap, winds perpendic-
ular to the flight lines, consistent sun angle and exposure, and flight height at the Federal 
Aviation Administration (FAA) sUAS limit of 121.92 m (400 ft) [34,51,78]. 

Following the collection of the UAS imagery, the individual image locations were 
post-processed using the National Oceanic and Atmospheric Administration (NOAA) 
Continuously Operating Reference Stations (CORS) network RINEX files and the given 
eBee flight log [79]. These positionally corrected images were then transferred to Agisoft 
MetaShape, v1.5.5. (Agisoft LLC, St. Petersburg, Russia) for SfM modeling. Our pro-
cessing workflow started with a ‘high-accuracy’ image alignment to ensure that the max-
imum number of images could be aligned while still maintaining a precise alignment. 
Next, the ‘ultrahigh-quality’ settings were selected to create the dense point cloud, digital 
elevation model (DEM), and orthomosaic. This maximum-quality setting ensured that 
DEM was generated using the full resolution of the imagery, which is the foundation of 
the segmentation process in the next section [80]. For each study area, an ultrahigh-reso-
lution true-color (RGB) orthomosaic and DEM were generated. These spatial data prod-
ucts ranged in spatial resolution from 2.53 cm to 3.6 cm with an average pixel size (ground 
sampling distance) of 3.02 cm. 

2.4. Classification Scheme 
The characterization of New England Forest cover types is inherently difficult be-

cause of the density and species diversity of the trees [58,81]. Due to New England being 
a transition zone between boreal forests (to the north) and temperate hardwoods (to the 
south), there is a heterogeneous distribution of communities which must be captured even 
over small areas [43]. Several classification schemes exist for forest-cover types in this re-
gion including Eyre [82], Pugh [43], Justice et al. [83], and MacLean et al. [84]. Each classi-
fication scheme uses the overstory tree species composition as a means of subdividing 
community types. The goal of our classification was to provide knowledge of the distri-
bution of ecologically and economically similar forest stands. To best suit this goal and 
capture prominent and unique communities, we adopted and modified the scheme given 
by Pugh [43]. We began by defining forested land-cover areas and individual trees. Here, 
we used the definition by Anderson [85] as areas that have 10% or more aerial tree-crown 
density (coverage), capable of producing timber, and influential on the climate or water 
regime. Our definition of trees, based on the above forest-inventory methods, reflect 
woody vegetation with a minimum height of 3 m and a minimum diameter of 12.7 cm (5 
inches). The first level of our classification hierarchy (i.e., the generalized composition 
classes) distinguishes coniferous forests, mixed forests, deciduous forests, and early suc-
cessional forests. Coniferous forests are forests which are dominated by tree species, com-
prising an overstory with greater than 66.6% basal area per unit area coniferous species. 
Mixed forests are forests which are dominated by tree species, comprising an overstory 
with less than or equal to 66.6% basal area per unit area and greater than or equal to 33.3% 
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basal area per unit area coniferous species. Deciduous forests are forests which are domi-
nated by tree species, comprising an overstory with less than 33.3% basal area per unit 
area coniferous species. Lastly, early successional forests include forests which represent 
highly distinct tree composition and structure, are representative of unique ecosystem 
function and management, and are a key element of the New England landscape [86]. 
Here, we included birch (Betula spp., Marsh.), ash (Fraxinus spp., L.), and aspen (Populus 
spp. Michx. (Salicaceae)) mixtures (not found in the previous classification scheme) within 
this ‘early successional’ category as an example of distinct early successional forests. The 
full definitions of each class within the next, more specific, level of forest classification are 
as follows: 

Coniferous (Softwood) 
 White pine—any forested land surface dominated by tree species, comprising an 

overstory canopy with greater than 70% basal area per unit area eastern white pine. 
 Hemlock—any forested land surface dominated by tree species, comprising an over-

story canopy with greater than 70% basal area per unit area eastern hemlock. 
 Mixed conifer—any forested land surface dominated by tree species, comprising co-

niferous species other than white pine or eastern hemlock (or a combined mixture of 
these species) that comprises greater than 66% basal area per unit area of the over-
story canopy. 
Mixed Forest 

 Mixed forests—any forested land surface dominated by tree species, comprising a 
heterogenous mixture of deciduous and coniferous species each comprising greater 
than 20% basal area per unit area composition. Important species associations include 
eastern white pine and northern red oak (Quercus rubra), red maple (Acer rubrum), 
white ash (Fraxinus americana, Marsh.), eastern hemlock, and birches. 
Deciduous (Hardwood) 

 Red maple—any forested land surface dominated by tree species, comprising an 
overstory canopy with greater than 50% basal area per unit area red maple. 

 Oak—any forested land surface dominated by tree species, comprising an overstory 
canopy with greater than 50% basal area per unit area white oak (Quercus alba, L.), black 
oak (Quercus velutina, Lam.), northern red oak, or a mixture. 

 American beech—any forested land surface dominated by tree species, comprising 
an overstory canopy with greater than 25% basal area per unit area American beech 
composition. This unique class takes precedence over other mentioned hardwood 
classes if present. 

 Mixed hardwoods—any forested land surface dominated by tree species, compris-
ing deciduous species other than red maple, oak, or American beech (or a combined 
mixture of these species) that comprises greater than 66% basal area per unit area of 
the overstory canopy. 
Early Successional 

 Early successional—any forested land surface dominated by tree species, comprising 
an overstory composition that is highly distinct including areas dominated by early 
successional species such as paper birch (Betula papyrifera, Marsh.), white ash (Fraxi-
nus americana), or aspen (Populus spp.). 

2.5. Forest Composition from Visual Interpretation 
Accuracy/Uncertainty in Visual Interpretation 

At each CFI plot location, a 30 × 30 m fixed area was registered to the plot center. Two 
trained, forest technicians interpreted and independently assigned a forest composition 
class to each NAIP, Google Earth, and UAS inventory plot sample. Any plot that was not 
interpretable in the imagery or was not labeled forest on any of the imagery sources was 
removed. This filtering of poor-image-quality locations resulted in a final sample size of 
408 inventory plots. Each individual sample was interpreted a minimum of three times by 
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each technician so that a combined consensus for each interpreter (rather than a single 
estimation) was determined. The majority composition, or mixture of classes was then 
used to label the final plot composition for each source of imagery (see Fraser and Con-
galton, [38]). A thematic map accuracy assessment error matrix was then used to quanti-
tively compare the plot level agreement for each imagery source to the field reference data 
[39]. To aid the manual interpretation, training keys for each composition class were cre-
ated for selected CFI plot locations for each image source. These training keys provided 
clear examples of each individual species and a distinct threshold between the forest clas-
ses. Additionally, both visual interpreters were trained using local reference imagery and 
the elements of visual interpretation regarding both coniferous and deciduous forest can-
opy characteristics. To ensure that each inventory plot was labeled on the basis of a con-
sensus and not a single visual assessment, both interpreters classified each sample three 
times, leading to a total of six trials for each source of imagery. The consensus of these six 
trials was used to label the final composition for each inventory plot. The agreement (or 
conversely variability) of these six trials was investigated during our qualitative analysis 
of visual interpretation uncertainty. 

Following the quantitative analysis of visual interpretation accuracy using each of 
the three remotely sensed imagery sources, we conducted a qualitative assessment of both 
specific and generalized composition class uncertainty. This qualitative assessment in-
cluded a review a minimum of four inventory plots, randomly selected from each com-
position class. In total, 36 of the original 408 plots were sampled. We then analyzed the 
variability and misclassification of such plots across each of the three interpretation trials 
that both visual interpreters conducted (six in total). This test was completed for each of 
the three imagery sources so that similarities and differences in their ability to label indi-
vidual classes could be better understood. We applied this qualitative analysis to both the 
more specific scheme of nine composition classes and the generalized scheme of four com-
position classes. A flow chart for both the visual interpretation and the digital classifica-
tion methodologies can be seen in Figure 3. 

 
Figure 3. Flow chart outlining the methodology used for the visual interpretation and digital classification assessments of 
fine-scale forest composition. 
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2.6. Forest Composition from Digital Classification 
2.6.1. Image Segmentation and Tree Detection 

To evaluate the digital classification approaches, both NAIP and UAS imagery was 
segmented and classified using three supervised classification algorithms. The Google 
Earth imagery was not classified using these methodologies as the data were only hosted 
within the Google Earth Pro software v7.3.4 (Google, Mountain View, California, USA) 
and, therefore, could not be digitally processed. 

We used a multiresolution segmentation technique found within eCognition v9.1 
(Trimble, Munich, Germany) to delineate individual tree crowns on the NAIP imagery. 
This segmentation algorithm was selected due to the lack of tree crown morphology data 
(such as a DEM) matching the resolution of this imagery. A range of segmentation scale, 
color/shape, and compactness/smoothness parameters were tested (e.g., scale ranging 
from 10 to 600 (intervals of 10), color/shape ranging from 0.1 to 0.7 (intervals of 0.1), and 
compactness/smoothness ranging from 0.3 to 0.8 (intervals of 0.1)). The results of these 
segmentation parameter combinations were evaluated both qualitatively (i.e., visually) 
and quantitatively in comparison to manually digitized reference trees (i.e., polygons) at 
several of our study areas. For the quantitative assessment, we calculated the over-seg-
mentation accuracy (Oa), under-segmentation accuracy (Ua), and quality rate (QR) of each 
parameter (see Gu et al. [80]) combination for over 200 digitized reference trees [87,88]. 
The equations for Oa, Ua, and QR are included below. The goal of this segmentation was 
to provide pure tree species segments, which dictated that over-segmentation took prior-
ity over the other evaluation metrics. A subset of the best-performing (quantitatively) re-
sults were then visually reviewed to select the best fit. Following the selection of an opti-
mal parameter combination, individual tree crowns were delineated on the NAIP im-
agery. A total of 29 object-level features (spectral, textural, and geometric attributes) were 
calculated for use in the supervised classification algorithms (see Table A1 in Appendix 
A). Two of these features, the mean and the standard deviation of the near-infrared (NIR) 
band were unique to the NAIP imagery. 

In these three equations, 𝑟௜ denotes the i-th reference polygon, and 𝑠௜ represents the 
i-th segmented polygon that overlaps with 𝑟௜. The symbol ∩ is defined at the intersection 
between two polygons, while ∪ is their union [80,87,88]. 𝑂𝑎 =  ଵ௡ ∑ (௔௥௘௔ (௥೔ ∩ ௦೔)௔௥௘௔ (௥೔)௡௜ୀଵ ). (1)𝑈𝑎 =  ଵ௡ ∑ (௔௥௘௔ (௥೔ ∩ ௦೔)௔௥௘௔ (௦೔)௡௜ୀଵ ).  (2)𝑄𝑅 =  ଵ௡ ∑ (1 − ௔௥௘௔ (௥೔ ∩ ௦೔)௔௥௘௔ (௥೔ ∪ ௦೔)௡௜ୀଵ ). (3)

Segmentation of the UAS imagery was conducted using a marker-controlled water-
shed segmentation (MCWS) technique [80,88]. This MCWS workflow consisted of several 
stages, each reliant on the 3D tree crown data available for each study area. We began by 
creating an ultrahigh-resolution canopy height model (CHM) based on the DEMs. A 2 m 
New Hampshire lidar bare earth dataset was used to adjust the SfM DEMs to height above 
elevation (i.e., terrain) values [89]. Next, we applied a Gaussian filter to this raster dataset 
to diminish excessive pits and peaks (i.e., noise) in the data [80,88,90]. To begin the indi-
vidual tree detection and delineation (ITDD) process, we applied a local maxima filter, 
with a fixed window size, to the final filtered CHM to establish the MCWS marker (i.e., 
individual tree crowns). A fixed, circular, window size of 45 cells (~1.65 m) was chosen 
for this step. This window size was selected during initial testing because it met our ob-
jective of avoiding under-segmentation (omission error) as much as possible, thus allow-
ing the generation of tree segments which represented only single species. Other similar 
studies for this region selected larger fixed window sizes for the purpose of determining 
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the best performance for individual tree delineation as represented by QR at the expense 
of greater omission error [52,67,80]. To quantify the individual tree detection error, we 
calculated the object detection rate (ODR), as well as the over-detection (over-segmenta-
tion or commission) and under-detection (under-segmentation or omission) by compari-
son with over 200 digitized reference trees [67,80,91]. The next stage in the MCWS process 
consisted of masking the non-forested areas and large canopy gaps on the basis of a min-
imum height threshold. A height threshold of 6 m was applied to the CHM prior to delin-
eating the individual tree crowns [92]. The final stage of the MCWS process applied the 
segmentation algorithm, which was initialized at the given markers and delineated tree 
boundaries using the height gradients from the CHM [80]. Similar to the NAIP segmenta-
tion results, the final UAS tree segments were quantitatively and qualitatively evaluated 
against manually digitized reference trees using the Oa, Ua, and QR metrics [88]. After 
this assessment of segmentation quality, 26 spectral, geometric, and textural features were 
generated for each tree segments using eCognition, which were then available for use the 
digital classification approaches (see Table A1 in Appendix A). 

2.6.2. Automated Classifications 
Three supervised classification algorithms were applied to tree segments generated 

from the NAIP and UAS data to label the segment into one of the classes in the classifica-
tion scheme. Multiple classification algorithms were implemented because of their often-
contradictory performance in other studies [20]. First, we applied a singular decision tree 
(CART) to determine if the complexity of our forests could be differentiated by a more 
simplistic classifier [18,27]. Secondly, we applied a random forest (RF) ensemble classifier, 
made up of 500 decision trees, to these same tree segments [20,26]. We used the Gini index 
for this classification to control the decision tree splits [93,94]. For both of these decision 
tree-based classifications, the mean decrease in impurity (MDI) was calculated for each of 
the included features to ensure that an optimal confluence of input data could be enforced. 
In other words, individual features with the lowest scores could be pruned to both reduce 
the dimensionality of the classification and improve the overall accuracy. For the final 
supervised classification algorithm, we implemented a support vector machine (SVM) 
classifier based on the one-against-one form [29,95]. A linear kernel was selected for the 
kernel function [20]. All three of these classifications were performed in Python using the 
Sickit-learn package and with all of the available geometric, spectral, and textural features 
[29,96–98]. Using this package, a number of procedures for selecting the training and val-
idation samples were implemented. These included (1) splitting the reference data to 
achieve a minimum validation sample size of 30 samples per class (i.e., 55% training and 
45% validation), (2) splitting the reference data to achieve a minimum validation sample 
size of 30 samples per class and performing removing negatively influential features 
based on the MDI scores, (3) splitting the reference data to achieve a 65% training/35% 
testing split, and (4) conducting a permutation-based out-of-bag validation with 3% of the 
total sample size selected for validation. We then elected to apply the procedure that both 
achieved the highest overall accuracy and maintained a statistically valid accuracy assess-
ment [39]. Each accuracy assessment for each of the classification methods and imagery 
sources was performed 10 times so that an average of the overall accuracy could be rec-
orded. 

3. Results 
3.1. Accuracy/Uncertainty in Visual Interpretation 

The accuracy achieved when visually interpreting forest inventory plot-level compo-
sitions using the Google Earth, NAIP, and UAS imagery was evaluated for both the nine-
class and the four-class composition schemes. The sample sizes and labels for these classes 
can be seen in Table 1. In total, 408 forest inventory plots were classified for each of the 
three imagery sources. A large portion of these plots, according to the field-inventory 
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data, were coniferous (a combination of white pine, eastern hemlock, and mixed conifer 
composition classes). 

Table 1. Forest inventory plot sample sizes (in individual plots), for each composition class during both the nine-compo-
sition class visual interpretation and the generalized four-class visual interpretation. Composition classes found within 
this table include white pine (WP), eastern hemlock (EH), mixed conifer (MC), mixed forest (MF), oak mixtures (OAK), 
American beech (AB), red maple (RM), mixed hardwoods (MH), and early successional (ES). 

Visual Interpretation Sample (Inventory Plot) Sizes 

WP EH MC MF OAK RM AB MH ES 

85 10 44 131 40 23 10 37 28 

Conifer MF Deciduous ES 

139 131 110 28 

Plot-level classification accuracies using the each of the three high-resolution imagery 
sources were low given the species complexity of these forests (see Table A2 in Appendix 
A). The overall accuracy for interpreting nine classes using the Google Earth imagery was 
29.9%. Classes such as AB, EH, RM, and OAK showed the lowest thematic accuracies. 
When generalized to only four classes, the overall accuracy using the Google Earth im-
agery increased to only 44.85%. Interpreting these same plots using the NAIP imagery 
resulted in a similar performance. Our nine-class thematic accuracy was 31.86%, while the 
generalized four-class assessment resulted in an overall accuracy of 46.57%. Both the nine-
class and the four-class interpretation accuracies were higher when using the highest-spa-
tial-resolution UAS imagery. The forest inventory plot compositions reached an overall 
accuracy of 39.46% for nine classes (Table 2) and 54.44% for four composition classes (Ta-
ble 3). 

Table 2. Plot-level forest composition thematic accuracy for UAS visual interpretations of nine classes. 

 Field (Reference) Data   

   
W
P 

EH MC MF AB RM OAK MH E
S 

TOTAL USERS  
ACCURACY 

 
 
 
 

UAS 
Visual 

Interpre
tation 

WP 51 1 17 13 0 1 0 1 1 85 60.0% 

EH 2 1 1 3 1 0 0 1 0 9 11.11% 

MC 5 3 3 9 0 1 0 1 2 24 12.5% 

MF 22 2 20 65 2 8 14 12 8 153 42.48% 

AB 0 0 2 0 3 0 0 1 0 6 50.0% 

RM 0 0 0 3 1 5 3 3 0 15 33.3% 

OA
K 2 0 1 10 1 1 17 10 4 46 36.96% 

MH 2 3 0 25 2 5 6 6 3 52 11.54% 

ES 1 0 0 3 0 2 0 2 10 8 55.56% 

TOTAL  85 10 44 131 10 23 40 37 28 161/408  

PRODU
CERS   60.0% 

10.0
% 

6.8
% 

49.62
% 

40.0
% 

21.74
% 

42.50
% 

16.22
% 

35.71
% 

 
OVERALL  

ACCURACY 
39.46% 
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ACCUR
ACY 

Table 3. Plot-level forest composition thematic accuracy for UAS visual interpretations of four classes. 

Field (Reference) Data 

  C MF D ES TOTAL USERS ACCURACY 

 
 

UAS Visual 
Interpretation   

C 84 26 3 3 116 72.41% 

MF 44 65 38 8 115 41.94% 

D 10 38 63 7 118 53.39% 

ES 1 2 6 10 19 52.63% 

TOTAL  139 131 110 28 222/408  

PRODUCERS  
ACCURACY  60.43% 49.62% 57.27% 35.71%  

OVERALL  
ACCURACY 

54.44% 

We conducted a qualitative assessment of the uncertainty incurred during the visual 
interpretation of complex, mixed-species forests. Our assessment included the labeling of 
plot-level composition across Google Earth, NAIP, and UAS imagery. Table 4 shows a 
subsample of 36 plots where the results of the field data are compared to the visual inter-
pretation results. For example, we see that the first OAK plot (Table 4) comprised 81.2% 
OAK, with the remainder of the composition (18.2%) being American beech. With the pro-
portion of OAK being greater than 50%, according to the field data, each of the interpre-
tations should have also labeled the plot as OAK; however, there were several instances 
in which the interpreter labeled the plot as mixed hardwoods (MH). An MH classification 
would indicate that the plot was visually interpreted as having greater than 66% decidu-
ous composition, while also consisting of less than 50% OAK composition and less than 
20% AB composition. The final eastern hemlock (EH) plot, containing 87.5% EH, was mis-
labeled once as mixed forest (MF) and twice as mixed conifer (MC). These interpretations 
indicated that the interpreters did not recognize a composition containing greater than 
70% EH. For each of the four AB plots, with six interpretation trials each, these plots were 
only mislabeled as coniferous-dominated once. The most common misclassification of AB 
plots was MH. This misclassification of AB as MH indicated that both interpreters did not 
recognize forest compositions containing greater than 20% AB. Visual interpretations con-
ducted using the Google Earth imagery showed large amounts of uncertainty for all plots 
other than those heavily dominated by white pine (WP) or mixed forest (MF). Of the 36 
plots that were included in this analysis, only three reported a consensus (four or more 
labels in agreement) for the correct forest composition. The NAIP imagery visual inter-
pretations fared slightly better. For these assessments, most classes were identified cor-
rectly labeled at least once for most plots. Composition classes such as WP, MH, and early 
successional (ES) were correctly identified more often with the NAIP imagery than the 
Google Earth imagery. Nevertheless, only five of the 36 plots were interpreted with a ma-
jority agreement for the correct composition. When interpreting the UAS imagery, there 
was a noticeable decrease in the uncertainty for identifying individual species (e.g., Amer-
ican beech and red maple). MH, however, showed a noticeable drop in successful identi-
fications when using the UAS imagery. Although individual classes were correctly iden-
tified more often, there was still a low percentage of classes which formed an agreement 
for the correct forest composition. Six of the 36 plots (16.7%) interpreted using the UAS 
imagery resulted in a majority agreement for correct composition class. 
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Table 4. Unmanned aerial system (UAS) qualitative assessment of visual interpretation uncertainty for individual forest 
inventory plots of varying species composition (nine classes) across six trials. Note: the green box indicates agreement 
with the field data, while the red box indicates disagreement. The two visual interpreters are referenced as ‘J’ and ‘H’ with 
their three trials labeled each as ‘1′, ‘2′, and ‘3′. Composition classes found within this table include white pine (WP), 
eastern hemlock (EH), mixed conifer (MC), mixed forest (MF), oak mixtures (OAK), American beech (AB), red maple (RM), 
mixed hardwoods (MH), and early successional (ES). 

Unmanned Aerial Systems (UAS) Visual Interpretation Uncertainty: 9 Composition Classes 
Field 
Data Field-based Composition (%) J-1 J-2 J-3 H-1 H-2 H-3 
WP 87.5% WP, 6.3% EH, 6.3% AB WP MC MC WP MC MC 

WP 75% WP, 12.5% RM, 12.5% MH WP MC MC WP MC MC 

WP 83.3% WP, 8.3% OAK, 8.3% ES MF MF MF WP MF MF 

WP 91.7% WP, 8.3% RM WP MC WP WP MC WP 

EH 75% EH, 25% WP WP WP WP MC WP WP 

EH 90% EH, 10% ES EH MF MF EH EH MC 

EH 85.7% EH, 14.3% ES EH WP EH MC MF EH 

EH 85.7% EH, 14.3% ES MF MC EH EH EH MC 

MC 41.7% EH, 41.7% WP, 8% RM, 8% MH MF MC EH MC WP MF 

MC 44.4% WP, 33.3% EH, 22.2% BB EH MC EH MC MC EH 

MC 69.23% WP, 15.4% ES, 7.7% MH, 7.7% OAK WP WP MC WP WP WP 

MC 45.5% WP, 27.3% EH, 27.3% OAK MC MF WP WP MF MC 

MF 60% EH, 40% ES EH MF MF EH EH MF 

MF 50% WP, 33.3% OAK, 8.3% MH, 8.3% RM MH MF MF MF MF MC 

MF 54.5% WP, 45.5% OAK MF WP WP MF MC MC 

MF 62.5% WP, 37.5% OAK OAK MF MH MF OAK MH 

OAK 81.2% OAK, 18.2% AB OAK MH MH OAK OAK MH 

OAK 66.7% OAK, 33.3% MH MH MH MH OAK MF EH 

OAK 60% OAK, 20% RM, 20% WP OAK MH MH MH MF OAK 

OAK 66.7% OAK, 33.3% EH OAK OAK RM OAK OAK OAK 

RM 100% RM MH RM MH RM MH EH 

RM 50% RM, 50% MH ES ES ES WP ES RM 

RM 77.8% RM, 11.1% EH, 11.1% OAK MH RM RM RM RM AB 

RM 60% RM, 20% WP, 20% OAK MF OAK OAK RM RM MH 

AB 44.4% OAK, 33% AB, 22.2% EH AB OAK OAK AB MH EH 

AB 

33.3% MH 25% AB, 16.7% EH, 16.7% RM, 16.7% 

ES AB ES AB AB AB MH 

AB 66.7% AB, 33.3% OAK MF MH MH AB MH RM 

AB 40% AB, 20% RM, 20% MH, 20% ES RM MH OAK AB OAK OAK 

MH 50% MH, 25% OAK, 25% EH MH MH MF OAK MH MF 

MH 

33.3% MH, 22.2% OAK, 22.2% ES, 11.1% EH, 

11.1% RM OAK MH MH OAK MC MH 

MH 37.5% RM, 25% MC, 25% ES, 12.5% OAK OAK MH OAK MF MH MF 



Forests 2021, 12, 1290 15 of 31 
 

 

MH 50% RM, 16.7% EH, 16.7% ES, 16.7% MH MF AB AB MF AB MH 

ES 100% ES ES EH ES MF EH EH 

ES 100% ES MH ES AB MF ES ES 

ES 100% ES OAK MH MH MF MH MH 

ES 100% ES ES ES ES WP MH ES 

We also assessed the uncertainty in visual interpretations when the forest classes 
were generalized to conifer forest (C), deciduous forest (D), mixed forest (MF), and early 
successional forest (ES). For the Google Earth and NAIP interpretation assessments of for-
est composition, there was a less obvious contrast between the uncertainty incurred in 
labeling four classes and the uncertainty in labeling nine classes. Much of the misclassifi-
cation for both imagery sources resulted in commission to the MF class, instead of a sim-
ilar species dominance. Using the Google Earth imagery, nine of the 36 inventory plots 
were labeled correctly, according to a majority agreement. With the NAIP imagery, 11 of 
the 36 plots reported a majority agreement for the correct forest composition. In Table 5, 
we see the plot-level interpretations using the UAS imagery. Classes such as WP, OAK, 
and American beech (AB) had fewer misclassifications at this level of generalization. The 
third ES plot (from the top), containing a 100% ES basal area composition, was still misla-
beled as deciduous during all trials. The third WP plot (third from the top) was incorrectly 
labeled MF during five of the six trials, despite containing only 8.3% OAK and 8.3% ES 
composition. Many of the MF classes were incorrectly labeled as either coniferous- or de-
ciduous-dominated. Using the UAS imagery to visually interpret four generalized forest 
composition classes at the plot level resulted in the lowest amount of uncertainty. Overall, 
28 of the 36 (77.78%) were labeled with a consensus for the correct forest composition. 
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Table 5. Unmanned aerial system (UAS) qualitative assessment of visual interpretation uncertainty for individual forest 
inventory plots of varying species composition (four classes) across six trials. Note: the green box indicates agreement 
with the field data, while the red box indicates disagreement. The two visual interpreters are referenced as ‘J’ and ‘H’ with 
their three trials labeled each as ‘1′, ‘2′, and ‘3′. Composition classes found within this table include white pine (WP), 
eastern hemlock (EH), mixed conifer (MC), mixed forest (MF), oak mixtures (OAK), American beech (AB), red maple (RM), 
mixed hardwoods (MH), early successional (ES), as well as coniferous forests (C), and deciduous forests (D). 

Unmanned Aerial Systems (UAS) Visual Interpretation Uncertainty: 4 Composition Classes 
Field Data Field-based Composition (%) J-1 J-2 J-3 H-1 H-2 H-3 
Coniferous 87.5% WP, 6.3% EH, 6.3% AB C C C C C C 

Coniferous 75% WP, 12.5% RM, 12.5% MH C C C C C C 

Coniferous 83.3% WP, 8.3% OAK, 8.3% ES MF MF MF C MF MF 

Coniferous 91.7% WP, 8.3% RM C C C C C C 

Coniferous 75% EH, 25% WP C C C C C C 

Coniferous 90% EH, 10% ES C MF MF C C C 

Coniferous 85.7% EH, 14.3% ES C C C C MF C 

Coniferous 85.7% EH, 14.3% ES MF C C C C C 

Coniferous 41.7% EH, 41.7% WP, 8% RM, 8% MH MF C C C C MF 

Coniferous 44.4% WP, 33.3% EH, 22.2% BB C C C C C C 

Coniferous 69.23% WP, 15.4% ES, 7.7% MH, 7.7% OAK C C C C C C 

Coniferous 45.5% WP, 27.3% EH, 27.3% OAK C MF C C MF C 

MF 60% EH, 40% ES C MF MF C C MF 

MF 50% WP, 33.3% OAK, 8.3% MH, 8.3% RM D MF MF MF MF C 

MF 54.5% WP, 45.5% OAK MF C C MF C C 

MF 62.5% WP, 37.5% OAK D MF D MF D D 

Deciduous 81.2% OAK, 18.2% AB D D D D D D 

Deciduous 66.7% OAK, 33.3% MH D D D D MF C 

Deciduous 60% OAK, 20% RM, 20% WP D D D D MF D 

Deciduous 66.7% OAK, 33.3% EH D D D D D D 

Deciduous 100% RM D D D D D C 

Deciduous 50% RM, 50% MH ES ES ES C ES D 

Deciduous 77.8% RM, 11.1% EH, 11.1% OAK D D D D D D 

Deciduous 60% RM, 20% WP, 20% OAK MF D D D D D 

Deciduous 44.4% OAK, 33% AB, 22.2% EH D D D D D C 

Deciduous 

33.3% MH 25% AB, 16.7% EH, 16.7% RM, 

16.7% ES D ES D D D D 

Deciduous 66.7% AB, 33.3% OAK MF D D D D D 

Deciduous 40% AB, 20% RM, 20% MH, 20% ES D D D D D D 

Deciduous 50% MH, 25% OAK, 25% EH D D MF D D MF 

Deciduous 

33.3% MH, 22.2% OAK, 22.2% ES, 11.1% EH, 

11.1% RM D D D D C D 

Deciduous 37.5% RM, 25% MC, 25% ES, 12.5% OAK D D D MF D MF 
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Deciduous 50% RM, 16.7% EH, 16.7% ES, 16.7% MH MF D D MF D D 

ES 100% ES ES C ES MF C C 

ES 100% ES D ES D MF ES ES 

ES 100% ES D D D MF D D 

ES 100% ES ES ES ES C D ES 

 

3.2. Image Segmentation and Tree Detection 
Quantitative metrics (Oa, Ua, and QR) were used to determine an optimal set of mul-

tiresolution segmentation parameters to delineate individual tree crowns within the NAIP 
imagery. The optimal selection of segmentation parameters (for use in eCognition for the 
multiresolution segmentation technique) included a scale parameter of 10, a color/shape 
of 0.2, and a compactness/smoothness of 0.5. Measuring the correspondence of these tree 
segments to 230 reference trees resulted in an Oa of 0.382, a Ua of 0.849, and a QR of 0.657. 

For the MCWS of the UAS CHM and orthomosaic, we began by assessing the indi-
vidual tree detection accuracy. A total of 231 samples were used for this assessment (Table 
6). The 45-cell fixed window size led to an overall detection accuracy of 93.9%. This detec-
tion rate is a combination of the 231 reference trees that were detected as a singular canopy 
(correct or 1:1 detection) and those that were detected as multiple trees. In other words, 
only 6.1% of the reference trees were not detected (under detection or omission error). 
While a smaller window size did eventually remove the omission error, it caused every 
tree to be heavily over segmented. A larger window size increased the omission error 
(under detection) to greater than 10%. 

Table 6. Individual tree detection accuracy for the unmanned aerial system (UAS) imagery segmentation. 

Correct Detection 
Over-Detection 

(Commission Error) 
Under-Detection  
(Omission Error) Total 

85 132 14 231 
36.80% 57.14% 6.1% Overall Detection Accuracy 

   93.9% 

Continuing through the MCWS process, we quantitatively evaluated the final seg-
mentation results against these same 231 reference samples [93]. These UAS tree segments 
resulted in a Oa of 0.73, a Ua of 0.523, and a QR of 0.6438. 

3.3. Digital Classifications 
Both NAIP and UAS imagery was evaluated for the effectiveness in identifying indi-

vidual trees using three supervised digital classification algorithms. The sample sizes for 
each of the eight composition classes for both imagery sources are included in Table 7. 
Since this approach was conducted for labeling individual trees, the mixed forest class 
was not possible. 

Table 7. Reference data samples sizes by class for individual tree classifications conducted using the UAS and NAIP au-
tomated approaches. Additional acronyms include other conifer (OC) and other hardwood (OH). 

Individual Tree Reference Data Sample Sizes 
 WP EH OC ES OH OAK RM AB 

NAIP 97 76 90 79 77 135 95 77 
UAS 102 77 85 74 88 152 97 77 
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Individual tree digital classifications using the segmented NAIP imagery were gen-
erated using the CART, RF, and SVM classifiers. Following the examination of feature 
importance scores (see Figure A1 in Appendix A), we removed the gray-level co-occur-
rence matrix (GLCM) contrast, GLCM dissimilarity, border index, and gray-level differ-
ence vector (GLDV) contrast for the NAIP imagery CART and RF classifications. This re-
moval resulted in an increase in overall accuracy of 1.13% and 1.55% for CART and RF, 
respectively. The overall accuracy of labeling eight classes for the three classifiers was 
21.44% (CART), 29.23% (RF), and 29.36% (SVM). 

The digital classification of eight composition classes using UAS imagery resulted in 
higher overall accuracies for each of the three supervised classifiers. For this imagery, the 
least important features were asymmetry, density, shape index, radius of the short ellip-
soid, and compactness (see Figure A2 in Appendix A). The removal of these features im-
proved the overall accuracies by 0.235% (CART) and 1.33% (SVM). The overall accuracies 
for eight composition classes using the UAS imagery, based on an average of 10 iterations, 
were 33.27% (CART) (see Table A3 in Appendix A), 46.67% (RF) (see Table A4 in Appen-
dix A), and 46.90% (SVM) (Table 8). These UAS thematic accuracies represented, on aver-
age, a 15.60% increase over the same methods when using the NAIP imagery. 

Table 8. Thematic map accuracy assessment error matrix for individual trees using the UAS imagery and the SVM algo-
rithm for eight classes. 

 Field (Reference) Data 

   WP EH OC AB RM OAK OH ES 
TO-
TAL 

USERS  
ACCU-
RACY 

 
 

UAS  
Imagery  

Using the 
SVM  

Classifier 

WP 36 4 6 0 1 1 7 2 57 63.16% 

EH 2 16 3 13 4 6 3 7 54 29.63% 

OC 5 1 20 1 2 2 3 2 36 55.56% 

AB 0 6 2 14 2 2 3 3 32 43.75% 

RM 1 2 0 1 18 2 4 3 31 58.06% 

OA
K 0 4 2 4 7 49 13 9 88 55.68% 

OH 2 1 4 0 6 4 6 1 24 25.0% 

ES 0 1 1 2 4 2 1 6 17 35.29% 

 TOTAL  46 35 38 35 44 68 40 33 165/339  

 
PRODUC-

ERS  
ACCURACY 

 78.26% 
45.71

% 
52.63

% 
40.0
% 

40.91
% 

72.06
% 

15.0
% 

18.18
% 

 

OVERALL 
ACCU-
RACY 
48.67% 

 
The overall classification accuracies for both NAIP and UAS imagery increased when 

the eight classes were collapsed to conifer, deciduous, and early successional. We again 
evaluated the feature importance for both the NAIP and the UAS image classifications 
(see Figure A3 in Appendix A), to determine the optimal feature selection for classifying 
coniferous, deciduous, and early successional cover types. Both imagery sources showed 
a general consensus for the most important (e.g., greenness and brightness) and least im-
portant (e.g., border index and compactness) features. The NAIP imagery correctly clas-
sified, on average, 45.32% of the tree segments using the CART algorithm. Using the RF 
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and SVM algorithms, the average overall accuracies increased to 53.58% and 52.69% re-
spectively. Classifying these same image segments using the UAS imagery produced av-
erage overall accuracies of 59.62% (CART), 70.48% (RF) (Table 9), and 68.59% (SVM). 

Table 9. Thematic map accuracy assessment error matrix for individual trees using the UAS imagery and the RF algorithm 
for three classes. 

 Field (Reference) Data 

 
UAS 

Imagery  
Using the  

RF  
Classifier 

 C     D ES TOTAL USERS ACCURACY 

C 86 18 18 122 70.49% 

D 27 126 34 187 67.38% 

ES 6 8 11 25 44.0% 

TOTAL   119  152 63 229/334  

PRODUCERS AC-
CURACY   72.27%  82.89% 17.46%  

OVERALL ACCURACY 
68.56% 

4. Discussion 
4.1. Analysis of Visual Interpretation Uncertainty 

The qualitative analysis of visual interpretation uncertainty showed regular progres-
sion in the ability to differentiate composition classes within complex forests. When clas-
sifying more specific composition classes (i.e., nine groups), we saw that all three remotely 
sensed imagery sources struggled to provide a consensus across six interpretation trials. 
Such a consensus is needed to provide both an accurate and a confident label for the com-
position of each inventory plot. The UAS imagery also showed slightly less variability in 
the identification of more pure species classes, in comparison to the Google Earth and 
NAIP imagery. The perceived ability to identify individual species, however, also led to a 
lower percentage of plots labeled as mixed hardwoods or mixed conifers. Other classes, 
such as EH, demonstrated that, even with nearly absolute plot composition (>85%), there 
was a significant amount of confusion and misclassification with other species. Such clas-
ses likely require further training or revision of the classification scheme [2,10]. When the 
forest composition was generalized to only four classes, all three imagery sources showed 
a considerable reduction in misclassifications. While there was still some confusion be-
tween specific mixtures or dominance, many of the plots for each source of imagery could 
be identified at least in these basic compositional groups. Additional classification rules 
such as forming a hierarchical classification by first identifying the plot as coniferous, de-
ciduous, mixed, or other forest could have bridged this gap in misclassifications [18]. One 
potential source of confusion in the labeling of these inventory plots could have been the 
presence and visual perception of large trees. Large trees are known to disproportionately 
account for stand structure and function [67,99]. A few large trees (or even a single tree in 
some cases) could have accounted for a large portion of the perceived plot composition 
based on the synoptic view of the visual interpretations. These same trees, however, may 
not be representative of the same compositional dominance when measured using the 
variable plot radius design that was used to collect our field-based reference data. This 
research was conducted within the transition forest region of New England forests [58]. 
These mixed-species forests comprise a rich diversity of hardwood species at local scales, 
as well as contain a common white pine and eastern hemlock component. The lower-spa-
tial-resolution Google Earth and NAIP imagery may suffer from this tendency for species 
mixtures, as both resulted in a large amount of MF commission error, even during the 
labeling of four composition classes. Lastly, certain classification scheme edge cases (e.g., 
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a plot with 33% coniferous composition which could be interpreted as deciduous-domi-
nated or MF depending on the interpreter) were found during this qualitative analysis. 

When looking at the overall thematic accuracies for the Google Earth, NAIP, and UAS 
plot-level interpretations, we formed several important insights. For both the nine-class 
composition accuracy and the four-class composition accuracy, the Google Earth and 
NAIP imagery produced approximately equal results. Both sources of imagery demon-
strated a considerable amount of commission error for the MF class. The NAIP imagery 
acquisition (influencing phenology) and image characteristics were not consistent, leading 
to challenges in interpretations across study areas [12]. Further spatial data exploration 
and preprocessing before using the NAIP imagery could be integrated to influence species 
classification success. The UAS imagery exhibited an ability to discern nine classes with a 
higher accuracy than even the generalized composition accuracy for either of the other 
imagery sources. Despite the increased spatial resolution to only 3.02 cm using the UAS 
imagery, however, the highest overall accuracy achieved using visual interpretation was 
still only 51.96%. As with other studies, specific hardwood classes and early successional 
species mixtures (ES) showed a high amount of thematic classification error [59]. 

4.2. Analysis of Digital Classifications 
Despite watershed segmentation being one of the most common and powerful meth-

ods for delineating tree crowns given the availability of 3D data, the visual assessment of 
tree segment quality was never absolute for all species [80,88]. Our individual tree detec-
tion accuracy produced a final omission error of 6.1%, similar to other studies conducted 
using remotely sensed data. During the manual refinement of the digital classification 
training samples, it was observed that many tree segments still contained some portion of 
a species mixture. The occurrence of mixed species tree segments was especially common 
for the large coniferous trees, which displayed the lowest classification accuracy. The in-
dividual segments for these large coniferous trees commonly absorbed neighboring sub-
dominant canopy deciduous trees. A more advanced segmentation technique could be 
adopted in future studies to better produce pure tree segments [52]. 

Turning to the automated individual tree classification results, the UAS imagery pro-
duced, on average, a 15.65% increase in overall accuracy over the NAIP imagery. Digital 
classification of the NAIP imagery, as with the interpretation analysis, likely suffers from 
inconsistencies in collection date and spectral characteristics [12]. The highest overall ac-
curacy for eight classes was achieved using the UAS imagery and the SVM classifier, at 
46.90%. This classification accuracy represents a 7.44% higher accuracy than visual inter-
pretations at the plot level. Both NAIP and UAS imagery supervised classifications still 
resulted in low accuracies for more specific classes such as EH and RM, however. In the 
automated classification of generalized (three) classes, we again observed an increase in 
performance for the UAS imagery over the NAIP imagery. The accuracy of the UAS im-
agery was, on average, 15.70% higher for the three supervised algorithms in comparison 
with the NAIP imagery. The highest overall accuracy for the three-class automated clas-
sification was produced using the UAS and the RF algorithm, at 70.48%, which is an in-
crease over the four-class visual interpretation accuracy of 16.04%. Achieving a higher 
overall accuracy for eight classes using the SVM algorithm and for four classes using the 
RF algorithm is not inconsistent with other findings. Many studies either evaluated the 
results of multiple machine learning algorithms or found that the best classifier is appli-
cation-dependent [20,100,101]. As part of our initial testing, we compared various proce-
dures for training and validating these individual tree classifications (Table 10). These 
methods included (1) splitting the reference data to achieve a minimum validation sample 
size of 30 samples per class, (2) splitting the reference data to achieve a minimum valida-
tion sample size of 30 samples per class and performing removing negatively influential 
features, (3) splitting the reference data to achieve a 65% training/35% testing split, and 
(4) conducting a permutation-based out-of-bag validation with 3% of the total sample size 
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selected for validation. On the basis of both the performance and the statistical validity, 
we applied the second method for each of the digital classification evaluations [21,39]. 

Table 10. Impacts of digital classification training/testing split designs using the RF classifier, UAS imagery, and eight 
composition classes. 

Individual Tree Classification Accuracies using the RF classifier, UAS Imagery, and 8 and 4 Composition Classes. 

 
55% Training / 

45% Testing 
55% Training / 45% Testing 

with Feature Reduction 
65% Training /  

35% Testing 
Out-of-Bag (OOB) Val-

idation 

Minimum Sample Size  30 per Class 30 per Class 26 Per Class 
Permutations of 3% 

from the total 
Average Accuracy 8 Classes 45.84% 46.67% 43.07% 45.84% 
Average Accuracy 4 Classes 64.01% 70.48% 65.36% 65.51% 

Similar studies employing the use multispectral and multitemporal UAS have been 
known to produce higher overall accuracies. In Gini et al. [60], accuracies were produced 
which ranged from 58% to 87%. These findings, however, were for the classification of 
several hardwood species within a private nursery, which is different from the species-
rich New England forests evaluated here. Xu et al. [61] produced comparable accuracies 
for eight subtropical species (conifer and deciduous) by incorporating both multispectral 
imagery and use of the photogrammetric point cloud. For the classification of eight conifer 
and deciduous species, they found a 65% overall accuracy and an 80% overall accuracy 
for labeling only coniferous and deciduous species. The inclusion of multispectral bands 
and indices or simply an increase in spectral resolution would likely increase the classifi-
cation accuracy when using the UAS imagery [60,102–104]. One of the most important 
features, as reported in Figures A1 and A3 (see Appendix A), for the NAIP imagery indi-
vidual tree classifications was the NIR band. Numerous studies have outlined the im-
portance of NIR reflectance in tree species classification [12,105,106]. Our results, how-
ever, show that true color ‘photogrammetric’ sensors, which may provide a more efficient 
and sometimes more effective platform for surveying contiguous forests, can be used with 
a decrease in classification accuracy of approximately 10% [34,75,76]. One important fac-
tor for this success was the selection of and reduction in classification features [107]. Our 
MDI test and feature reduction, while only resulting in a 2% difference in classification 
accuracy here, will become more important as the number of features and the spectral 
complexity are increased [21,108]. Lastly, image segmentation quality improvements 
could be explored to enhance individual tree classification. High-resolution image seg-
mentation techniques and individual tree detection and delineation methods are being 
developed at a rapid pace [52,88,109–111]. The ability to accurately detect and delineate 
the range of tree species and crown morphologies present in this landscape would provide 
more representative training samples for each species and, therefore, enhance the poten-
tial of each classification algorithm. 

4.3. Future Perspectives 
Future research should continue to investigate the best methods for adopting UAS 

for fine-scale (i.e., precision) forest management [57–59]. Data fusion techniques, such as 
the integration of both satellite and UAS data [112] or of optical and lidar data [1,62] pre-
sent methods for overcoming the limitations of UAS digital photogrammetry and achiev-
ing high accuracies for individual tree identification. Advanced classification algorithms 
may also present a variety of methods for better handling of the data dimensionality. 
However, such techniques would require a far greater amount of training data and tech-
nical expertise to complete [20,21]. The extension of forest composition data from one lo-
cation for classification of another could provide several advantages to forest managers, 
such as semiautomated classifications, considerable gains in time, cost reductions, and 
lower expert user knowledge required when given proper consideration for potential 
sources of uncertainty [113]. Unlike satellite-based generalizations of forest composition 
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data across study sites, UASs are not prone to the same dissimilarities in image character-
istics [18,113,114]. Instead, UAS applications face a myriad of rapidly evolving computer 
vision and data science challenges and solutions [115]. The development of these disci-
plines and tools is hoped to lead to achieving sufficient tree-level accuracies, which can 
then be aggregated to the plot or forest stand levels. 

5. Conclusions 
Trends in automated and semiautomated forest classifications using high-resolution 

remotely sensed data have made the thematic classification of individual trees a realistic 
aspiration. In this study, we evaluated, both qualitatively and quantitatively, the applica-
tion of Google Earth, NAIP, and UAS imagery for plot composition and individual tree 
identification. For this analysis, we compared visual interpretation and digital processing 
approaches. Our results indicated that supervised machine learning classifiers outper-
formed visual interpreters for specific (+7.44%) and generalized (+16.04%) species compo-
sition. While visual interpretation is commonly applied for broad-scale inferences of forest 
composition, the uncertainty in labeling more specific classes, as well as the costs required 
to train interpreters, makes fine-scale assessments impractical. Our results indicate that 
automated machine learning approaches can be a capable alternative for local-scale forest 
surveys, even with only single-date true-color imagery. In comparison with other re-
search, the inclusion of multitemporal imagery, multispectral imagery, or more advanced 
segmentation techniques would likely further increase this divide. Subsequent studies 
should continue to examine diverse forests and geospatial analysis techniques for deline-
ating the trees within them. 
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Appendix A 
Appendix A.1. Classification Features 

Table A1. Classification features (i.e., attributes or variables) used for the supervised classification of the NAIP (29 total) 
and UAS (26 total) imagery. 

Classification Features 

Spectral 
Greenness 

Mean of red band 
Mean of green band 
Mean of blue band 

SD red band 
SD green band 
SD blue band 
SD NIR band 

Greenness = (ெ௘௔௡ ீ௥௘௘௡ିெ௘௔௡ ோ௘ௗ) ା(ெ௘௔௡ ீ௥௘௘௡ିெ௘௔௡ ோ௘ௗ) (ଶ∗ெ௘௔௡ ீ௥௘௘௡) ା (ெ௘௔௡ ோ௘ௗ) ା (ெ௘௔௡ ஻௟௨௘)  
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Mean of NIR 
HIS transformation 

HIS = hue, intensity, saturation 

Texture 
GLCM homogeneity 

GLCM contrast 
GLCM dissimilarity 

GLCM entropy 
GLCM = gray−level co-occurrence matrix  

GLCM mean 
GLCM correlation 

GLDV mean 
GLDV contrast 

GLDV = gray−level difference vector  

Geometric 
Area (m2) 

Border index 
Border length 
Length/width 

Roundness 
 

*NAIP imagery only 

Compactness 
Asymmetry 

Density 
Radius of longest ellipsoid 
Radius of shortest ellipsoid 

Shape index 

Appendix A.2. Visual Interpretation Uncertainty 

Table A2. Thematic (overall) accuracy for plot-level visual interpretations using each of the three high-spatial-resolution 
remotely sensed data sources. 

Plot-Level Visual Interpretation Accuracy for High-Resolution Remotely Sensed Data Sources 
 Google Earth NAIP UAS 

9 Composition Classes 24.51% 25.25% 41.67% 
4 Composition Classes 39.95% 39.46% 51.96% 
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Appendix A.3. Automated Classification 

 
Figure A1. Feature importance for NAIP imagery classification of eight composition classes calculated using the mean 
decrease in impurity (MDI) test. 

 
Figure A2. Feature importance for UAS imagery classification of eight composition classes calculated using the mean 
decrease in impurity (MDI) test. 
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Table A3. Thematic map accuracy assessment error matrix for individual trees using the UAS imagery and the CART 
algorithm for eight classes. 

 Field (Reference) Data 

   WP EH OC AB RM OAK OH ES TO-
TAL 

USERS  
ACCU-
RACY 

 
 

UAS Imagery 
Using the 

CART 
Classifier 

WP 25 4 7 4 2 1 5 0 48 52.08% 

EH 2 7 2 6 1 6 2 6 32 21.88% 

OC 9 2 12 2 2 5 6 3 41 29.27% 

AB 2 2 1 11 4 5 7 2 34 32.35% 

RM 1 6 5 2 16 11 2 7 50 32.0% 

OA
K 2 5 8 4 7 30 12 4 72 41.67% 

OH 4 5 1 3 6 9 2 4 35 5.7% 

ES 1 4 2 3 6 1 4 7 28 25.0% 

TOTAL  46 35 38 35 45 68 40 33 
110/34

0  

PRODUCERS  
ACCURACY 

 54.35% 
20.0
% 

31.58
% 

31.43
% 

35.56
% 

44.12
% 

5.0
% 

21.21
% 

 

OVERALL  
ACCU-
RACY 
32.35% 
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Table A4. Thematic map accuracy assessment error matrix for individual trees using the UAS imagery and the RF algo-
rithm for eight classes. 

 Field (Reference) Data 

   W
P EH OC AB RM OAK OH ES 

TO-
TAL 

USERS 
ACCURACY 

 
 

UAS  
Imagery 

Using the 
RF  

Classifier 

WP 36 4 10 3 1 1 4 3 62 58.01% 

EH 0 10 0 6 2 3 2 3 26 38.46% 

OC 2 2 18 2 3 7 1 1 36 50.0% 

AB 1 3 1 13 1 3 4 1 27 48.15% 

RM 0 2 1 3 22 3 2 6 39 56.41% 

OA
K 1 9 5 5 10 48 13 8 99 48.48% 

OH 6 4 2 1 3 2 12 2 32 37.5% 

ES 0 1 1 2 3 1 2 9 19 47.37% 

TOTAL  46 35 38 35 45 68 40 33 168/340  

 
PRODUC-

ERS ACCU-
RACY 

 78.26% 
28.57

% 
47.37

% 
37.14

% 
48.89

% 
70.59

% 
30.0
% 

27.27
% 

 
OVERALL 

ACCURACY 
49.41% 

 

 
Figure A3. Feature importance for both UAS and NAIP imagery classification of four composition classes calculated using 
the MDI test. 
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