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Abstract: Despite constituting the western-most edge of the population distributions for several
native European plants, Ireland has largely been left out of key Europe-wide phylogeographic studies.
This is true for birch (Betula pubescens Ehrh. and Betula pendula Roth), for which the genetic diversity
has yet to be mapped for Ireland. Here we used eight cpDNA markers (two Restriction Fragment
Length Polymorphism (RFLP) and six Simple Sequence Repeat (SSR)) to map the genetic diversity
of B. pubescens, B. pendula, and putative hybrid individuals sampled from 19 populations spread
cross most of the island of Ireland. Within Ireland, 11 distinct haplotypes were detected, the most
common of which (H1) was also detected in England, Scotland, France, and Norway. A moderate
level of population structuring (GST = 0.282) was found across Ireland and the genetic diversity of its
northern populations was twice that of its southern populations. This indicates that, unlike other
native Irish trees, such as oak and alder, post-glacial recolonization by birch did not begin in the
south (i.e., from Iberia). Rather, and in agreement with palynological data, birch most likely migrated
in from eastern populations in Britain. Finally, we highlight Irish populations with comparatively
unique genetic structure which may be included as part of European genetic conservation networks.
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1. Introduction

Two species of birch are native to Ireland, Betula pubescens Ehrh. and Betula pendula
Roth, whereas in Britain, the more cold-tolerant Betula nana L. can also be found in Scotland
and some upland parts of England. Birch tends to be a pioneer species, either in forest
gaps or forest edges or in wetlands and areas of acidic soils [1]. The distinction between
B. pubescens and B. pendula is not clear-cut, but B. pubescens is the predominant species
in Ireland, with B. pendula occurring less frequently [2]. Hybrids are also evident, but a
detailed study has yet to be undertaken [3]. Indeed, the occurrence of shared haplotypes in
all three species indicates a species complex of hybrids and introgressed individuals rather
than distinct taxa [4].

Palynological evidence shows that birch was present in Ireland in localized popula-
tions from c. 12,000 years before present (BP) and had completely colonized the island by
9500 BP [5,6]. For temperate tree species, recolonization of northern Europe following the
last glacial maximum (LGM) generally involved individuals moving north from refugial
populations in the south. The consequence of this is a “southern richness and northern
purity” model of genetic diversity, as new colonisation typically involves only a few in-
dividuals [7]. For oak, this model holds true [8], and in Ireland oak haplotype diversity
is even lower than in Britain [9]. However, for cold tolerant species such as birch, which
could survive nearer to the edge of the glacial fronts during the LGM, this model tends not
to fit.

First of all, palaeoecological evidence on European birch points to a scenario in which
it persisted in refugia at mid latitudes [10,11], unlike oak, which persisted mainly in Iberia,
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Italy, and in the Balkans [8]. Second, initial phylogeographic analyses of birch haplotypes
in Europe show a general northwest–southeast divide, with haplotype diversity being
particularly high in eastern Europe and Russia [12,13], an observation which is typically
taken to be indicative of the presence of refugial populations [14]. A more recent genetic
analysis of Betula spp. at the nuclear level confirmed that the main refugia during the LGM
for B. pubescens and B. pendula were most likely in Russia and western Siberia [15], a finding
which is supported in the fossil record [16].

In Ireland, the direction of pollen influx shows a westward migration from Britain [5],
which would make Ireland the western most point of a recolonization progression, origi-
nating as far east as Russia. If this is the case, a founder effect may be observable in the
cpDNA diversity, which may mean that Ireland contains only a subset of haplotypes which
are observable elsewhere in Europe. Such a scenario would not be surprising given that
Ireland has a limited flora and therefore a limited gene pool.

In this paper we aim to provide genetic data to inform conservation initiatives and
pre-breeding efforts for Betula spp. in Ireland [17]. In the current study, the following
questions were posed: (i) What is the origin of Irish birch populations? (ii) What level
of genetic diversity is there in Irish populations? (iii) Is there genetic structure in the
populations or between the species?

2. Materials and Methods
2.1. Sampling

Leaves were sampled from putatively native Irish populations (6–14 per location),
as identified in the 2008 National Survey of Native Woodlands [2]. These were primarily
located on state-owned land and were managed by either local authorities, the National
Parks, and Wildlife Services or the commercial forestry company, Coillte. Samples were also
taken from national breeding programmes (2–20 per collection). These were maintained as
Coillte nursery collections, the provenances of which were known (Table 1). Finally, a small
number of samples (≤2 per location) from wild populations in France, Spain, and Norway
were analysed as references but were not included in statistical analyses due to their small
sample sizes. Individual trees were designated as either B. pubescens or B. pendula according
to morphological characteristics. B. pubescens tends to have downy young twigs and more
triangular-oval leaves compared to more sharply pointed triangular leaves and prominent
raised glands on the twigs in B. pendula (Figure 1). If an individual had an intermediate
morphology it was designated as a ‘putative hybrid’. For natural populations in Ireland,
mature trees were sampled which were separated by approximately 15 metres apart. Leaf
material (typically three to four young leaves per individual) were immediately placed in
silica gel following removal.
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Table 1. Details of Betula spp. sampling locations. Bars in the species column correspond to the frequency of B. pubescens
(green), B. pendula (red), and putative hybrid (blue) individuals in each sampling population.

Population Location Provenance Lat., Long. Samples/
Haplotypes

Gene Diversity
± S.D. Species

Alberes, Pyrenees
Orientales France Wild 42.48, 2.95 1/NA 0.0000 ± 0.0000
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Wild 52.95, −6.16 10/2 0.0675 ± 0.0303  
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Kerry, Ire-

land 
Wild 51.98, −9.57 7/1 0.0000 ± 0.0000  

Lac des Camboux, 
Lozere, 

France Wild 44.49, 3.58 2/1 0.1250 ± 0.0431  

Lough Gill, Slish-
wood 

Sligo, Ire-
land 

Wild 54.24, −8.4 14/3 0.2777 ± 0.0331  

Lough Slevin 
West-

meath, Ire-
land 

Wild 53.56, −7.32 8/4 0.1832 ± 0.0437  

Moods 
Kildare, 
Ireland 

Wild 53.27, −6.79 8/4 0.2305 ± 0.0426  

Norway Norway Wild 60.47, 8.47 2/1 0.0625 ± 0.0312  

Ongenstown wood 
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land 
Wild 53.64, −6.82 8/4 0.2653 ± 0.0377  

Rostrevor forest 
Down, Ire-

land 
Wild 54.11, −6.18 5/2 0.3556 ± 0.0452  

Scragh Bog 
West-

meath, Ire-
land 

Wild 53.58, −7.36 10/2 0.0225 ± 0.0172  

Scariff (Coillte) Clare, Ireland Breeding 52.71, −2.76 19/4 0.0727 ± 0.0248
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Wicklow, 

Ireland 
Wild 52.95, −6.16 10/2 0.0675 ± 0.0303  

Derrygoul 
Clare, Ire-

land 
Wild 52.91, −8.85 5/1 0.0000 ± 0.0000  

Derrysheridan 
Meath, Ire-

land 
Wild 53.78, -7.33 14/2 0.0546 ± 0.0252  

Killarney 
Kerry, Ire-

land 
Wild 51.98, −9.57 7/1 0.0000 ± 0.0000  

Lac des Camboux, 
Lozere, 

France Wild 44.49, 3.58 2/1 0.1250 ± 0.0431  

Lough Gill, Slish-
wood 

Sligo, Ire-
land 

Wild 54.24, −8.4 14/3 0.2777 ± 0.0331  

Lough Slevin 
West-

meath, Ire-
land 

Wild 53.56, −7.32 8/4 0.1832 ± 0.0437  

Moods 
Kildare, 
Ireland 

Wild 53.27, −6.79 8/4 0.2305 ± 0.0426  

Norway Norway Wild 60.47, 8.47 2/1 0.0625 ± 0.0312  

Ongenstown wood 
Meath, Ire-

land 
Wild 53.64, −6.82 8/4 0.2653 ± 0.0377  

Rostrevor forest 
Down, Ire-

land 
Wild 54.11, −6.18 5/2 0.3556 ± 0.0452  

Scragh Bog 
West-

meath, Ire-
land 

Wild 53.58, −7.36 10/2 0.0225 ± 0.0172  

Rostrevor forest Down, Ireland Wild 54.11, −6.18 5/2 0.3556 ± 0.0452
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Figure 1. Photographs of the two species under study. (A) Betula pubescens is distinguished by having downy young twigs
and more triangular-oval leaves, whereas (B) B. pendula tends to be glabrous with prominent raised glands on young twigs
and a more pointed triangular leaf shape.

2.2. DNA Extraction

For each sample, approximately 200 mg of dried leaf tissue was disrupted for 2 min
using a bead mill (30 Hz) and a single 3 mm tungsten carbide bead. Extraction of DNA was
performed using a DNeasy Plant mini kit (QIAGEN, cat. no. 69204) according to the manu-
facturer’s instructions. DNA was quantified using a NanoDrop 2000 Spectrophotometer
(Thermo Fisher Scientific, cat. no. ND-2000) and DNA quality was determined by agarose
(1.5%) gel electrophoresis and staining with SYBR™ Safe DNA Gel Stain (Invitrogen™).

2.3. Chloroplast DNA Sequencing and Polymorphism Discovery

To allow for more rapid haplotype identification, the detection of sequence polymor-
phisms defining PCR-RFLPs was performed using high resolution melting (HRM) for
medium-throughput genotyping [18], as done by Cubry et al. [19]. To identify candidate
polymorphic cpDNA regions around which to design HRM primers, a preliminary PCR-
RFLP screen was performed on a discovery set of samples from seven geographically
distant Irish sites. Regions targeted were trnC-D (CD), psaA-trnS (AS), and trnT-F (TF)
(as per Palmé et al. [4] and Maliouchenko et al. [12]). PCRs were performed in 10 × NH4
reaction buffer (BIOLINE), 5 units of BIOTAQ DNA polymerase (BIOLINE), 0.3 mM dNTP
mix, 3 mM MgCl2, 0.2 µM primer mix, and ~5 ng gDNA. Targets were amplified using
“subcycling” PCR conditions for targets with relatively low GC content according to Guido
et al. [20]. This included an initial incubation at 95 ◦C for 5 min, 30 cycles of 98 ◦C for 20 s
followed by 4 subcycles (i.e., 30 × 4) of 60 ◦C and 65 ◦C for 15 s each. This was ended
by a final extension for 5 min at 65 ◦C. Amplicons were digested directly using TaqI and
Hinf I (separately), except for AS, which was only digested with TaqI [4]. All amplicons
were then analysed on an 8% TBE non-denaturing polyacrylamide gel (Novex™, Thermo
Fisher Scientific), which was stained as before. Samples which captured the different RFLPs
were sent for sequencing at Macrogen Europe (Macrogen Corporation, Amsterdam, The
Netherlands). To ensure good quality contigs for each region, multiple internal primers
were used (Table 2). Sequences were trimmed and mapped to in silico PCR amplicons from
the Betula pubescens chloroplast reference sequence (NC_039996) using Geneious Prime®
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2021.1.1 (Biomatters Ltd., Auckland, New Zealand). In silico digests were then performed
before aligning variable fragments to identify sequence polymorphisms around which to
design suitable HRM primers (Table 2).

Table 2. List of primers used for sequencing and HRM analysis.

Primer Region Location a Sequence (5′-3′) Reference

trnC-f trnC-D 1–20 bp CCAGTTCAAATCTGGGTGTC [21]

trnC_int_F trnC-D 708–734 bp TCCAGGGGTGTATCTACGTATTTTGCT This work

CD_int_birch_seq1 trnC-D 1617–1590 bp CTTACAATTCGAATTCCTAGAATTTCTG This work

psbMF_Shaw trnC-D 2068–2097bp AGCAATAAATGCGAGAATATTTACTTCCAT [22]

Ag_trnC-D_indel_R trnC-D 2237–2215 bp TCATGATATTGCTCCGATTCGAT [19]

CD_int_birch_seq2 trnC-D 3009–2985 bp CTATACGTTTACAGGAGGCTATACA This work

trnD-M trnC-D 3408–3389 bp GGGATTGTAGTTCAATTGGT [21]

psaA-f psaA-trnS 1-22 bp ACTTCTGGTTCCGGCGAACGAA [21]

Birch_AS_indel1_b-F psaA-trnS 892–872 bp TGGTTGAAGATCACAAGGCGT This work

Birch_AS_SNP3_R psaA-trnS 1076–1095 bp CGGCTCAGCAGTCAATTCTT This work

Birch_AS_SNP3_F psaA-trnS 1275–1252 bp GCTTTATTCTTCTAAAGGTGGGAA This work

Birch_AS_SNP2_F psaA-trnS 1845–1826 bp AGGGCACTAGAACGAAACCC This work

Birch_AS_SNP1_F psaA-trnS 2292–2272 bp TCCTGGAAATTAAGGGGTGCT This work

AS_int_birch_seq_1 psaA-trnS 2840–2816 bp CCCAGATCTCGGATAAATGGAAATT This work

Tab_a trnT-F 1–20 bp CATTACAAATGCGATGCTCT [23]

TF11_Rv trnT-F 633–610 bp GTGTAATTTGAGATACTCGAACGG This work

Tab_b trnT-F 968–949 bp TCTACCGATTTCGCCATATC [23]

trnL(UAA)h trnT-F 1155–1134 bp CCATTGAGTCTCTGCACCTATC [24]

Tab_d trnT-F 1399–1380 bp GGGGATAGAGGGACTTGAAC [23]

Tab_f trnT-F 1855–1836 bp ATTTGAACTGGTGACACGAG [23]

Birch_AS_indel1_F b psaA-trnS 885–866 bp AGATCACAAGGCGTTTCGAA This work

Birch_AS_indel1_R b psaA-trnS 693–712 bp TGGGGACAACAAACAAAACT This work

Birch_CD_indel1_b-F b trnC-D 2575–2595 bp AAGGAGAGTCCGGGTATAAAA This work

Birch_CD_indel1_b-R b trnC-D 2746–2725 bp TCCAAAGAACAAAGAAATGGGA This work
a Location from 5′ end of marker region. b Primers used in HRM analysis.

2.4. HRM Experiments

HRM analysis was performed on the whole sample set using a QIAGEN Rotor-Gene
Q 2-plex HRM platform (QIAGEN GmbH, Germany). Each PCR was performed in a
final volume of 15 µL comprising 2 × Type-it HRM mix (QIAGEN, cat. no. 206546),
0.8 µM primer mix and ~5 ng gDNA. PCR conditions were as follows: 95 ◦C for 5 min,
40 cycles of 95 ◦C for 10 sec, 55 ◦C for 30 sec, and 72 ◦C for 10 sec. For HRM, fluorescence
was continually monitored at a ramp rate of 0.1 ◦C for 2 s between 65 ◦C and 80 ◦C.
Haplotypes were assigned manually using the Rotor-Gene Q—Pure Detection software
(v2.3.5, QIAGEN GmbH, Germany). Grouping consistency was verified by comparison
with PCR-RFLP gels and sequence alignments from the discovery sample set.

2.5. Chloroplast Microsatellites

Six chloroplast microsatellite markers were used in this study; ccmp2, ccmp4, ccmp5,
ccmp6, ccmp7, and ccmp10, as used by Maliouchenko et al. [12]. These were amplified
using the universal primers designed by Weising and Gardner [25]. PCRs were performed
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according to Maliouchenko et al. [12]. PCR products were analysed on an ABI 310 Genetic
Analyser (Applied Biosciences, Lincoln, NE, USA) using a 1:50 dilution of each PCR
product. Allele sizes were called using a ROX 500S size standard in GeneMarker v2.4.0
software (SoftGenetics LLC, State College, PA, USA).

2.6. Data Analysis

Raw HRM and microsatellite data were combined prior to data analysis, as performed
by others [12,26]. Species were analysed together unless specified otherwise. Haplotype
calling and frequency estimates per sampling site were calculated using a custom R script.
These were mapped using QGIS (v3.18, Open-source software, Switzerland). General
data handling, visualisation, and statistical analyses were performed using the R package
adegenet (v2.1.3) [27,28]. The packages ade4 (v.1.7-16) [29], hierfstat (v.0.5-7) [30], mmod
(v.1.3.3) [31], and poppr (v.2.9.1) [32,33] were also used to estimate population differentia-
tion and diversity statistics as well as to bootstrap samples for tests of statistical significance.
Poppr was also used to construct a minimum spanning network (MSN), using Euclidean
squared distances between haplotypes, as done by Maliouchenko et al. [12] through the
Arlequin software function for MSN construction. Before statistical analysis, sites with less
than five samples were removed; this resulted in the removal of the Norwegian, Spanish,
French, and “Scottish (Coillte)” samples. In addition, individuals with more than two null
alleles (alleles that did not PCR-amplify) were removed prior to analyses.

Typological differences between sampling sites were investigated by submitting an
allele contingency table to a factorial correspondence analysis (FCA) using adegenet.
Results were plotted using the R package plot3D (v.1.3). Global population differentiation
statistics were estimated using mmod, with estimates of significance being provided by
a 95% confidence interval (CI) computed on 1000 bootstrap permutations of the dataset.
For pairwise comparisons, Hedrick’s G’ST was calculated, again using mmod. G’ST is a
standardised version of Nei’s GST, which is itself an estimate of the fixation index, FST for
multiallelic markers [34]. G’ST considers the maximum theoretical GST based on observed
heterozygosity for a given marker, thereby dealing with biases towards low estimates for
highly variable loci [35]. For easier interpretation of the pairwise estimates, each 95% CI
was converted to a p value according to the method outlined by Altman and Bland [36] for
deriving a p value when a CI is given for an estimate of difference in effect.

Analysis of molecular variance (AMOVA) tests were performed using the adegenet,
poppr and ade4 packages for R. Specifically, the data in adegenet format (i.e., a “genind”
object) was passed through the poppr wrapper of the ade4 AMOVA function. AMOVA
significance was calculated on 1000 permutations of the data. To test for isolation by
distance (IBD), samples containing null alleles were removed before using the ade4 Mantel
test function to test for significant correlations between Slatkin’s linearised pairwise FST [37]
and geographic distances—as suggested by Rousset [38]—following 1000 permutations of
the data.

To estimate the extent to which all haplotypes were captured by our sampling, 10,000
permutations of our haplotype frequency distribution were used to calculate haplotype
accumulation curves using the iterative extrapolation simulation algorithm, HACSim,
available through the R package HACSim (v.1.0.5) [39]. HACSim calculates the number of
samples needed to recover 95% of all haplotypes.

3. Results
3.1. Chloroplast DNA Variation

A total of 240 birch individuals were sampled across 26 sites, 19 of which were in
Ireland (Table 1). Morphologically, 201 of these were identified as Betula pubescens, 31 as
Betula pendula, and eight as putative hybrids. Of the 26 sampling populations, 21 were
wild and occurred in putative native woodland. The remainder were sourced from Coillte
national breeding programmes, although their provenances were known. Haplotypes were
identified based on variation at two PCR-RFLP (HRM) (Figure 2) and six microsatellite loci,
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as used in previous phylogeographic works on European birch [4,12,13]. The former was
selected from a preliminary PCR-RFLP screen of a discovery set of Irish samples across
three variable loci; trnC-D, psaA-trnS, and trnT-F (Table 2). Sequencing these samples
revealed that the RFLP variation for all three lies primarily in indels of 19, 24, and 10 bp in
length, respectively. For faster throughput haplotyping, primers flanking each region were
designed and successfully tested in HRM experiments (Table 2).
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The exception, however, was the trnT-F indel, for which we were unable to design
suitable primers due to the AT-richness of the flanking sequences. Even without screening
at this region, 16 distinct haplotypes could nonetheless be identified, six of which occurred
five times or more in the whole sample set (Table 3). The third (H3) and fourth (H4) most
abundant haplotypes only occurred in Ireland, roughly spanning from Cronybyrne (Co.
Wicklow) in the east to Lough Gill, Slishwood (Co. Sligo) in the northwest (Figure 3). The
fifth most abundant haplotype (H5) was only identified in the English and Scottish sample
set. An MSN based on Euclidean squared distances between haplotypes indicates that the
haplotypes are relatively closely related and that the most abundant, H1 is also the most
geographically widespread (Figure 4). Based on the distribution pattern, H1 is most likely
to be equivalent to Haplotype A from Palmé et al. [13], which is the dominant haplotype in
northern European populations.



Forests 2021, 12, 1246 8 of 18

Table 3. List and composition of haplotypes detected. The locations and frequencies are shown for each haplotype. The
frequencies are presented for all individuals and then separately for B. pubescens (Pb), B. pendula (Pn), and putative hybrids
(Un).

trnC-
D

psaA-
trnS ccmp5 ccmp10 ccmp6 ccmp2 ccmp4 ccmp7 Found in: Frequency a

All Pb Pn Un

H1 1 1 105 118 100 205 117 147
Ireland, England,

Scotland,
France, Norway

115 94 20 1

H2 2 2 106 118 100 205 117 147 Ireland, England,
Scotland 40 35 3 2

H3 1 1 105 118 100 205 118 147 Ireland 24 24 0 0

H4 2 2 108 118 100 205 117 154 Ireland 11 11 0 0

H5 2 1 106 118 100 205 117 147 England,
Scotland 7 7 0 0

H6 2 1 105 118 100 205 118 147 Ireland, England,
Scotland 5 2 3 0

H7 1 1 105 118 100 205 118 148 Ireland 4 4 0 0

H8 2 2 106 118 100 205 118 147 Ireland 2 2 0 0

H9 1 1 105 118 100 205 119 147 Ireland 2 2 0 0

H10 1 1 104 118 100 205 117 147 Ireland 1 0 1 0

H11 2 2 106 118 100 205 119 147 Scotland 1 0 1 0

H12 2 2 106 118 100 205 116 147 England 1 0 1 0

H13 2 2 105 118 100 205 117 154 Spain 1 0 0 1

H14 1 1 105 118 100 205 119 148 Ireland 1 1 0 0

H15 1 1 105 118 98 205 118 147 Ireland 1 1 0 0

H16 1 2 105 118 100 205 117 147 Scotland 1 1 0 0
a Of the 240 individuals analysed, 23 could not be haplotyped due to a lack of PCR amplification at one or more loci.

Statistical analysis of population differentiation and genetic diversity was only per-
formed on populations containing five or more sampled individuals. Additionally, individ-
uals with more than two null alleles were removed prior to analysis; in effect, this meant
that only populations from Ireland, England, and Scotland were analysed (n = 228). Unlike
total diversity, intra-population diversity was low, whereas a global G’ST estimate of 0.336
indicated a moderate level of population structure (Table 4). This estimate was negligibly
different when only the Irish populations were considered (GST = 0.282, G’ST = 0.353). In
agreement with this, results of a nested AMOVA revealed that 19.16% of variation was
from differences between sampling populations (Table 5).
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Table 4. Population differentiation statistics estimated across all haplotypes in the Irish, English, and Scottish sampling
populations as well as separately across B. pubescens, B. pendula, and putative hybrids. Statistics include estimates of
intra-population diversity (hS), total diversity (hT), diversity which apportions between populations (GST), and GST adjusted
for the theoretical maximum based on mean heterozygosity (G’ST). Bootstrapped 95% confidence intervals (n = 1000
permutations) are provided in brackets. Bold values indicate statistical significance (p ≤ 0.05).

hS hT GST GST

All species
(n = 236/228 a) 0.173 0.236 0.268 [0.214, 0.324] 0.336 [0.276, 0.397]

B. pubescens
(n = 193/192 a) 0.160 0.217 0.261 [0.205, 0.320] 0.323 [0.259, 0.387]

B. pendula
(n = 29/20 a) 0.136 0.144 0.056 [−0.042, 0.198] 0.122 [−0.071, 0.356]

Putative hybrid (n = 6/0 a) NA NA NA NA
a Sample size before/after removing populations comprising less than five individuals.
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Table 5. (Top) Results of a nested AMOVA between species nested within all populations (sites occurring in Ireland and
England). (Bottom) Nested AMOVA between Irish populations nested within either a north or south (N-S) location, or an
east or west (E-W) location. p values were computed across 1000 permutations of the data.

All Sites. d.f. SSD Variance Variance (%) p value

Between sites 20 98.56 0.33 19.16 0.015

Species within
sites 8 11.94 0.03 1.58 0.301

Within all 183 251.07 1.37 79.25 <0.001

Total a 211 361.57 1.73 100.00

Irish only d.f. SSD Variance Variance (%) p value

N-S E-W N-S E-W N-S E-W N-S E-W N-S E-W

Between 1 1 15.82 0.65 0.13 0.00 7.03 0.00 0.034 1.000

Sites within 17 17 74.50 89.66 0.33 0.42 18.18 23.92 <0.001 <0.001

Within all 162 162 216.73 216.73 1.34 1.34 74.79 76.08 <0.001 <0.001

Total a 180 180 307.04 307.04 1.79 1.76 100.00 100.00

Effectively all population structure was attributable to differentiation between B.
pubescens populations (Table 4). This is likely because there were considerably fewer B. pen-
dula individuals, which meant that only two populations of B. pendula could be compared
after removing those which possessed less than five individuals. In agreement with this,
the nested AMOVA results showed that only 1.58% of variation could be explained at the
species level, which was not statistically significant (Table 5).

To investigate which sites, if any, possessed unique allelic variation, population
typology was investigated using an FCA (Figure 5). Most of the allelic variation (77.05%)
was explained by the first three FCA axes. While most populations were not clearly distinct
from one another, there were exceptions, such as Rostrevor Forest (Co. Down), Annamarron
(Co. Monaghan), Stormanstown Bog (Co. Louth), and Scragh Bog (Co. Westmeath), all of
which appeared distinct from both each other and from the other populations. These sites
also stood out in a pairwise G’ST comparison of populations (Figure 6), with the highest
G’ST values being for Scragh Bog, a site which had the highest frequency of the Irish-specific
H3 haplotype (Figure 3).

The apparently lower levels of haplotype diversity among the more southern sam-
pling populations in Ireland prompted us to test whether there was any statistical backing
for either a north–south or an east–west effect. For this, populations south of Moods (a
site nearest to the mid latitude point in Ireland) were deemed to be southern populations,
whereas populations west of (and including) Carnpark (near the longitudinal midpoint)
were deemed to be western populations. When populations were nested within either
a northern or a southern location, a significant level (7.03%) of the variation could be
explained, whereas no variation could be explained by an east–west division (Table 5).
Indeed, genetic diversity was more than twice as high for northern (0.2806 ± 0.0133) com-
pared to southern (0.1121 ± 0.0154) populations. To test for evidence that this geographic
variation could be caused by IBD, a Mantel test was performed to test for a correlation
between genetic and geographic distances. Neither before (r2 = 0.069, p value = 0.347) nor
after (r2 = 0.004, p value = 0.539) removing the English and Scottish populations could
a significant effect of IBD be observed. This latter result suggests that the north–south
difference in Ireland is not attributable to IBD.

3.2. Sufficiency of Haplotype Capture in a European Context

Using the HACSim algorithm developed by Phillips et al. [39] for estimating the
sufficiency of haplotype sample sizes, 10,000 permutations of the frequency distribution
of all 16 haplotypes were used to extrapolate a haplotype accumulation curve (Figure A1,
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Appendix A). From this, it was inferred that a total of 452 (95% CI: 449.74–454.26) individ-
uals would need to have been sampled in order to have sufficiently captured 95% of the
actually occurring haplotypes. Rather, it was estimated that 84% were captured instead,
which suggests that up to three additional rare haplotypes may not have been identified at
n = 217 (i.e., individuals with no null alleles).

According to Maliouchenko et al. [12], who used the same markers employed here
(although including trnT-F) to identify 66 haplotypes in B. pubescens and B. pendula sampled
across Western Europe (excluding Ireland) and Russia, at least 50 haplotypes ought to
be identifiable across the regions represented in our sampling data. When we entered
the adjusted number of expected haplotypes into the HACSim algorithm and assigned
sampling probability frequencies of zero to the haplotypes which we did not identify (i.e.,
50–16 = 34), only 27% of all possible haplotypes were identified. Realistically however, if
only the samples from Ireland and Britain are considered, then at n = 214 we can assume that
our sampling reflects 67% of the potential haplotypes in these regions. This estimation is
based on an assumption by Maliouchenko et al. [12] that there are 20 observable haplotypes
in Britain, that they can also to be found on the island of Ireland, and that they should
include those which we identify here as Irish-specific haplotypes (H3 and H4). This
estimate still suggests that most haplotypes for Ireland were captured in our study.

4. Discussion

Molecular studies are key elements in characterising populations for conservation
and for monitoring sustainable forest management [40]. Here, we used a selection of
cpDNA markers to characterise the genetic diversity and population structure of birch in
Ireland. This selection was informed by two considerations: First, the selected markers
have been widely used in previous studies to effectively map out the phylogeographies of
several important European tree species, including birch [8,12,19,26,41]. However, in the
case of birch, Irish populations have not been studied. Therefore, there exists a gap in the
knowledge of the diversity of Irish birch at the cpDNA level. Moreover, there is an added
urgency that the diversity of Irish birch be analysed in the context of European populations
given that Ireland has one of the lowest levels of native forestry cover in Europe, which
stands currently at only approximately 2% [42]. With added studies, greater resolution of
Europe-wide phylogeographic patterns can be achieved and the data can be used to select
populations for use in conservation networks [43]. Second, as Irish birch populations are
highly fragmented, we presumed that they would be poorly connected at the organellar
level. By contrast, given that Ireland has a relatively small geographic area, gene flow via
pollen between its isolated populations may still be nonetheless occurring. Therefore, we
suspected that we would have a higher chance of observing any population structure at
the cpDNA level given that the chloroplast genome is maternally inherited (i.e., via seed)
in most angiosperms (discussed in Maliouchenko et al. [12]).

Native birch has been designated as “high priority” for conservation in Ireland [44].
In this study, 11 Irish haplotypes could be identified (Table 3). Based on abundance, the
two most frequent (H1 and H2) may correspond to haplotypes “1” and “26”, respectively,
which were identified in Britain by Maliouchenko et al. [12]. Overall, of the most abundant
haplotypes (≥5; Figure 3), two (H3 and H4) were not identified outside of Ireland. However,
as the size and number of the non-Irish sampling populations was considerably smaller, it
cannot be ruled out that these haplotypes were simply missed. Nonetheless, it is clear that
the genetic diversity of Irish birch is relatively high compared to what has been reported
for other native Irish trees such as oak (Quercus petraea (Matt.) Liebl. and Quercus robur
L.), alder (Alnus glutinosa (L.) Gaertn.), and ash (Fraxinus excelsior L.), for which fewer
haplotypes appear to be present [9,19,41]. For Irish oak, however, diversity has been
estimated based on variation at only two (trnD-T and trnT-F) cpDNA regions [9], meaning
that greater diversity may be revealed with the addition of more markers.

We are confident that our estimate of the genetic diversity of Irish birch is, if anything,
slightly underestimated, as suggested by the extrapolation of haplotype accumulation
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curves. With all sampling populations included, it was estimated that 84% of all haplotypes
were captured. Intuitively, this seems like a major overestimation given that regions other
than Ireland (England, Scotland, France, Norway, and Spain) were represented in our
data. Undoubtedly, this is attributable to the very small number of samples from these
regions (n = 33, 2, 2, 2, and 1, respectively). When we factored in the number of haplotypes
observed in these regions by Maliouchenko et al. [12], then haplotype capture dropped
to only 27%. Inputting only the number of haplotypes which Maliouchenko et al. [12]
observed in Britain, then this figure increased to 67% when considering only the British and
Irish populations. However, it is worth mentioning that based on our markers alone, 15
haplotypes were identified across Ireland and Britain. The figure of 20 from Maliouchenko
et al. [12] however, did not come directly from extensive sampling across Britain (n = 36),
but rather from haplotypes identified in other regions which were presumed to be present
because they were shown to be closely related to their actually observed British haplotypes
in an MSN. This might suggest that our figure of 15 is a more accurate approximation. If
so, then our sampling at n = 214 for Ireland and Britain ought to have captured 85% of all
haplotypes. Focusing only on the Irish samples (n = 181) and the associated 11 haplotypes
which we detected, then 87% of all possible Irish haplotypes were identified. Therefore, at
the depth of the eight cpDNA markers used here, we are reasonably confident that a good
representation of the genetic diversity in Ireland in the context of Europe-wide diversity
has been revealed.

Owing to its lighter, wind-dispersed seeds, the genetic structuring and differentiation
in birch compared to oak was expected to be lower [26]. Indeed, even with the English
and Scottish populations included, cpDNA differentiation between sampling populations
was lower for birch (GST = 0.268) than for Irish oak (GST = 0.730) [9]. This is more in line
with other wind-dispersed species such as alder (GST = 0.283) [19] and goat willow (Salix
caprea L.; GST = 0.38) [45]. At the species level, significant population structuring was only
detected for B. pubescens (Table 4). We attributed this to an insufficient number of B. pendula
populations from which diversity estimates could be calculated, which itself reflected the
fact that this species is significantly less common than B. pubescens in Ireland [2].

Both species are well known to display high levels of hybridisation and haplotype
sharing, so much so that interspecific cpDNA variation tends to be lower within the same
forest compared to intraspecific variation between different forests [4,12]. Here, of the most
common haplotypes, H1, H2, and H6 could be detected in both species. The occurrence of
H3 and H4 in B. pubescens only is likely explained by their increased frequency in more
northern populations where B. pendula, by contrast, becomes increasingly less frequent. As
is the case for oak at the European level [8], the rarer haplotypes tended to be restricted to
a single species.

It was not expected that the selected cpDNA markers would differentiate between
species, as cpDNA variation in birch had already been extensively demonstrated to show no
clear species delimitation [12,46,47]. For the most common shared haplotypes, this has been
explained by incomplete lineage sorting, whereas for more rarer haplotypes it has been
argued that interspecific backcrossing and sympatric introgression are responsible [46,47].
This is distinct from convergent evolution, which is not thought to play a role given the
slow mutation rate of cpDNA and the asymmetric sharing of chloroplast alleles between
the species [46]. Conversely, using nuclear DNA markers, strong species delimitation has
been observed [15,46,48]. This has been explained by a model which states that higher
gene flow (i.e., through pollen) within species will lead to better differentiation between
species [49,50]. For species delimitation in Ireland, the well-validated nSSR markers for
birch originally developed by Kulju et al. [51] ought to be tested.

The results of this work help to answer questions relating to the origins and phylogeo-
graphic patterns of birch in Ireland in the context of Europe and post-glacial recolonization
following the LGM. Studies to date have shown a mixture of origins for tree populations
in Ireland. Oak and ash populations have been shown to have originated in the Iberian
Peninsula [9,41], whereas palynological and genetic data for alder indicate a two-pronged
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re-colonisation from the Iberian Peninsula and the Carpathians [19]. For birch in Ireland,
a significant level of variation could be explained by a north–south divide. However,
diversity was significantly greater in the more northern populations. This is congruent
with earlier Europe-wide works which have demonstrated that birch did not recolonise
from the south, as if this were the case, we would instead expect declining diversity at
higher latitudes. Therefore, it is probably more realistic to account for the northern haplo-
type richness in Ireland as being a result of migration from Britain, in which case Ireland
may be part of a western leading edge for birch in Europe. Potentially, the absence of the
UK-specific haplotype (H5) in Ireland could mark a declining westward genetic diversity
as might be expected as part of a founder effect. Within Ireland however, this effect was
not observed as there was no significant east–west difference.

Another possible explanation for the higher northern diversity could be remnant B.
nana haplotypes from ancient introgression events. B. nana is absent in Ireland today, but
the macrofossil record reveals that it was present early following the LGM [6]. Moreover,
pollen records show that B. nana and tree birch (such as B. pubescens) likely co-occurred
during this period [52]. In Scotland, extant B. nana have been shown to share more nuclear
alleles with B. pubescens than with B. pendula [48]. This, in conjunction with fossil evidence,
led Wang et al. [48] to conclude that as B. nana moved northwards post-LGM with climate
warming, “a footprint of introgressed genes in the genome of [advancing] B. pubescens” was
left behind [48]. Indeed, triploid hybrids are readily observed where the species continue
to co-occur [53]. Gene flow from B. nana into B. pubescens (but not the other way around)
increases with latitude. Interestingly, this has led to a scenario being suggested in which
pollen swamping of B. nana by B. pubescens creates hybrids which then backcross with
the latter, resulting in haplotype capture from B. nana [46]. This agrees with findings
from Currat et al. [49], in which it was demonstrated that introgression is almost always
unidirectional from the local into the invading species. Therefore, the novel haplotype
variation in the more northern Irish populations may be a genetic legacy of now-extinct
Irish B. nana. Investigating whether these haplotypes occur in Scottish populations of B.
nana could be useful in testing the validity of this hypothesis.

A main aim of this work was to select conservation units for birch in Ireland. Indeed,
selection at the population level (rather than species) may be more sensible and practical
for conserving FGR, given that the haplotypes were distributed geographically and not
interspecifically. Towards this end, we suggest that populations sampled in the more
northern and north-eastern areas (Figure 3), for example Scragh Bog, be prioritised as both
FCA and pairwise G’ST analysis suggest these to be genetically the most differentiated
(Figures 5 and 6). We recommend that these sites be prioritised for conservation as they
may represent possible sites of local adaptation and potentially contain unique allele
combinations.

5. Conclusions

By mapping the genetic diversity of birch in Ireland, this work fills a gap in the
phylogeographic structure of birch in Europe. Contrary to expectations based on other
native Irish trees, haplotype richness in Irish birch is comparatively high. Building on
previous work by Maliouchenko et al. [12], which estimated that up to 20 haplotypes may
be observable in Britain, we empirically showed that at least 11 of these can be found in
Ireland. In addition, the strikingly lower genetic diversity of southern populations supports
the hypothesis that post-glacial recolonization did not involve migration from the Iberian
Peninsula. Instead, and in agreement with pollen data, an eastern migration route from
Britain is most likely. Moreover, based on findings from more recent works, we formulate a
hypothesis which suggests that the greater northern diversity may be, in part, attributable
to historic sympatric introgression events between B. pubescens and now-extinct Irish B.
nana. Finally, we suggest populations which may be particularly worthy of selection as
part of European conservation networks for birch in Ireland.
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