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Abstract: Quantification of forest Gross Primary Productivity (GPP) is important for understanding
ecosystem function and designing appropriate carbon mitigation strategies. Coupling forest biometric
data with canopy photosynthesis models can provide a means to simulate GPP across different stand
ages. In this study we developed a simple framework to integrate biometric and leaf gas-exchange
measurements, and to estimate GPP across four Mediterranean pine forests of different post-fire
age. We used three different methods to estimate the Leaf Area Index (LAI) of the stands, and
monthly gas exchange data to calibrate the photosynthetic light response of the leaves. Upscaling of
carbon sequestration at the canopy level was made by implementing a Big Leaf and a Sun/Shade
model, using both average and variant (monthly) photosynthetic capacity values. The Big Leaf model
simulations systematically underestimated GPP compared to the Sun/Shade model simulations. Our
simulations suggest an increasing GPP with age up to a stand maturity stage. The shape of the GPP
trend with stand age was not affected by the method used to parameterise the model. At the scale
of our study, variability in stand and canopy structure among the study sites seems to be the key
determinant of GPP.
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1. Introduction

Forest ecosystems are vital for the survival of human kind as they provide material,
economical and recreational resources [1], as well as fresh water, soil protection and other
ecosystem services [2]. Currently many scholars focus on the role of carbon (C) cycling
within forests, and the way this process is affected by global change [3] and interacts with
the climate system [4]. To understand C dynamics, estimation of the rate of C sequestration
and C stock change in forest ecosystems is crucial for ecological and global change research
and policy.

Estimation of ecosystem C fluxes is usually made by accounting for the different
components of ecosystem productivity [5]. The terrestrial Gross Primary Productivity
(GPP) is the amount of C that plants enchain through photosynthesis in the form of carbon
dioxide (CO2). The annual and inter-annual GPP variation provides information about
ecosystem dynamics and the rhythms of CO2 transposition from the atmosphere into
the biosphere [6]. GPP is controlled by factors that directly regulate photosynthesis as
well as by stand properties that indirectly regulate plant growth [7]. Abiotic factors that
influence photosynthesis operate on short-term (hourly), mid-term (daily to monthly) and
long-term (years) time scales. At short time scales, solar radiation [8], temperature [9] and
humidity [10] fluctuations are the main factors that regulate photosynthesis. At mid-term
scales, water and temperature fluctuations [11,12] are considered the key determinants
of photosynthetic C accumulation, while at longer time scales nutrient availability and
disturbances can have more prominent effects [13,14]. In forest ecosystems, stand density
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directly affects the Leaf Area Index (LAI), the amount of foliage area per unit ground
area [15,16]. LAI is determined from the stand morphology and characteristics [17], and it
is a major biotic factor controlling within-stand light availability [13,18], microclimate [19]
and water balance [20], and thus the overall GPP of a stand [21]. At sites with infrequent
disturbances, as stands mature and LAI reaches a local maximum [22], nutrient and
water limitation may occur due to competition among trees, leading to reductions of
stand-level GPP. However, disturbances such as wildfires and their regimes (frequency,
interval and severity) play a crucial role in GPP dynamics, by resetting various ecosystem
features [14]. Thus, a sound understanding of how abiotic factors, such as solar radiation,
temperature and precipitation, and biotic factors, such as stand and canopy structure,
control GPP is important to understand how forest ecosystems function on seasonal and
interannual timescales.

Climate change is expected to affect the dynamics of Mediterranean forests [23]. Pro-
jected temperature increases [24,25], the uncertain distribution of water availability [26,27]
and the interplay between drought and wildfire [28,29] are some of the most important
agents that could shift the rate of C assimilation in Mediterranean forests. In areas sur-
rounding the Mediterranean basin, mean annual temperature is expected to increase by
up to 3–4 ◦C and precipitation to decrease by 20%, leading to shifts in the forest fires
regime [30]. As a result, fires could disturb the consistency of forest ecosystems, creating
areas with different stages of succession and species synthesis [31]. Typically, in the post-
fire period, the trajectory of ecosystem productivity follows a single peak curve with the
maximum of productivity achieved at middle age stands [7,32]. Following such scenarios,
it is important to accurately simulate C fluxes to elucidate the role of Mediterranean forests
in the global C cycle and to develop effective reforestation strategies for C sequestration.

Estimation of the C exchange from forest ecosystems is challenging due to the com-
plex relationships between biotic and abiotic factors [33]. Currently, two methodologies
are implemented to infer forest productivity, the “top–down” and the “bottom–up” ap-
proaches [33,34]. The “top–down” or meteorological approach attains the estimation using
eddy-covariance flux towers [35]. This method is based on the continuous measurement
of CO2 fluxes between ecosystems and the atmosphere, without segregating and quanti-
fying the fluxes within the different C reservoirs of the ecosystem, for example the living
biomass, the dead biomass and the soil biomass [36]. Although this method gives accurate
estimations of net ecosystem productivity (NEP), i.e., the amount of C fixed by GPP after
removing losses from autotrophic and heterotrophic respiration, it does so without the
information of the components’ contribution. Therefore the estimation of GPP from eddy-
flux data is made under a set of assumptions regarding the autotrophic and heterotrophic
respiration rates [6,35]. Moreover, in cases that eddy-covariance flux towers operate in
complex terrains and vegetation sites, additional approaches and data, such as mesoscale
modelling, remote sensing and/or ecophysiological measurements, are used to accurately
partition C fluxes [37].

The “bottom–up” or ecological approach consists in using finer spatial scale data,
including biometric measurements, such as foliage, branch, stem and root growth and
litter and root turnover rates, as well as gas exchanges measurements (photosynthesis
and respiration) to understand C fluxes within an ecosystem [34,38]. Biometric data can
additionally provide information about the structure and the properties of the canopy and
the stand. Detailed biometric data can be used to estimate Net Primary Productivity (NPP),
i.e., the amount of C fixed by GPP after excluding autotrophic respiration [39]. Such data
can also be integrated with photosynthetic and respiration measurements, to ultimately
infer GPP and NEP [40]. In this perspective the ecological approach is more complex
but does provide the means for upscaling from the leaf to the ecosystem scale [36,41]. In
contrast with the “top–down” approach, “bottom–up” studies necessitate the frequent
physical presence of the researcher in the field and the associated difficulty to deliver
continuous data [42]. By combining the “top–down” and the “bottom–up” approaches,
more accurate estimations of ecosystem productivity can be obtained [43], although an
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agreement between the two methods is generally achieved after comparing multiple years
of concurrent measurements [34].

Estimation of Mediterranean forests GPP has been primarily pursued through eddy-
flux measurements and modelling studies [44–49]. Based on eddy-flux measurements,
estimation of GPP ranges from 2.49 to 4.60 g C m−2 day−1 [45,47,49] throughout the
year. On the other hand, model simulations yield relatively lower GPP from 1.15 to
2.66 g C m−2 day−1 [44,46,48] for typical Mediterranean forests. The range of above-
ground NPP in Mediterranean forests has been estimated through biometric studies
(0.13–0.55 g C m−2 day−1) [50] while annual NEP estimates from forest inventories can
reach a rate of 0.25 g C m−2 day−1 [51]. Based on inferences from litterfall data, some
studies estimate the annual NPP of Mediterranean pine forests at 1.64 Mg C·ha−1·yr−1 [50].
However, to our knowledge a systematic implementation of the “bottom up” approach in-
tegrated with ecophysiological measurements has not been implemented in Mediterranean
pine forests.

To understand the interplay between tree morphological and physiological processes
with the biotic and abiotic conditions of the stand and ultimately quantify C fluxes, process-
based forest models can be used as a framework to integrate information on different
ecosystem processes [52]. In this study we integrated the “bottom–up” approach with
simple canopy photosynthesis models to estimate GPP variation in Mediterranean Pine
forests (Pinus brutia Ten.) across a post-fire chronosequence on Lesvos Island, Greece. The
“bottom–up” approach provides an advantage for studying Pine forests productivity on
Lesvos, due to the topographic complexity and the forest structural heterogeneity arising
from the fire history on the island. In regions of topographic and vegetation heterogeneity
the eddy covariance flux tower approach could be biased [38]. Thus, even though the
“bottom–up” approach is more labour-intensive, it can provide a sound understanding of
C fluxes within an ecosystem [38], especially at finer spatial scales.

The aim of the study is to explore the key factors that control GPP variation in
Mediterranean Pine forests of different post-fire age. Based on forest dynamics theory we
expected an increase in GPP with post-fire age, until stands reached a stage of maturity,
followed by a gradual decrease in productivity with increasing stand age. We anticipated
seasonal GPP variation within stands to be primarily controlled by local weather conditions
and phenological variation in foliar properties. Across different stand development stages,
competition for light and the ability of canopy to capture radiative energy, expressed
through LAI, was expected to be the main driver of GPP. We used three different methods
to quantify LAI, based on direct and optical measurements. In order to systematically
quantify variation in estimated GPP related to these sources of methodological variation,
we used a factorial simulation protocol, which quantified variation in GPP across different
methods of LAI and photosynthetic capacity representation.

2. Materials and Methods
2.1. Study Sites

Four permanent measurement plots of different post-fire age have been established
and monitored on a monthly basis since July 2019 across the Pinus brutia forest ecosystem
on the island of Lesvos, Greece (Figure 1). Lesvos lies in the Northeast Aegean Sea, with a
typical Mediterranean climate, characterised by long xero-thermic periods and mild wet
winters. Dry season begins at mid-April and ends at early October. The average annual
temperature on the island is approximately 18 ◦C, with the minimum monthly temperature
in January at 6.8 ◦C and the maximum monthly temperature in mid-July at 31 ◦C. Mean
total annual precipitation is 645 mm with most rainfall falls in December and January [53].
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Figure 1. Distribution of the four study plots across the island of Lesvos. AMAL is the 13 year-old plot, PEV is the
40 year-old plot, LML is the 72 year-old plot and ACHL is the 92 year-old plot.

The four plots (Table 1) were established across a post-fire chronosequence (13 to
92 years old) on similar elevation (166 to 306 m asl) and soil parental material (Ophilithic
bedrock), using regional forest wildfire and geological maps. Soil texture and depth are
presented in Table A1. During plot establishment we tried to minimise effects from recent
disturbances by avoiding areas with obvious grazing or fire signs. All plots have mild
slope (under 10%) and are dominated by P. brutia with several woody species, such as
Quercus coccifera L., Pistacia lentiscus L., Erica spp. and Cistus spp., found in the understory,
rarely above 1 m high, and mainly present in the two younger plots.

Table 1. Characteristics of the study plots. AMAL is the 13 year-old plot, PEV is the 40 year-old plot,
LML is the 72 year-old plot and ACHL is the 92 year-old plot.

Plot Lat 1 Lon 1 Stand Age (y) Inclination % Orientation

AMAL 39.02 26.59 13 10 SE
PEV 39.16 26.37 40 5 SW
LML 39.16 26.38 72 10 SW

ACHL 39.13 26.30 92 0 -
1 Coordinates are given in decimal degrees.

To determine stand age in October 2019, we collected increment cores from at least
12 trees per site. From each tree, we extracted two cores to minimise the possible impact of
reaction wood. Samples were collected at breast-high with the use of a 5 mm increment
borer. After surface preparation, tree-ring width was measured to 0.01 mm using the
Time Series Analysis and Presentation software (TSAP-Win) [54] and a LINTAB (Rinntech
Inc. Heidelberg, Germany) measuring table. All samples were visually and statistically
cross-dated using TSAP-Win to identify the possible presence of missing or false rings [55].
Samples from each site were synchronised in one single mean chronology per site, the
age of which determined the mean age of each stand (Table 1). Detailed information on
dendrochronological analysis is provided in ([56], ‘under review’).

Square plots of 900 m2 were deployed and each tree above 1.3 m received a unique
code for the facilitation of biometric measurements. For each tree diameter at breast height
(dbh—cm) and height (H—m) were measured in July 2019 and monitored on an annual
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basis thereafter. The status (alive, dead) of each tree has also been recorded since the start
of plot monitoring period.

2.2. Gas Exchange and Functional Traits Measurements

From July 2019 to December 2020, we measured leaf-level CO2 exchange using a
LICOR 6400 (LICOR Inc., Lincoln, NE, USA) infrared gas analyser, on a monthly basis,
except for August 2019/2020, October 2019 and November 2020. All measurements were
made on days with typical weather conditions based on previous days’ weather forecasts.
We randomly selected trees within the stand and measured light response curves (Lc) for
six to ten trees each month. Measurements were made for three pairs of fully developed
and healthy needles, from both sunlit (four to eight Lc measurements) and shaded (two
to four Lc measurements) branches. A fully sunlit or shaded branch from the selected
tree was cut by climbing on the tree and/or using telescopic scissors, and immediately
placed in a water bucket where it was recut prior to leaf gas-exchange measurements [57].
Only current year’s needles were selected, or needles of the year before, in cases that the
current year’s needles were not fully developed, by identifying the small and clustered
sterile scales that indicate the end of the previous and the beginning of the new growth
unit [58]. Light response curves were made using the 6400–02B LED Light Source chamber
with red and blue LEDs (665 and 470 nm, respectively). The chamber was set up at ambient
conditions of humidity and temperature (provided by the L6400 external sensors), at
400 ppm CO2 concentration, by using CO2 cartridges, and systematically changing the rate
of photosynthetic active radiation (PAR) between 2000, 1800, 1600, 1400, 1200, 1000, 800,
600, 400, 200, 100, 80, 60, 40, 20 and 0 µmole quanta m−2 s−1 to measure net photosynthesis
(Anet (µmole m−2 s−1)). At each PAR level, three logs of Anet were taken after at least a
two-minute period during which the needles were left at the specific PAR flux to reach an
equilibrium. At the end of each light curve, needles were acclimated under dark conditions
for five minutes and an additional reading of leaf dark respiration (Rd (µmole m−2 s−1))
was taken. All sets of Lc measurements began 30 min to 1 h after dawn and ended at least
2 h after noon. Because the area of the needles inserted in the chamber did not fully cover
the chamber area, we marked the edge points and corrected our measurements for the leaf
area enclosed.

Each day, the needles used in the gas-exchange measurements were transferred to
the laboratory for additional leaf traits measurements. In the lab, needles were treated in
wet and dark conditions. One day later we measured wet mass (LWW—g) and thickness
(Lth—mm) before scanning the needles with a portable scanner (iScan 900 dpi). Leaf
area (LA—mm2) of the whole needles as well the marked area of the needles enclosed
in the chamber were estimated using the ImageJ image analysis software [59]. We then
oven-dried the needles for 72 h at 70 ◦C and measured their dry weight (LDW—g). Leaf
dry mass per area (LMA—g m−2) and Leaf Dry Matter Content (LDMC) were estimated
using average LWW, LDW and needle area [57].

2.3. Stand Level Measurements

At the stand level we quantified the monthly litterfall and branch fall rates. Five traps
were made and installed in each plot. Every trap had a square frame (0.5 m × 0.5 m) and
four legs (0.3 m height) made by PVC pipes (ϕ 16). Legs mounted the structure 0.3 m
above the ground to prevent needle sepsis during the wet season. A fiberglass window net
was installed inside each frame so as to create an inner curve with a maximum depth of
0.2 m, in order to prevent wind from removing needles and needle sepsis during the wet
season. Litterfall accumulated in the traps was collected monthly and then oven-dried for
48 h at 70 ◦C. Needles were separated from other forms of litter, such as cones, twigs, and
bark specimens. The mass of the needles was recorded and divided by the total area of the
litterfall traps, for estimation of litterfall mass per m2.

The LAI of each plot was estimated using three different methods. In the first approach,
namely the Litterfall Method (LFM), we used data from the litterfall traps [60,61] to estimate
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LAI by dividing the annual sum of litterfall mass per m2 with the annual average LMA and
multiplying by the average needle lifespan (1.5 years, [62], C. Sazeides observations). In the
second method, namely the Hemispherical Photography Method (HPM), we divided each
plot into nine subplots where we took two fisheye photographs with a Canon EOS-60D
and a fisheye lens (sigma 4.5 mm circular fisheye), mounted on a tripod and placed 1 m
above the forest floor. The camera was always levelled, and its top side was oriented
northward. All pictures were taken under overcast conditions, early in the morning
during the spring of 2020, with a fixed aperture (f = 7.9) and were slightly underexposed
(2/3 f-stops) [63]. Images were analysed using the HemiView Software (HemiView version
2.1 Delta-T Devices Ltd. Burwell, UK) and an average LAI per plot was estimated. In the
third approach, namely the Ceptometer Method (CMM), an average plot-level LAI was
estimated by systematically measuring incoming PAR within the plot using the AccuPAR
linear PAR ceptometer (Decagon Devices, Inc., Pullman, WA, USA) and comparing with
measurements outside the canopy at full light conditions. CMM LAI estimation was made
with measurements taken around solar noon and the leaf distribution parameter set to
X = 1. In each plot, six parallel transects with 5 m distance from each other were identified,
and PAR measurements were taken every 5 m, at 1 m above the forest floor, counting a total
of 36 LAI values for each plot, which were averaged to estimate a mean plot-level LAI.

2.4. Environmental and Remote Sensing Data

Ambient air humidity (RH) and temperature (T) were monitored in each site using
iButton Hygrochron DS1923-F5# (iButtonLink, Whitewater, WI, USA) at a 5 h time step.
The iButtons were placed at 2 m height on the north-facing side of a single tree in each plot.
The period covered was between July 2020 and July 2021. For each month (i) and study site
the average monthly temperature (Ti) and relative humidity (RHi) and standard deviation
were calculated and compared between stands (see Figure A1). There were non-significant
differences at ambient conditions among the sites in the same month. As the study plots
are located within a small distance from each other, variation in Ti’s and RHi’s between
plots are probably attributed to topographic variation and differences in stand structure.
Since Ti and RHi data only partly overlapped with the simulation period, they were only
used to describe site-specific weather conditions.

Hourly data for direct normal irradiance and diffuse horizontal irradiance were
downloaded from Solcast (Solcast, 2019, Global solar irradiance data and PV system power
output data, URL https://solcast.com/ (accessed on 21 January 2021)), a global solar
forecasting and historical solar irradiance data company. The two variables were summed
up to calculate the total normal irradiance, as the maximum irradiance that canopy received.
Total irradiance (Wm−2) was converted to PAR (µmole quanta m−2 s−1) by multiplying
with a constant equal to 2.1479 [64]. In addition, absorbed canopy radiation (Ic) was
estimated from total irradiance using a constant absorbance coefficient (a = 0.75) to account
for the fraction of incoming solar radiation that is absorbed by the foliage [65].

In order to compare our simulations with an independent dataset, we extracted
for each study site the global GPP from the moderate resolution (500 m) dataset of
Zhang et al. [66] for the 2000–2016 period. These estimates are based on an improved
light use efficiency model and are driven by satellite data from MODIS and climate data
from NCEP Reanalysis II. The mean value and the standard deviation (between years)
across the 17 year-long period were used as a baseline to compare with our simulated GPP.

2.5. Statistical Analysis

For each light response curve (per branch, month and plot) we first corrected the
needles’ area enclosed in the chamber and then fitted the Michaelis–Menten (MM) model
across the PAR range:

Anet = AsatPAR/(Km + PAR)− Rd (1)

where Asat is the light saturated net photosynthetic rate (µmole m−2 s−1), Km is the
half saturation coefficient (µmole quanta m−2 s−1), and Rd is the dark respiration rate

https://solcast.com/
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(µmole m−2 s−1). The model was fit to data from the light response curves using the
Global Optimization by Differential Evolution algorithm (package DEoptim) [67] and min-
imising the root sum of squares [52].

To test for seasonal differences in LMA and the parameters of the MM model we
used a mixed effect (package lme4) [68] model, using plot as a fixed effect and month as a
random effect term, due to the fact that our interest regarding months lies in the variation
among them rather than the specific effect of each level [69]. The importance of accounting
for seasonal variation was tested after comparing the Akaike’s Information Criterion
(AIC) of the mixed effect model with a simple linear model without the monthly random
component term (∆AIC < 2). A Wilcoxon test was used to explore for differences between
the parameters of the MM model between sunlit and shaded branches. An asymptotic test
(package cvequality) was used to evaluate the coefficient of variation (CV) equality among
the average and variant model estimations.

2.6. Coupling Biometric and Gas Exchange Data to Simulate Stand Level GPP

To estimate the GPP in each study plot we integrated the monthly gas exchange and
biometric data with two simple canopy photosynthesis models. In particular, we ran the
Big Leaf [70] and the Sun/Shade [71] canopy photosynthesis models in six different setups
for the site-specific abiotic and biotic condition of each study plot. The twelve different
setups are summarised in Table 2.

Table 2. Overview of the six different model setups. See Equation (1) for description of the light
response model parameters. Leaf Area Index (LAI) estimated using the following: Hemispherical
Photography method (HPM), Litterfall method (LFM) and Ceptometer Method (CMM).

Model Photosynthetic Capacity Setups LAI Setups

Big Leaf (BL)
Model

Monthly (variant) photosynthetic light
response parameters

HPM
LFM
CMM

Annual (average) photosynthetic light
response parameters

HPM
LFM
CMM

Sun/Shade (SS)
Model

Monthly (variant) photosynthetic light
response parameters

HPM
LFM
CMM

Annual (average) photosynthetic light
HPM
LFM
CMM

The “Big Leaf” approach (BL) is a simple method for estimating canopy photosynthe-
sis, without any canopy profile information required [72]. It is based on the assumption that
the scaling procedure from a single leaf to the canopy is governed by a linear relationship,
assuming that canopy response to environmental stimulations is the same as that of a
leaf [73]. Thus, canopy is considered as a single layer, with all leaves receiving the same
radiation [71]. Requirements for this model are few, in terms of field-measured parameters
as well as computational cost [74]. However, the assumptions of the BL model do not take
into accounts the decrease of irradiance throughout the canopy and the relative position
of leaves within the canopy. De Pury and Farquhar [71] descripted the Sun/Shade model
(SS) that separates the sunlit and the shaded part of canopy. The SS model estimates the
fraction of canopy that is sunlit or shaded, as well as the irradiance those two parts receive,
providing a more realistic estimation of canopy photosynthesis.

Below we describe the coupling of the BL and SS models with the biometric and
solar radiation data of the study plots. All algorithm developments, graphs and statistical
analyses were made in R [75] using the packages lubridate [76], dplyr [77], fishmethods [78],
ggplot2 [79], ggpubr [80] and tidyverse [81].
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For each month and in each study plot, a discrete light response curve was avail-
able, which accounted for potential acclimation of photosynthesis to environmental vari-
ation [82,83]. The monthly Lc curves were used in the varying photosynthetic capacity
model setups, while a mean Lc fitted with all available data (for measurements across all
months Figure A2) was used in the constant photosynthetic capacity model setups.

In all cases, hourly radiation data were used to force the models and simulate hourly
Anet under the constant and varying photosynthetic capacity model setups, with Rd set
to 0 during daylight hours. Simulations were made for the period between July 2019
and December 2020. The hourly time-step simulations were summarised to monthly and
annual GPP estimates for model intercomparison and validation. The estimation of the
annual GPP was made for the period between July 2019 to June 2020.

2.6.1. Big Leaf Model

Scaling up productivity from the leaf to the canopy level following the BL model setup
was made using:

GPP = Anet[1− exp(−kb LAI)]/kb (2)

where exp is the exponential function and kb is the beam radiation extinction coefficient of
the canopy:

kb = 0.5/ sin β (3)

and β is the solar elevation angle (in radians) and 0.5 is the ratio of projected area to surface
area of a hemisphere. Hourly values of β were estimated from the astrocalc4r function
(package fishmethods).

2.6.2. Sun/Shade Model

The application of the SS model required additional calculations. We initially simu-
lated the fraction of sunlit canopy according to:

Lsun = [1− exp(−kb LAI)]/kb (4)

where Lsun is the fraction of sunlit LAI.
The shade fraction of the canopy (Lsh) was estimated from the difference between

LAI and Lsun, on an hourly basis. The fraction of PAR absorbed from the sunlit part of the
canopy was calculated using:

Icsun = Ilb + Ild + Ilbs (5)

The absorbed irradiance from the sunlit canopy (Icsun) was estimated as the sum
of the direct beam (Ilb), diffuse irradiance (Ild) and scattered beam irradiance (Ilbs) ab-
sorption (Equations (A1)–(A3)). The total absorbed irradiance from the canopy (Ic) was
calculated from:

Ic = (1− rcb)Ilb[1− exp(−kbsLAI)] + (1− rcd)Id[1− exp(−kdsLAI)] (6)

with the difference between Ic and Icsun representing the irradiance absorbed by the shaded
part of the canopy (Icsh). Equations for calculating rcb, rcd, kds and kbs, are summarized in
Table A2. Scaling up to the canopy level following the SS model setup was made using:

GPP = [Asat,sunLsun Icsun/(Km,sun + Lsun Icsun)] + [Asat,shLsh Icsh/(Km,sh + Lsh Icsh)] (7)

3. Results
3.1. Variation in Stand Structure across the Post-Fire Chronosequence

Variation of mean diameter at breast height among the study sites (Table 3) indicated
an increasing average tree size with time since fire, with a decreasing stem density after a
peak in the 40 year-old stand. Overall, LAI followed an increasing trend with time since
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fire, peaking at the 72 year-old plot, and slightly decreasing in the 90 year-old plot. As
the plots were chosen to be undisturbed after the fire event, the slightly decrease in stem
density in the 90 year-old plot was due to the self-thinning process. The LFM estimated
higher values for LAI compared to HPM and CMM.

Table 3. Variation in stand structure across the study plots. Leaf Area Index (LAI) was estimated with three different
methods (see text for details). Diameter at breast height (dbh) measured for trees with a diameter > 1 cm. Hemispherical
Photography method (HPM), Litterfall method (LFM) and Ceptometer Method (CMM).

Stand Age
(Years)

Mean Tree
Height (m)

Trees/Plot
(no/900 m2)

Mean dbh
(cm)

Basal Area
(m2 ha−1)

LAI Method

HPM LFM CMM

13 1.93 99 1.98 0.59 0.90 1.47 0.66
40 5.46 300 7.46 22.87 1.48 2.66 1.77
72 9.28 62 20.72 32.92 1.45 3.88 2.13
92 12.87 21 43.36 35.79 1.47 3.36 1.79

3.2. Foliage Properties and Their Seasonal Variation

Outputs from the mixed effect model indicated that the average values of both LMA
and the photosynthetic MM model parameters were not different between the study plots,
except for higher Asat in the 13 year-old plot, suggesting the potential for using a common
(average) light response curve across all study sites (Table 4). However, significant variation
in the random (month) component was also identified (Table 4), suggesting that seasonal
variation should be considered (monthly photosynthetic light response model setup).

Table 4. Plot-specific fixed effect estimates (±1 standard error) for Leaf Mass per Area (LMA, g m−2), saturated net
photosynthetic rate (Asat, µmole m−2 s−1), half saturation coefficient (Km, µmole quanta m−2 s−1) and dark respiration
rate (Rd, µmole m−2 s−1). AICplot indicates the AIC for a simple linear regression with plot, while AICplot+month indicates
the AIC when seasonal variation was taken into account by including a monthly random component. ∆AIC indicates the
difference between AICplot+month and AICplot.

Parameter 13 Year-Old 40 Year-Old 72 Year-Old 92 Year-Old AICplot AICplot+month ∆AIC

LMA 139.3 (±4.5) 146.4 (±4.4) 142.5 (±4.4) 139.0 (±3.3) 2253 2231 −22
Asat 10.9 (±1.3) 5.9 (±1.3) 8 (±1.4) 7.9 (±1.0) 1395 1207 −188
Km 303.4 (±37.4) 223.3 (±36.9) 235.6 (±38.2) 239.4 (±27.9) 3235 3121 −114
Rd 0.53 (±0.1) 0.48 (±0.1) 0.45 (±0.1) 0.49 (±0.07) 158 111 −47

Among all foliar properties studied, LMA showed the lowest seasonal variation
(Figure 2A–D, Table A3). Monthly Asat variability followed the seasonal patterns of tem-
perature and precipitation variation (Figure 2E–H) with the highest values observed in
spring. Between plots the highest seasonal variation was found in the youngest and less
dense plot (Table A3). For all plots, lower Asat values were observed in the summer of 2020
(Figure 2E–H), while Km covaried with Asat (Figure 2I–L). Leaf dark respiration showed
the highest seasonal variation, with middle age stands having the higher CV.

The saturated net photosynthetic rate and the dark respiration were not statistically
different between sunlit and shaded needles (Asat,sun = Asat,sh, Rd,sun = Rd,sh) as inferred
from the Wilcoxon tests applied within and across all plots (Table A4). However, the half
saturation coefficient was different between sunlit (Km,sun) and shaded needles (Km,sh). In
order to simplify our model parameterisation, a correction for Km,sh was implemented by
multiplying the value of Km,sun by 0.76, estimated from the ratio of Km,sh/Km,sun across all
monthly estimates.
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Figure 2. Seasonal variation of Leaf Mass per Area (LMA, (A–D)), saturated net photosynthetic
rate (Asat, (E–H)), half saturation coefficient (Km, (I–L)) and dark respiration rate (Rd, (M–P)) across
all study plots. Curves are locally weighted scatterplot smoothing regression analyses with a 95%
confidence interval (shaded area) and dots are the individual measurements.
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3.3. GPP Simulations

Simulated monthly GPP across the four study plots and the twelve model setups is
presented in Figure 3. All model setups illustrated a characteristic peak of GPP during
the growing season with the highest values in June, following seasonal variation in PAR
flux and temperature. In all model setups, simulated annual GPP increased with stand
age (Figure 4) until maturity (72 year-old) and then slightly decreased, except for the HPM
model setups, where GPP increased continuously with post-fire time.

In general, the BL model simulated lower monthly GPP fluxes compared to the SS
model, yielding a lower annual GPP across all study plots (Table 5). Compared with the
independent GPP dataset predictions, the BL model estimates were within the mean ± one
SD range 5 out of 24 times and the SS model estimates were within the baseline range 10
out of 24 times.
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Figure 3. Gross Primary Productivity (GPP) monthly estimations for the examined period by the Big Leaf model with
average Asat and Km, (BLa)—red line, Big Leaf with variation of Asat and Km (BLv)—green line, Sun/Shade model with
average Asat and Km, (SSa)—blue line, and Sun/Shade model with variation of Asat and Km, (SSv)—purple line for all
three methods of LAI estimation, ceptometer method (CMM), hemispherical photography method (HPM) and litterfall
method (LFM).
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Figure 4. Annual GPP estimation with time since last stand-replacing fire based on different model setups. Big Leaf model
with average Asat and Km, (BLa)—red line, Big Leaf with variation of Asat and Km (BLv)—green line, Sun/Shade model with
average Asat and Km, (SSa)—blue line, and Sun/Shade model with variation of Asat and Km (SSv)—purple line for all three
methods of LAI estimation, ceptometer method (CMM), hemispherical photography method (HPM) and litterfall method
(LFM). Big dots represent plot-specific simulations, and dotted lines represent a generic trend with age.

Table 5. Annual GPP (g C m−2 year−1) computed from the sum of simulated daily GPP for the
period of 07/2019 to 06/2020. For each site, the estimated long-term (2000–2016) GPP (±one SD) from
an independent dataset [66] is also provided as a baseline. For the 40 year-old and the 72 year-old
plots the independent dataset provided the same GPP, as these two plots are within a 500 m radius.

GPP Model LAI
Method

Photo
Capacity

13
Year-Old

40
Year-Old

72
Year-Old

92
Year-Old

Big Leaf
Model

HPM variant 630 724 840 895
LFM variant 830 910 1172 1204
CMM variant 511 785 996 982
HPM average 616 674 751 778
LFM average 816 846 1043 1042
CMM average 499 730 890 852

Sun/Shade
Model

HPM variant 767 945 1075 1125
LFM variant 999 1255 1670 1667
CMM variant 658 1036 1315 1252
HPM average 779 903 987 1012
LFM average 1004 1195 1519 1483
CMM average 673 989 1205 1124

Zhang et al.
(2017) - - 816

(±98.7)
1221

(±126.5)
1221

(±126.5)
1060

(±102.1)

In terms of the variation related to the method used to estimate LAI, the LFM model
setups yielded the highest GPP, as expected from the higher LAI input values. Under the
LFM parameterisation the simulated annual GPP was 28% and 38% higher compared to
the CMM and HPM methods, respectively. Compared with the independent GPP dataset
predictions, the CMM model setup annual estimates were within the mean ± one SD range
4 out of 16 times, the HPM 5 out of 16 and the LFM 6 out of 16.

Models that run with the average photosynthetic capacity parameters illustrated
a lower variability in simulated monthly GPP compared to the variant model setups
(CVa = 42.3% vs. CVv = 52.4%, D_AD = 13.60, p < 0.001). During most of the simulation
period the variant model setups simulated higher GPP than the average photosynthetic
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capacity models, except for the period between 07/2020 and 09/2020 (Figure 3). Compared
with the independent GPP dataset predictions, the average photosynthetic capacity models
were within the baseline range 7 out of 24 times, and the variant photosynthetic capacity
models were so 8 out of 24 times.

4. Discussion

In this study we provided a semi-empirical framework to quantify GPP variation
across Mediterranean pine forests of different post-fire age. In accordance with forest
dynamics theory, we simulated an increase in GPP with stand age until a maturity stage,
followed by a small decrease in older stands. The shape of the GPP curve with time
did not significantly change with the method used to upscale CO2 fluxes from the leaf
to the stand level. The Big Leaf model setups systematically underestimated GPP com-
pared to the Sun/Shade model setups. Differences in the method used to parametrise
our framework yielded an average plot GPP between 844 and 1166 gC m−2 y−1 across
different LAI estimation methods, and an average GPP range from 934 to 1010 gC m−2 y−1

between constant and variant photosynthetic capacity setups. Overall, our simulations
are within the range of GPP suggested for Mediterranean pine forests, namely from 816 to
1600 gC m−2 y−1 [48,66,84].

The trajectory of gross primary productivity with time since disturbance in unman-
aged forests is frequently reported to present a parabolic shape [7] following the devel-
opment of stand structure and LAI. After a wildfire, GPP immediately decreases, due to
reduction in the available photosynthetic tissue biomass. Recovery of GPP can begin from
the first year after the fire [85] following a steadily increasing trajectory. The degree of GPP
rebound during the first few years is affected by the severity of the disturbance [14,86]
as well as by water and nutrient availability [85,87]. A decade after the fire, when newly
established trees take over, strong associations between GPP and canopy structure have
been observed [88]. From this stage onwards, the recovery of GPP can be mostly explained
by the recovery of LAI [89]. Across our post-fire chronosequence, LAI increased from
younger to mature stands and then decreased at the 92 year-old stand (Table 3), probably
due to competition between trees for light, water and nutrients [20,90]. Optical methods,
such as CMM and HPM, generally underestimate LAI values when compared to direct
and/or semi-direct methods, such as LFM, especially at forest stands [17,91]. The trend of
LAI with time since the last stand-replacing fire controlled variation in GPP and shaped
the typical parabolic curve with a peak in productivity at mature stands (Figure 3). This
GPP trend was found in CMM and LFM model parameterisations, where stand-level LAI
estimates were higher. In the HPM parameterisation, the lower LAI field estimates used
to force the models yielded a continuously increasing GPP with stand age, as a result of
carbon assimilation rate being away from the asymptote expected for relatively dense forest
canopies with high LAI values. The results from the comparison of the variation related to
the method used to estimate LAI illustrated that LAI measured using the LFM has the best
agreement with the independent GPP dataset predictions. Overall, the selection of the LAI
parameterisation method can have important effects on the simulation of GPP in studies
that couple biometric and gas exchange data to estimate forest productivity, as has also
been highlighted in satellite-data driven GPP simulation studies [92].

The control of climate, canopy structure and leaf physiology in controlling GPP has
gained a lot of attention over the last decades. Many studies have explored the effect of
climate [93,94], leaf traits [95,96] and canopy structure [97,98] in determining GPP across
different ecosystem types. For many ecosystems, GPP increases until a peak during the
growing period when solar radiation, temperature and water availability are optimum and
then gradually decreases, with the contribution of the individual climate factors shifting
with latitude [99,100]. This pattern has also been observed for Mediterranean forests, with
GPP peaking during solar radiation and temperature optima [28,101], although for pine
forest in semi-arid conditions GPP seems to maximise earlier in the year, representing a
shift from radiation-controlled to moisture-controlled conditions [102]. Overall, Mediter-
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ranean forests seem to achieve a lower maximum and annual GPP, compared to tropical,
subtropical and temperate forests [100]. However, the relative control of climate, canopy
structure and leaf physiology on forest GPP has been studied less within similar ecosystem
types (see, however, [103,104]). Among our study plots, found within relatively short
distances from each other (max distance 28.2 km), similar climatic conditions prevail
(Figure A1). Furthermore, no differences in the photosynthetic capacity parameters have
been identified between the study sites (Table 4) and thus variability in stand and canopy
structure can be considered as the main source of simulated GPP variation among the
sites. Across our study sites, canopy structure variability is related to the time since the last
stand-replacing fire and thus the four study plots can be used to represent the expected
GPP pattern with post-fire time. In accordance with ecosystem theory, GPP seems to peak
at mature stands, and thus maintenance of this forest state can be important for carbon
management purposes [7].

In our simulations, seasonal variation of GPP (Figure 3) seems to be mainly driven
by seasonal patterns of PAR [100]. Simulation of GPP based on satellite-driven models is
frequently made through light use efficiency models [105], where primary productivity
is estimated as the product of incoming PAR, the fraction of absorbed PAR and vari-
ous environmental scalars (functions that do or do not limit GPP based on prevailing
weather conditions and nutrient availability). These models frequently assume a constant
(throughout the year) maximum efficiency of the foliage to convert the absorbed energy to
carbon (like our average photosynthetic capacity models), which is being reduced by the
environmental scalars [66]. Field observations suggest, however, that the photosynthetic
capacity of leaves varies substantially throughout the year [84,106], as our results also
show (Figure 2E–P and Table 4), and thus the use of constant photosynthetic parameter
values may be inappropriate when simulating GPP [84]. In our varying photosynthetic
capacity model parameterisation, we used monthly estimates of the parameters of the
photosynthetic light response curve to take into account non-stomatal limitation shifts in
photosynthetic capacity, such as reduced mesophyll conductance and photochemical and
enzymatic limitations [107]. We further assumed that short-term effects of factors such as
temperature and water availability would be less important in determining daily carbon
assimilation rates, and thus avoided the use of scalars or functions that regulate canopy
conductance, for example through the implementation of stomatal conductance regulation
algorithms [108]. Incorporating such short-term responses of photosynthesis to weather
variability would probably increase the accuracy of our simulations and reduce simulated
GPP fluxes. However, in this study our purpose was to describe a simplified scheme for
upscaling measurements of leaf gas-exchange to the stand level, by avoiding the use of
detailed physiological algorithms, and assuming that once variation in some key foliage
properties has been taken into account, patterns of incoming solar radiation might be the
key determinants of forest primary productivity [52]. We however acknowledge that our
simplified framework depends strongly on the availability of monthly photosynthetic data
that require a significant time spent in the field.

During our study period, a strong reduction in the photosynthetic rate in July 2020
has been observed, with Asat = 5.365 (µmole m−2s−1) being 22.3% lower than the respective
July 2019 Asat. Precipitation during June and July 2020 (36.7 mm) was more than three
times larger than that of June and July 2019 (11 mm), suggesting that short-term effects of
photosynthetic stomatal limitation might not be as important as other process such as the
drought memory phenomenon [11]. In our case this would mean that in 2019, trees were
adapted to dry conditions from the previous dry months, therefore creating the drought
memory [109], reflecting a higher photosynthetic rate in July 2019 in contrast to July 2020,
when trees did not have the pre-adaption conditions. Experiments have shown that pre-
stressed plants maintain higher photosynthetic rates than non-pre-stressed plants at a
drought event, even if both show similar stomatal conductance and respiration [110,111],
supporting the use of seasonal shifts in photosynthetic capacity rather than regulations of
stomatal conductance based on short-term weather variation.
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The 13 year-old plot, which is the youngest in our plot network, illustrated the lower
stand basal area and LAI. Due to small tree size the stand has not yet achieved canopy
closure and is characterised by the most heterogenous microclimatic conditions. The low
LAI in the 13 year-old stand results in a relatively higher percentage of tree foliage being
sunlit compared to other plots (13 year-old, 56.6%, 40 year-old, 40.0%, 72 year-old, 35.9%
and 92 year-old, 38.2%) [112], leading to higher Asat due to photo-acclimation. Murchie and
Horton [113] supported the view that light-demanding tree species (such as P. brutia) can
acclimate by changing their leaf chlorophyll content and subsequently their photosynthetic
capacity. Our data revealed that photosynthetic capacity illustrated a higher seasonal
variation in plots with lower LAI and canopy closure. In such stands, parts of the canopy
are sunlit for longer, or if shaded, receive more radiation than denser stands. This could
lead to morphological and physiological adaptation of leaves to optimise the rate of
photosynthesis [114,115], as has also been found across our study sites where needles at
younger stands are optimized along the LMA–photosynthetic capacity spectrum [116]. In
addition, the heterogenous within-stand microclimatic conditions also probably lead to the
increased variability that has been observed in gas exchange (13 year-old Asat and Km CV vs.
other plots, Table A3), because of limited buffering of abiotic variability from neighbouring
trees. A negative trend in Asat variability with LAI was also observed across plots, further
supporting the potential effects of canopy structure-dependent photo-acclimation. Thus,
the effects of canopy structure on GPP variation can be both direct (LAI amount of available
photosynthetic tissue) and indirect (buffering effects on photosynthetic variability).

5. Conclusions

In this study we presented a simplified framework to estimate GPP in Mediterranean
pine forests of different post-fire age. Overall, our simulations seem to be in agreement with
GPP estimates from eddy-flux [84], process-based [101,117] and satellite-driven [66] models.
Compared to the GPP values reported for temperate conifer forests [118], Mediterranean
pine forest are probably achieving relatively lower C sequestration, due to water limitation
during the dry summer period [119,120]. Mediterranean forests are currently positively
contributing to the global carbon balance [121], but with the expected increase in fire
frequency and severity, estimates of carbon sequestration among different stand ages are
crucial to quantify their climate mitigation potential and design appropriate management
strategies [118].
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Appendix A

Table A1. Soil texture and depth in each study plot.

Plot Age
(years) Clay % Silt % Sand % Soil Texture Soil Depth

(cm)

13 62.73 19.9 17.37 clay 28.3
40 48.73 17.97 33.3 clay 26.6
72 61.66 12.86 25.48 clay 29.2
92 52.15 17.37 30.48 clay 34.8

Table A2. Data input and constants used in the Sun/Shade model.

Symbol Data Source/Value Definition and Units

Id from Solcast data Diffuse PAR per unit ground area
(µmole quanta m−2 s−1)

Ib from Solcast data Beam PAR per unit ground area
(µmole quanta m−2 s−1)

rcd 0.036 Canopy reflection coefficient for diffuse
PAR (unitless)

sc 0.15 Leaf scattering coefficient of PAR (unitless)

kds 0.719 Diffuse and scattered diffuse PAR extinction
coefficient (unitless)

kbs 0.46 ⁄ sin β
Beam and scattered beam PAR extinction
coefficient (unitless)

kb 0.5 ⁄ sin β
Beam radiation extinction coefficient of
canopy (unitless)

rh [1− (1− sc)̂0.5 ]/([1 + (1− sc)̂0.5])
Reflection coefficient of a canopy with
horizontal leaves (unitless)

rcb 1− exp[−2 rhkb/(1 + kb)]
Canopy reflection coefficient for beam PAR
(unitless), exp is the exponential function

Table A3. Seasonal coefficient of variation (cv) for Leaf Mass per Area (LMA, g m−2), saturated net
photosynthetic rate (Asat, µmole m−2 s−1), half saturation coefficient (Km, µmole quanta m−2 s−1)
and dark respiration rate (Rd, µmole m−2 s−1).

Parameter 13 Year-Old 40 Year-Old 72 Year-Old 92 Year-Old

LMA cv (%) 10.8 13.0 12.5 10.0
Asat cv (%) 49.5 39.8 31.3 33.2
Km cv (%) 44.2 45.5 35.5 41.2
Rd cv (%) 50.3 63.3 60.2 52.0

Equations for absorbed beam + scatter beam PAR (Equation (A1)), absorbed diffuse +
scatter diffuse PAR (Equation (A2)) and absorbed scattered PAR (Equation (A3)). All units
are µmole m−2 s−1

. All symbols abbreviations explained at Table A2.

Ilb = Ib(1− sc)[1− exp(−kb LAI)] (A1)

Ild = Id(1− rcd){1− exp[−(kds + kb)L]} kds/(kds + kb) (A2)

Ilbs = Ib {1− exp[−(kbs + kb) LAI] } kbs[(kbs + kb)− (1− sc)][1− exp(−2 kb LAI) ]2 (A3)
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Table A4. Photosynthetic parameters of the Michaelis–Menten light response curve for sun and shade leaves in each study plot. Differences in mean values of Asat and Km were tested with
a t test, with bold, (p < 0.05) indicating statistical significance. Asat saturated net photosynthetic rate (µmole m−2 s−1), Km half saturation coefficient (µmole quanta m−2 s−1) and Rd, dark
respiration rate (µmole m−2 s−1).

Plot Age Lighting
Condition

Asat Mean (µmole
CO2 m−2 s−1) p-Value Asat

Km Mean (µmole
quanta m−2 s−1) p-Value Km

Rd Mean (µmole
CO2 m−2 s−1) p-Value Rd

Asat sh
/Asat sun

Km sh
/Km sun

Rd sun
/Rd sh

13 year-old shade 10.23
0.571

304.44
0.191

0.50
1.000 0.89 0.70 1.0013 year-old sun 11.52 434.74 0.50

40 year-old shade 7.38
0.371

189.33
0.019

0.43
0.622 0.79 0.59 1.4040 year-old sun 9.35 319.04 0.31

72 year-old shade 9.13
0.214

289.34
0.683

0.29
0.461 0.92 0.92 0.8472 year-old sun 9.89 312.98 0.34

92 year-old shade 8.75
0.679

258.81
0.594

0.62
0.129 0.91 0.84 0.9392 year-old sun 9.57 306.75 0.67

ALL shade 8.60
0.171

250.43
0.007

0.47
0.367 0.87 0.76 1.00ALL sun 9.87 331.38 0.47
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24. Ozturk, T.; Ceber, Z.P.; Türkeş, M.; Kurnaz, M.L. Projections of Climate Change in the Mediterranean Basin by Using Downscaled
Global Climate Model Outputs. Int. J. Climatol. 2015, 35, 4276–4292. [CrossRef]

25. Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Giannakopoulos, C.; Pozzer, A.; Tanarhte, M.; Tyrlis, E. Model Projected Heat
Extremes and Air Pollution in the Eastern Mediterranean and Middle East in the Twenty-First Century. Reg. Environ. Chang. 2014,
14, 1937–1949. [CrossRef]

26. Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.; Fung, I.; et al. Climate–
Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. J. Clim. 2006, 19, 3337–3353. [CrossRef]

27. Nolè, A.; Collalti, A.; Magnani, F.; Duce, P.; Mancino, G.; Marras, S.; Sirca, C.; Borghetti, M.; Nolè, A.; Collalti, A.; et al. Assessing
Temporal Variation of Primary and Ecosystem Production in Two Mediterranean Forests Using a Modified 3-PG Model. Ann. For.
Sci. 2013, 70, 729–741. [CrossRef]

28. Fyllas, N.M.; Troumbis, A.Y. Simulating Vegetation Shifts in North-Eastern Mediterranean Mountain Forests under Climatic
Change Scenarios. Glob. Ecol. Biogeogr. 2009, 18, 64–77. [CrossRef]

29. Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the Key Role of Droughts in the
Dynamics of Summer Fires in Mediterranean Europe. Sci. Rep. 2017, 7, 81. [CrossRef]

30. FAO; Bleu Plan; Mediterranean Action Plan. State of Mediterranean Forests 2018; FAO: Rome, Italy, 2018; ISBN 9789251310472.
31. Baeza, M.J.; Valdecantos, A.; Alloza, J.A.; Vallejo, V.R. Human Disturbance and Environmental Factors as Drivers of Long-Term

Post-Fire Regeneration Patterns in Mediterranean Forests. J. Veg. Sci. 2007, 18, 243–252. [CrossRef]
32. Bradford, J.B.; Birdsey, R.A.; Joyce, L.A.; Ryan, M.G. Tree Age, Disturbance History, and Carbon Stocks and Fluxes in Subalpine

Rocky Mountain Forests: Tree Age, Disturbance, and Forest Carbon. Glob. Chang. Biol. 2008, 14, 2882–2897. [CrossRef]
33. Kondo, M.; Ichii, K.; Takagi, H.; Sasakawa, M. Comparison of the Data-Driven Top-down and Bottom-up Global Terrestrial CO2

Exchanges: GOSAT CO2 Inversion and Empirical Eddy Flux Upscaling. J. Geophys. Res. Biogeosciences 2015, 1226–1245. [CrossRef]
34. Gough, C.M.; Vogel, C.S.; Schmid, H.P.; Curtis, P.S. Controls on Annual Forest Carbon Storage: Lessons from the Past and

Predictions for the Future. BioScience 2008, 58, 609–622. [CrossRef]
35. Ouimette, A.P.; Ollinger, S.V.; Richardson, A.D.; Hollinger, D.Y.; Keenan, T.F.; Lepine, L.C.; Vadeboncoeur, M.A. Carbon Fluxes

and Interannual Drivers in a Temperate Forest Ecosystem Assessed through Comparison of Top-down and Bottom-up Approache.
Agric. For. Meteorol. 2018, 256, 420–430. [CrossRef]

36. Malhi, Y. The Productivity, Metabolism and Carbon Cycle of Tropical Forest Vegetation. J. Ecol. 2012, 100, 65–75. [CrossRef]
37. Baldocchi, D.D. Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past,

Present and Future. Glob. Chang. Biol. 2003, 9, 479–492. [CrossRef]
38. Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M.A.; Janssens, I.A.

Evaluating the Convergence between Eddy-Covariance and Biometric Methods for Assessing Carbon Budgets of Forests. Nat.
Commun. 2016, 7, 13717. [CrossRef]

39. Clark, D.A.; Brown, S.; Kicklighter, D.W.; Chambers, J.Q.; Thomlinson, J.R.; Ni, J. Measuring Net Primary Production in Forests:
Concepts and Field Methods. Ecol. Appl. 2001, 11, 356–370. [CrossRef]

40. Malhi, Y.; Girardin, C.; Metcalfe, D.B.; Doughty, C.E.; Aragão, L.E.O.C.; Rifai, S.W.; Oliveras, I.; Shenkin, A.; Aguirre-Gutiérrez, J.;
Dahlsjö, C.A.L.; et al. The Global Ecosystems Monitoring Network: Monitoring Ecosystem Productivity and Carbon Cycling
across the Tropics. Biol. Conserv. 2021, 253, 108889. [CrossRef]

http://doi.org/10.3390/rs10060918
http://doi.org/10.1016/j.gecco.2020.e01051
http://doi.org/10.1093/jxb/erg263
http://doi.org/10.1016/j.foreco.2011.11.002
http://doi.org/10.1016/j.agrformet.2014.11.010
http://www.ncbi.nlm.nih.gov/pubmed/28148995
http://doi.org/10.2307/1936225
http://doi.org/10.1046/j.1466-822X.2003.00026.x
http://doi.org/10.1111/j.1654-1103.2002.tb02111.x
http://doi.org/10.1016/j.foreco.2012.02.033
http://doi.org/10.1002/joc.4285
http://doi.org/10.1007/s10113-013-0444-4
http://doi.org/10.1175/JCLI3800.1
http://doi.org/10.1007/s13595-013-0315-7
http://doi.org/10.1111/j.1466-8238.2008.00419.x
http://doi.org/10.1038/s41598-017-00116-9
http://doi.org/10.1111/j.1654-1103.2007.tb02535.x
http://doi.org/10.1111/j.1365-2486.2008.01686.x
http://doi.org/10.1002/2014JG002866
http://doi.org/10.1641/B580708
http://doi.org/10.1016/j.agrformet.2018.03.017
http://doi.org/10.1111/j.1365-2745.2011.01916.x
http://doi.org/10.1046/j.1365-2486.2003.00629.x
http://doi.org/10.1038/ncomms13717
http://doi.org/10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2
http://doi.org/10.1016/j.biocon.2020.108889


Forests 2021, 12, 1256 21 of 24

41. Wang, Y.; Trudinger, C.M.; Enting, I.G. A Review of Applications of Model—Data Fusion to Studies of Terrestrial Carbon Fluxes
at Different Scales. Agric. For. Meteorol. 2009, 149, 1829–1842. [CrossRef]

42. Cheng, W.; Sims, D.A.; Luo, Y.; Coleman, J.S.; Johnson, D.W. Photosynthesis, Respiration, and Net Primary Production of
Sunflower Stands in Ambient and Elevated Atmospheric CO2 Concentrations: An Invariant NPP:GPP Ratio? Glob. Chang. Biol.
2000, 6, 931–941. [CrossRef]

43. Tramontana, G.; Migliavacca, M.; Jung, M.; Reichstein, M.; Keenan, T.F.; Camps-Valls, G.; Ogee, J.; Verrelst, J.; Papale, D.
Partitioning Net Carbon Dioxide Fluxes into Photosynthesis and Respiration Using Neural Networks. Glob. Chang. Biol. 2020, 26,
5235–5253. [CrossRef]

44. Sanchez-Ruiz, S.; Chiesi, M.; Fibbi, L.; Carrara, A.; Maselli, F.; Gilabert, M.A. Optimized Application of Biome-BGC for Modeling
the Daily GPP of Natural Vegetation Over Peninsular Spain. J. Geophys. Res. Biogeosci. 2018, 123, 531–546. [CrossRef]

45. Misson, L.; Rocheteau, A.; Rambal, S.; Ourcival, J.M.; Limousin, J.M.; Rodriguez, R. Functional Changes in the Control of Carbon
Fluxes after 3 Years of Increased Drought in a Mediterranean Evergreen Forest? Glob. Chang. Biol. 2010, 16, 2461–2475. [CrossRef]

46. Garbulsky, M.F.; Peñuelas, J.; Papale, D.; Filella, I. Remote Estimation of Carbon Dioxide Uptake by a Mediterranean Forest. Glob.
Chang. Biol. 2008, 14, 2860–2867. [CrossRef]

47. Maseyk, K.; Grünzweig, J.M.; Rotenberg, E.; Yakir, D. Respiration Acclimation Contributes to High Carbon-Use Efficiency in a
Seasonally Dry Pine Forest. Glob. Chang. Biol. 2008, 14, 1553–1567. [CrossRef]

48. Chiesi, M.; Maselli, F.; Bindi, M.; Fibbi, L.; Cherubini, P.; Arlotta, E.; Tirone, G.; Matteucci, G.; Seufert, G. Modelling Carbon
Budget of Mediterranean Forests Using Ground and Remote Sensing Measurements. Agric. For. Meteorol. 2005, 135, 22–34.
[CrossRef]

49. Falge, E.; Baldocchi, D.D.; Tenhunen, J.; Aubinet, M.; Bakwin, P.; Berbigier, P.; Bernhofer, C.; Burba, G.; Clement, R.;
Davis, K.J.; et al. Seasonality of Ecosystem Respiration and Gross Primary Production as Derived from FLUXNET Measurements.
Agric. For. Meteorol. 2002, 113, 53–74. [CrossRef]

50. Ogaya, R.; Peñuelas, J. Wood vs. Canopy Allocation of Aboveground Net Primary Productivity in a Mediterranean Forest during
21 Years of Experimental Rainfall Exclusion. Forests 2020, 11, 1094. [CrossRef]

51. Murillo, J.C.R. Temporal Variations in the Carbon Budget of Forest Ecosystems in Spain. Ecol. Appl. 1997, 7, 461–469. [CrossRef]
52. Fyllas, N.M.; Bentley, L.P.; Shenkin, A.; Asner, G.P.; Atkin, O.K.; Díaz, S.; Enquist, B.J.; Farfan-Rios, W.; Gloor, E.; Guerrieri, R.; et al.

Solar Radiation and Functional Traits Explain the Decline of Forest Primary Productivity along a Tropical Elevation Gradient.
Ecol. Lett. 2017, 20, 730–740. [CrossRef]

53. Hellenic National Meteorological Service Climatic Data for Selected Stations in Greece; 2021.Hellenic National Meteorological Service
Climatic Data for Selected Stations in Greece. Available online: http://emy.gr/emy/en/climatology/climatology_city?perifereia=
North%20Aegean&poli=Mytilini (accessed on 16 April 2021).

54. Rinn, F. TSAP-Time Series Analysis and Presentation for Dendrochronology and Related Applications; Version 4.64 for Microsoft
Windows—User Reference; Rinntech Inc.: Heidelberg, Germany, 2011.

55. Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; The University of Arizona Press: Tucson, AZ, USA, 1996.
56. Christopoulou, A.; Sazeides, C.I.; Fyllas, N.M. Patterns of tree growth and mortality in Mediterranean Brutia pine forests inferred

from tree-ring analysis. Sci. Total. Environ. 2021. under review.
57. Fyllas, N.M.; Michelaki, C.; Galanidis, A.; Evangelou, E.; Zaragoza-Castells, J.; Dimitrakopoulos, P.G.; Tsadilas, C.;

Arianoutsou, M.; Lloyd, J. Functional Trait Variation Among and Within Species and Plant Functional Types in Moun-
tainous Mediterranean Forests. Front. Plant Sci. 2020, 11, 212. [CrossRef]

58. Vennetier, M.; Girard, F.; Taugourdeau, O.; Cailleret, M.; Caraglio, Y.; Sabatier, S.-A.; Ouarmim, S.; Didier, C.; Thabeet, A. Climate
Change Impact on Tree Architectural Development and Leaf Area. In Climate Change—Realities, Impacts over Ice Cap, Sea Level and
Risks; Singh, B.R., Ed.; InTech: Vienna, Austria, 2013; ISBN 978-953-51-0934-1.

59. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675.
[CrossRef]

60. Petritan, I.C.; Mihăilă, V.-V.; Bragă, C.I.; Boura, M.; Vasile, D.; Petritan, A.M. Litterfall Production and Leaf Area Index in a Virgin
European Beech (Fagus Sylvatica L.)—Silver Fir (Abies Alba Mill.) Forest. Dendrobiology 2020, 83, 75–84. [CrossRef]

61. Wang, X.; Liu, F.; Wang, C. Towards a Standardized Protocol for Measuring Leaf Area Index in Deciduous Forests with Litterfall
Collection. For. Ecol. Manag. 2019, 447, 87–94. [CrossRef]

62. Frankis, M.P. Morphology and Affinities of Pinus Brutia. In Proceedings of the International Symposium on Pinus Brutia Ten,
Marmaris, Turkey, 18–23 October 1993; INTECH Open Access Publisher: Rijeka, Croatia, 1993; pp. 11–18. [CrossRef]

63. Fyllas, N.M.; Dimitrakopoulos, P.G.; Troumbis, A.Y. Regeneration Dynamics of a Mixed Mediterranean Pine Forest in the Absence
of Fire. For. Ecol. Manag. 2008, 256, 1552–1559. [CrossRef]

64. Papaioannou, G.; Papanikolaou, N.; Retalis, D. Relationships of Photosynthetically Active Radiation and Shortwave Irradiance.
Theor. Appl. Climatol. 1993, 48, 23–27. [CrossRef]

65. Valladares, F.; Skillman, J.B.; Pearcy, R.W. Convergence in Light Capture Efficiencies among Tropical Forest Understory Plants
with Contrasting Crown Architectures: A Case of Morphological Compensation. Am. J. Bot. 2002, 89, 1275–1284. [CrossRef]
[PubMed]

66. Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A Global Moderate Resolution Dataset of Gross Primary
Production of Vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [CrossRef]

http://doi.org/10.1016/j.agrformet.2009.07.009
http://doi.org/10.1046/j.1365-2486.2000.00367.x
http://doi.org/10.1111/gcb.15203
http://doi.org/10.1002/2017JG004360
http://doi.org/10.1111/j.1365-2486.2009.02121.x
http://doi.org/10.1111/j.1365-2486.2008.01684.x
http://doi.org/10.1111/j.1365-2486.2008.01604.x
http://doi.org/10.1016/j.agrformet.2005.09.011
http://doi.org/10.1016/S0168-1923(02)00102-8
http://doi.org/10.3390/f11101094
http://doi.org/10.1890/1051-0761(1997)007[0461:TVITCB]2.0.CO;2
http://doi.org/10.1111/ele.12771
http://emy.gr/emy/en/climatology/climatology_city?perifereia=North%20Aegean&poli=Mytilini
http://emy.gr/emy/en/climatology/climatology_city?perifereia=North%20Aegean&poli=Mytilini
http://doi.org/10.3389/fpls.2020.00212
http://doi.org/10.1038/nmeth.2089
http://doi.org/10.12657/denbio.083.008
http://doi.org/10.1016/j.foreco.2019.05.050
http://doi.org/10.5772/51510
http://doi.org/10.1016/j.foreco.2008.06.046
http://doi.org/10.1007/BF00864910
http://doi.org/10.3732/ajb.89.8.1275
http://www.ncbi.nlm.nih.gov/pubmed/21665729
http://doi.org/10.1038/sdata.2017.165


Forests 2021, 12, 1256 22 of 24

67. Mullen, K.; Ardia, D.; Gil, D.; Windover, D.; Cline, J. DEoptim: An R Package for Global Optimization by Differential Evolution. J.
Stat. Softw. 2011, 40, 1–26. [CrossRef]

68. Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. arXiv 2015, arXiv:1406.5823.
[CrossRef]

69. Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized Linear Mixed
Models: A Practical Guide for Ecology and Evolution. Trends Ecol. Evol. 2009, 24, 127–135. [CrossRef]

70. Hikosaka, K.; Niinemets, Ü.; Anten, N.P.R. Canopy Photosynthesis: From Basics to Applications; Springer: Dordrecht, The Netherlands,
2016; pp. 1–428.

71. De Pury, D.G.G.; Farquhar, G.D. Simple Scaling of Photosynthesis from Leaves to Canopies without the Errors of Big-Leaf Models.
Plant Cell Environ. 1997, 20, 537–557. [CrossRef]

72. Raulier, F.; Bernier, P.Y.; Ung, C.H. Canopy Photosynthesis of Sugar Maple (Acer Saccharum): Comparing Big-Leaf and Multilayer
Extrapolations of Leaf-Level Measurements. Tree Physiol. 1999, 19, 407–420. [CrossRef]

73. Friend, A.D. Modelling Canopy CO2 Fluxes: Are “big-Leaf” Simplifications Justified? Glob. Ecol. Biogeogr. 2001, 10, 603–619.
[CrossRef]

74. Dai, Y.; Dickinson, R.E.; Wang, Y.P. A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance.
J. Clim. 2004, 17, 2281–2299. [CrossRef]

75. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2013; Available online: http://www.R-project.org/ (accessed on 16 April 2021).

76. Grolemund, G.; Wickham, H. Dates and Times Made Easy with lubridate. J. Stat. Softw. 2011, 40, 1–25. Available online:
https://www.jstatsoft.org/v40/i03/ (accessed on 16 April 2021). [CrossRef]

77. Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation. R Package Version 2021, 1.0.4.
Available online: https://CRAN.R-project.org/package=dplyr (accessed on 16 April 2021).

78. Nelson, A.G. Fishmethods: Fishery Science Methods and Models. R Package Version 1.11-1. 2019. Available online: https:
//CRAN.R-project.org/package=fishmethods (accessed on 16 April 2021).

79. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.
80. Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0. 2020. Available online: https:

//CRAN.R-project.org/package=ggpubr (accessed on 16 April 2021).
81. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, D.L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al.

Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [CrossRef]
82. Keenan, T.; Garcıa, R.; Friend, A.D.; Zaehle, S.; Gracia, C.; Sabate, S. Improved Understanding of Drought Controls on Seasonal

Variation in Mediterranean Forest Canopy CO2 and Water FLuxes through Combined in Situ Measurements and Ecosystem
Modelling. Biogeosciences 2009, 6, 1423–1444. [CrossRef]

83. Sperlich, D.; Chang, C.T.; Penuelas, J.; Gracia, C.; Sabate, S. Seasonal Variability of Foliar Photosynthetic and Morphological Traits
and Drought Impacts in a Mediterranean Mixed Forest. Tree Physiol. 2015, 35, 501–520. [CrossRef] [PubMed]

84. Jarosz, N.; Brunet, Y.; Lamaud, E.; Irvine, M.; Bonnefond, J.-M.; Loustau, D. Carbon Dioxide and Energy Flux Partitioning
between the Understorey and the Overstorey of a Maritime Pine Forest during a Year with Reduced Soil Water Availability. Agric.
For. Meteorol. 2008, 148, 1508–1523. [CrossRef]

85. Sun, Q.; Meyer, W.S.; Koerber, G.R.; Marschner, P. Rapid Recovery of Net Ecosystem Production in a Semi-Arid Woodland after a
Wildfire. Agric. For. Meteorol. 2020, 291, 108099. [CrossRef]

86. Li, X.; Zhang, H.; Yang, G.; Ding, Y.; Zhao, J. Post-Fire Vegetation Succession and Surface Energy Fluxes Derived from Remote
Sensing. Remote Sens. 2018, 10, 1000. [CrossRef]

87. Liu, X.; Pan, C. Effects of Recovery Time after Fire and Fire Severity on Stand Structure and Soil of Larch Forest in the Kanas
National Nature Reserve, Northwest China. J. Arid Land 2019, 11, 811–823. [CrossRef]

88. Bolton, D.K.; Coops, N.C.; Hermosilla, T.; Wulder, M.A.; White, J.C. Assessing Variability in Post-Fire Forest Structure along
Gradients of Productivity in the Canadian Boreal Using Multi-Source Remote Sensing. J. Biogeogr. 2017, 44, 1294–1305. [CrossRef]

89. Ueyama, M.; Iwata, H.; Nagano, H.; Tahara, N.; Iwama, C.; Harazono, Y. Carbon Dioxide Balance in Early-Successional Forests
after Forest Fires in Interior Alaska. Agric. For. Meteorol. 2019, 275, 196–207. [CrossRef]

90. Waring, R.H. Estimating Forest Growth and Efficiency in Relation to Canopy Leaf Area. In Advances in Ecological Research; Elsevier:
Amsterdam, The Netherlands, 1983; Volume 13, pp. 327–354. ISBN 978-0-12-013913-2.

91. Liu, Z.; Chen, J.M.; Jin, G.; Qi, Y. Estimating Seasonal Variations of Leaf Area Index Using Litterfall Collection and Optical
Methods in Four Mixed Evergreen-Deciduous Forests. Agric. For. Meteorol. 2015, 209–210, 36–48. [CrossRef]

92. Xie, X.; Li, A.; Jin, H.; Tan, J.; Wang, C.; Lei, G.; Zhang, Z.; Bian, J.; Nan, X. Assessment of Five Satellite-Derived LAI Datasets for
GPP Estimations through Ecosystem Models. Sci. Total. Environ. 2019, 690, 1120–1130. [CrossRef]

93. Zhang, Y.; Xu, M.; Chen, H.; Adams, J. Global Pattern of NPP to GPP Ratio Derived from MODIS Data: Effects of Ecosystem Type,
Geographical Location and Climate. Glob. Ecol. Biogeogr. 2009, 18, 280–290. [CrossRef]

94. Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rodenbeck, C.; Arain, M.A.; Baldocchi, D.;
Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329,
834–838. [CrossRef] [PubMed]

http://doi.org/10.18637/jss.v040.i06
http://doi.org/10.18637/jss.v067.i01
http://doi.org/10.1016/j.tree.2008.10.008
http://doi.org/10.1111/j.1365-3040.1997.00094.x
http://doi.org/10.1093/treephys/19.7.407
http://doi.org/10.1046/j.1466-822x.2001.00268.x
http://doi.org/10.1175/1520-0442(2004)017&lt;2281:ATMFCT&gt;2.0.CO;2
http://www.R-project.org/
https://www.jstatsoft.org/v40/i03/
http://doi.org/10.18637/jss.v040.i03
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=fishmethods
https://CRAN.R-project.org/package=fishmethods
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
http://doi.org/10.21105/joss.01686
http://doi.org/10.5194/bg-6-1423-2009
http://doi.org/10.1093/treephys/tpv017
http://www.ncbi.nlm.nih.gov/pubmed/25836361
http://doi.org/10.1016/j.agrformet.2008.05.001
http://doi.org/10.1016/j.agrformet.2020.108099
http://doi.org/10.3390/rs10071000
http://doi.org/10.1007/s40333-019-0022-9
http://doi.org/10.1111/jbi.12947
http://doi.org/10.1016/j.agrformet.2019.05.020
http://doi.org/10.1016/j.agrformet.2015.04.025
http://doi.org/10.1016/j.scitotenv.2019.06.516
http://doi.org/10.1111/j.1466-8238.2008.00442.x
http://doi.org/10.1126/science.1184984
http://www.ncbi.nlm.nih.gov/pubmed/20603496


Forests 2021, 12, 1256 23 of 24

95. Wang, Y.P.; Lu, X.J.; Wright, I.J.; Dai, Y.J.; Rayner, P.J.; Reich, P.B. Correlations among Leaf Traits Provide a Significant Constraint
on the Estimate of Global Gross Primary Production: Correlations of Leaf Traits on Gpp. Geophys. Res. Lett. 2012, 39, L19405.
[CrossRef]

96. He, N.; Liu, C.; Tian, M.; Li, M.; Yang, H.; Yu, G.; Guo, D.; Smith, M.D.; Yu, Q.; Hou, J. Variation in Leaf Anatomical Traits from
Tropical to Cold-temperate Forests and Linkage to Ecosystem Functions. Funct. Ecol. 2018, 32, 10–19. [CrossRef]

97. Migliavacca, M.; Perez-Priego, O.; Rossini, M.; El-Madany, T.S.; Moreno, G.; van der Tol, C.; Rascher, U.; Berninger, A.;
Bessenbacher, V.; Burkart, A.; et al. Plant Functional Traits and Canopy Structure Control the Relationship between Photosynthetic
CO2 Uptake and Far-red Sun-induced Fluorescence in a Mediterranean Grassland under Different Nutrient Availability. New
Phytol. 2017, 214, 1078–1091. [CrossRef]

98. Shi, H.; Li, L.; Eamus, D.; Huete, A.; Cleverly, J.; Tian, X.; Yu, Q.; Wang, S.; Montagnani, L.; Magliulo, V.; et al. Assessing the
Ability of MODIS EVI to Estimate Terrestrial Ecosystem Gross Primary Production of Multiple Land Cover Types. Ecol. Indic.
2017, 72, 153–164. [CrossRef]

99. Xia, J.; Niu, S.; Ciais, P.; Janssens, I.A.; Chen, J.; Ammann, C.; Arain, A.; Blanken, P.D.; Cescatti, A.; Bonal, D.; et al. Joint Control
of Terrestrial Gross Primary Productivity by Plant Phenology and Physiology. Proc. Natl. Acad. Sci. USA 2015, 112, 2788–2793.
[CrossRef] [PubMed]

100. Zhang, W.; Yu, G.; Chen, Z.; Zhang, L.; Wang, Q.; Zhang, Y.; He, H.; Han, L.; Chen, S.; Han, S.; et al. Attribute Parameter
Characterized the Seasonal Variation of Gross Primary Productivity (AGPP): Spatiotemporal Variation and Influencing Factors.
Agric. For. Meteorol. 2020, 280, 107774. [CrossRef]

101. Allard, V.; Ourcival, J.M.; Rambal, S.; Joffre, R.; Rocheteau, A. Seasonal and Annual Variation of Carbon Exchange in an Evergreen
Mediterranean Forest in Southern France: CO2 Fluxes of A Mediterranean Forest. Glob. Chang. Biol. 2008, 14, 714–725. [CrossRef]

102. Wang, H.; Gitelson, A.; Sprintsin, M.; Rotenberg, E.; Yakir, D. Ecophysiological Adjustments of a Pine Forest to Enhance Early
Spring Activity in Hot and Dry Climate. Environ. Res. Lett. 2020, 15, 114054. [CrossRef]

103. Duursma, R.A.; Kolari, P.; Peramaki, M.; Pulkkinen, M.; Makela, A.; Nikinmaa, E.; Hari, P.; Aurela, M.; Berbigier, P.;
Bernhofer, C.H.; et al. Contributions of Climate, Leaf Area Index and Leaf Physiology to Variation in Gross Primary Production
of Six Coniferous Forests across Europe: A Model-Based Analysis. Tree Physiol. 2009, 29, 621–639. [CrossRef]

104. Fyllas, N.M.; Christopoulou, A.; Galanidis, A.; Michelaki, C.Z.; Giannakopoulos, C.; Dimitrakopoulos, P.G.; Arianoutsou, M.;
Gloor, M. Predicting Species Dominance Shifts across Elevation Gradients in Mountain Forests in Greece under a Warmer and
Drier Climate. Reg. Environ. Chang. 2017, 17, 1165–1177. [CrossRef]

105. Hilker, T.; Coops, N.C.; Wulder, M.A.; Black, T.A.; Guy, R.D. The Use of Remote Sensing in Light Use Efficiency Based Models
of Gross Primary Production: A Review of Current Status and Future Requirements. Sci. Total. Environ. 2008, 404, 411–423.
[CrossRef]

106. Wang, Q.; Iio, A.; Tenhunen, J.; Kakubari, Y. Annual and Seasonal Variations in Photosynthetic Capacity of Fagus Crenata along
an Elevation Gradient in the Naeba Mountains, Japan. Tree Physiol. 2008, 28, 277–285. [CrossRef]

107. Flexas, J.; Diaz-Espejo, A.; Gago, J.; Gallé, A.; Galmés, J.; Gulías, J.; Medrano, H. Photosynthetic Limitations in Mediterranean
Plants: A Review. Environ. Exp. Bot. 2014, 103, 12–23. [CrossRef]

108. Buckley, T.N. Modeling Stomatal Conductance. Plant Physiol. 2017, 174, 572–582. [CrossRef]
109. Backhaus, S.; Kreyling, J.; Grant, K.; Beierkuhnlein, C.; Walter, J.; Jentsch, A. Recurrent Mild Drought Events Increase Resistance

Toward Extreme Drought Stress. Ecosystems 2014, 17, 1068–1081. [CrossRef]
110. Menezes-Silva, P.E.; Sanglard, L.M.V.P.; Ávila, R.T.; Morais, L.E.; Martins, S.C.V.; Nobres, P.; Patreze, C.M.; Ferreira, M.A.; Araújo,

W.L.; Fernie, A.R.; et al. Photosynthetic and Metabolic Acclimation to Repeated Drought Events Play Key Roles in Drought
Tolerance in Coffee. J. Exp. Bot. 2017, 68, 4309–4322. [CrossRef]

111. Ben Abdallah, M.; Methenni, K.; Nouairi, I.; Zarrouk, M.; Youssef, N.B. Drought Priming Improves Subsequent More Severe
Drought in a Drought-Sensitive Cultivar of Olive Cv. Chétoui. Sci. Hortic. 2017, 221, 43–52. [CrossRef] [PubMed]

112. Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G.; Spies, T.A.; Harding, D. Lidar Remote Sensing of the Canopy Structure and
Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sens. Environ. 1999, 70, 339–361. [CrossRef]

113. Murchie, E.H.; Horton, P. Acclimation of Photosynthesis to Irradiance and Spectral Quality in British Plant Species: Chlorophyll
Content, Photosynthetic Capacity and Habitat Preference. Plant Cell Environ. 1997, 20, 438–448. [CrossRef]

114. Yin, Z.H.; Johnson, G.N. Photosynthetic Acclimation of Higher Plants to Growth in Fluctuating Light Environments. Photosynth.
Res. 2000, 63, 97–107. [CrossRef]

115. Walters, R.G.; Horton, P. Acclimation of Arabidopsis Thaliana to the Light Environment: Changes in Composition of the
Photosynthetic Apparatus. Planta 1994, 195. [CrossRef]

116. Sazeides, C.I.; Fyllas, N.M.; Christopoulou, A. Seasonal Variation in Foliar Properties in Mediterranean Pine Forests of Different
Post-Fire Age. In EGU General Assembly Conference Abstracts; EGU: Munich, Germany, 2021; p. EGU21-1064.

117. Chiesi, M.; Fibbi, L.; Genesio, L.; Gioli, B.; Magno, R.; Maselli, F.; Moriondo, M.; Vaccari, F.P. Integration of Ground and Satellite
Data to Model Mediterranean Forest Processes. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 504–515. [CrossRef]

118. Anderson-Teixeira, K.J.; Herrmann, V.; Banbury Morgan, R.; Bond-Lamberty, B.; Cook-Patton, S.C.; Ferson, A.E.;
Muller-Landau, H.C.; Wang, M.M.H. Carbon Cycling in Mature and Regrowth Forests Globally. Environ. Res. Lett. 2021, 16,
053009. [CrossRef]

http://doi.org/10.1029/2012GL053461
http://doi.org/10.1111/1365-2435.12934
http://doi.org/10.1111/nph.14437
http://doi.org/10.1016/j.ecolind.2016.08.022
http://doi.org/10.1073/pnas.1413090112
http://www.ncbi.nlm.nih.gov/pubmed/25730847
http://doi.org/10.1016/j.agrformet.2019.107774
http://doi.org/10.1111/j.1365-2486.2008.01539.x
http://doi.org/10.1088/1748-9326/abc2f9
http://doi.org/10.1093/treephys/tpp010
http://doi.org/10.1007/s10113-016-1093-1
http://doi.org/10.1016/j.scitotenv.2007.11.007
http://doi.org/10.1093/treephys/28.2.277
http://doi.org/10.1016/j.envexpbot.2013.09.002
http://doi.org/10.1104/pp.16.01772
http://doi.org/10.1007/s10021-014-9781-5
http://doi.org/10.1093/jxb/erx211
http://doi.org/10.1016/j.scienta.2017.04.021
http://www.ncbi.nlm.nih.gov/pubmed/28713194
http://doi.org/10.1016/S0034-4257(99)00052-8
http://doi.org/10.1046/j.1365-3040.1997.d01-95.x
http://doi.org/10.1023/A:1006303611365
http://doi.org/10.1007/BF00199685
http://doi.org/10.1016/j.jag.2010.10.006
http://doi.org/10.1088/1748-9326/abed01


Forests 2021, 12, 1256 24 of 24

119. Rambal, S.; Ourcival, J.-M.; Joffre, R.; Mouillot, F.; Nouvellon, Y.; Reichstein, M.; Rocheteau, A. Drought Controls over Conductance
and Assimilation of a Mediterranean Evergreen Ecosystem: Scaling from Leaf to Canopy: SCALING DROUGHT FROM LEAF
TO CANOPY. Glob. Chang. Biol. 2003, 9, 1813–1824. [CrossRef]

120. Liu, J.; Rambal, S.; Mouillot, F. Soil Drought Anomalies in MODIS GPP of a Mediterranean Broadleaved Evergreen Forest. Remote
Sens. 2015, 7, 1154–1180. [CrossRef]

121. Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.;
Houghton, R.A.; et al. Global Maps of Twenty-First Century Forest Carbon Fluxes. Nat. Clim. Chang. 2021, 11, 234–240.
[CrossRef]

http://doi.org/10.1111/j.1365-2486.2003.00687.x
http://doi.org/10.3390/rs70101154
http://doi.org/10.1038/s41558-020-00976-6

	Introduction 
	Materials and Methods 
	Study Sites 
	Gas Exchange and Functional Traits Measurements 
	Stand Level Measurements 
	Environmental and Remote Sensing Data 
	Statistical Analysis 
	Coupling Biometric and Gas Exchange Data to Simulate Stand Level GPP 
	Big Leaf Model 
	Sun/Shade Model 


	Results 
	Variation in Stand Structure across the Post-Fire Chronosequence 
	Foliage Properties and Their Seasonal Variation 
	GPP Simulations 

	Discussion 
	Conclusions 
	
	References

