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Abstract: Decision making in modern forest management planning is challenged by the need to
recognize multiple ecosystem services and to address the preferences and goals of stakeholders.
This research presents an innovative a posteriori preference modeling and multi-objective integer
optimization (MOIP) approach encompassing integer programming models and a new technique for
generation and interactive visualization of the Pareto frontier. Due to the complexity and size of our
management problems, a decomposition approach was used to build the Pareto frontier of the general
problem using the Pareto frontiers of its sub-problems. The emphasis was on the approximation of
convex Edgeworth–Pareto hulls (EPHs) for the sub-problems by systems of linear inequalities; the
generation of Edgeworth–Pareto hulls by the convex approximation of the Pareto frontier evinced
a very small discrepancy from the real integer programming solutions. The results thus highlight
the possibility of generating the Pareto frontiers of large multi-objective integer problems using
our approach. This research innovated the generation of Pareto frontier methods using integer
programming in order to address multiple objectives, locational specificity requirements and product
even-flow constraints in landscape-level management planning problems. This may contribute to
enhancing the analysis of tradeoffs between ecosystem services in large-scale problems and help
forest managers address effectively the demand for forest products while sustaining the provision of
services in participatory management planning processes.

Keywords: integer programming; multi-objective optimization; Pareto frontier; decomposition
approach; decision making; ecosystem

1. Introduction

Societies face complex ecosystem management problems due to competing and com-
plementary social values and interactions between these social values and classical timber-
production objectives [1,2]. Rönnqvist et al. [3] stated that most forest planning problems
involve competing objectives, and the impacts of silvicultural operations on wood produc-
tion, water pollution, soil erosion, landscape aesthetics, fire risk and biodiversity have been
increasingly expanding [4]. Thus, when objectives conflict it might be useful to identify,
generate and visualize the set of Pareto-optimal, or efficient, solutions, i.e., the potential
management alternative to forest planning problems [5], helping the stakeholders or deci-
sion makers to acquire a holistic view of the problem and enable a more informed decision
when selecting the best compromise management alternative.

Multi-objective optimization or multiple-criteria decision making is the most compu-
tationally demanding category among the approaches [6,7] since it considers problems
with multiple conflicting objectives (or goals or criteria). Traditionally, these techniques
have been used in an intertwined manner, and the ultimate aim of solving a multi-objective
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optimization problem has been characterized as supporting the decision makers in finding
the solution that best fits their preferences [8].

The Pareto frontier methods to generate optimal solutions as they are an a posteriori
preference modeling approach [9–11] address the need to encapsulate these preferences in
a multi-objective planning framework (e.g., [12,13]). The Pareto frontier is defined by a set
of Pareto optimal solutions, whereas globally Pareto optimal solutions are always located
on its convex boundary [14]. It covers both continuous problems (typically have an infinite
number of Pareto optimal solutions) and discrete problems (with a finite but possibly
very large number of Pareto optimal solutions). The need to optimize multi-objective
integer programming (MOIP) problems complicates the development and application of
Pareto frontier methods since they are often very complex, such that they can take a lot of
time to complete when dealing with real-world computationally expensive optimization
problems [15].

There are multi-objective approaches designed for non-integer problems to obtain
an efficient set of solutions such as the weighted objective function method [15] where
weights are assigned to the competing objectives and their sum is maximized; the modified
Chebyshev approach [16] where weights are assigned to components of the Chebyshev
metric that will then be minimized in order to obtain the closest solution; or the alpha–delta
method proposed by Tóth et al. [2], by progressively moving from one end to the other in
the efficient frontier. The drawback of these approaches is that when applied to large-size
practical problems, they are computationally expensive. In addition, they present the
Pareto frontier as a collection of individual points.

In this research, we addressed the challenge of generating Pareto frontiers of large-
scale-landscape-level MOIP problems by decomposing the general problem into smaller
sub-problems. This technique was explored and applied by [12,17–21] but using linear
programming problems with continuous variables. The need to include locational speci-
ficity requirements and product flow constraints makes the problem more complex and
increases the difficulty of solving it. We extended this technique to solve MOIP problems
that include binary variables and forest-wide product flow constraints.

2. Materials and Methods
2.1. Study Area and Materials

We considered a forested landscape located in Northwest Portugal, the Joint Man-
agement Forest Areas of Entre Douro e Sousa e Castelo de Paiva (EDSCP) case study
area extending over 14,779 ha and classified into 1346 stands distributed over 376 forest
holdings. Current forest cover types include mixed stands composed of eucalyptus (Euca-
lyptus globulus L.) (dominant) with presence of maritime pine (Pinus pinaster A.), mixed
stands composed of maritime pine (dominant) with presence of eucalyptus, pure chestnut
(Castanea sativa M.) stands and pure even-aged eucalyptus stands.

As recent wildfires burned about 46% of the area, there is an opportunity to consider
alternative cover types to determine the potential of the area to provide a wide range of
ecosystem services. The introduction of these new cover types may occur in barelands,
shrublands and a restoration option of recently burned stands. There is also opportunity
to reconvert the existing species. In this research, we considered as alternative land uses:
pure even-aged maritime pine stands, pure pedunculate oak (Quercus robur L.) stands, pure
cork oak (Quercus suber L.) stands and riparian buffers along water stream systems.

The EDSCP problem thus meets the requirements to test our approach as (i) it involves
a large area with a large number of stands, (ii) it provides a wide range of ecosystem
services (ES) and (iii) there is a large number of forest management options for each
stand. Our case study area is distributed over three counties: Castelo de Paiva (further
denominated by Paiva), Paredes and Penafiel (Figure 1, Table 1). Paiva County was divided
into two subareas (north and south) in order to reduce the size of management problem.



Forests 2021, 12, 1244 3 of 20

Forests 2021, 12, x FOR PEER REVIEW 3 of 22 

denominated by Paiva), Paredes and Penafiel (Figure 1, Table 1). Paiva County was di-
vided into two subareas (north and south) in order to reduce the size of management 
problem. 

Figure 1. Location of the case-study area showing subareas. 

Table 1. Entre Douro e Sousa e Castelo de Paiva case-study area characterization. 

Paiva 
Paredes Penafiel EDSCP 

North South 
Area (ha) 2936 4638 2156 5067 14,838 

Number of stands 362 352 181 458 1373 
Number of. prescrip-

tions 
73,900 70,050 20,200 85,950 250,100 

2.2. Growth and Yield Modeling and Simulation 
The wSADfLOR decision support toolbox [22] was used to simulate the stand-level 

prescriptions (Table 2) over a planning horizon extending over 90 years. Three-year plan-
ning periods were considered. In this research, we also computed several ecosystem ser-
vices provided by the forested landscape (Table 3). The computations resulted in approx-
imately 250,100 prescriptions at stand-level along the planning horizon. 

Table 2. Prescriptions simulated for each species using growth/yield models and simulators used. 

Species Pedunculate 
Oak 

Cork Oak Riparian 

Prescriptions-Sil-
vicultural opera-

tions 

Plantation a) 1600 1600 -
Replanting b) 20 20 -
Pruning c),d) 23 - - 
Thinning d) 27,37,45 15,30,40,58,76 -

Wilson Factor 0.2 - - 

Legend 

Management units 

Hydrografic 

network 

Coordinate system: ETRS89 PT TM06 

Source: DGT (2015), ICNF (2017), APA (2016) 

Figure 1. Location of the case-study area showing subareas.

Table 1. Entre Douro e Sousa e Castelo de Paiva case-study area characterization.

Paiva
Paredes Penafiel EDSCP

North South

Area (ha) 2936 4638 2156 5067 14,838
Number of stands 362 352 181 458 1373

Number of. prescriptions 73,900 70,050 20,200 85,950 250,100

2.2. Growth and Yield Modeling and Simulation

The wSADfLOR decision support toolbox [22] was used to simulate the stand-level
prescriptions (Table 2) over a planning horizon extending over 90 years. Three-year
planning periods were considered. In this research, we also computed several ecosystem
services provided by the forested landscape (Table 3). The computations resulted in
approximately 250,100 prescriptions at stand-level along the planning horizon.
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Table 2. Prescriptions simulated for each species using growth/yield models and simulators used.

Species Pedunculate Oak Cork Oak Riparian

Prescriptions-
Silvicultural
operations

Plantation (a) 1600 1600 -
Replanting (b) 20 20 -
Pruning (c,d) 23 - -
Thinning (d) 27, 37, 45 15, 30, 40, 58, 76 -

Wilson Factor 0.2 - -
Debarking (d,e) - 30, 40, +(9) -

Final Harvest (d) 40 to 60 (10) - -

Type management Even-aged Even-aged Even-aged

Growth model [23,24] SUBER
[25–30] [31–33]

Simulator [34] StandSIM/MD
[35] Yield table

Where: (a) number of plants per ha; (b) in percentage; (c) only applicable to pedunculate oak; (d) year; (e) only applicable to cork oak; in
parenthesis () the interval between silvicultural operations.

Table 3. References for the modeling, simulation and computation of the integrated ecosystem services.

Ecosystem Service Range References

Fire resistance 1–5 [12,36]
Soil erosion - [37]
Biodiversity 0–8 [38–41]

Cultural services 1–5 [42]

2.3. The MOIP Formulation

The model used in this study is an improved version of the linear programming model
presented in [15]. Let N be the number of stands and I = {1,2, . . . , N} be the complete set
of stand identifiers. We consider T planning periods (3 years each) in a 90-year planning
horizon, i.e., in our case, T = 30. Let us also denote by Mi the number of prescriptions
for stand i (they include the 5 shrub cleaning options and the option to resin, or not, pure
stands of maritime pine). The constraints of the problem can be formulated as follows:

Mi

∑
j=1

xij = 1, i ∈ I (1)

∑
i∈I

Mi

∑
j=1

ar
ijtxij = yr

t , t = 1, 2, . . . , T; r ∈ R (2)

where: xij are the binary decision variables (1 if prescription j is applied in management
unit i, or 0 otherwise); yr

t stand for the provision of ecosystem services such as wood flow
(harvested and thinned) for different tree species (eucalyptus, pine, chestnut, oak and cork
oak), cork flow, carbon stock, fire resistance, volume of ending inventory, biodiversity,
erosion and cultural services in period t; r is the index that identifies each ecosystem service;
R is the full set of ecosystem services; ar

ijt are the coefficients associated with ecosystem
service r in prescription j applied in management unit i in each planning period t.

One of the ecosystem services yr
t (let us denote it as TWOODt for convenience) is

the sum of wood flows of all species in period t. To reduce wood flow fluctuation, the
following constraints were added:

TWOODt+1 ≤ TWOODt + δ, t = 1, 2, . . . T − 1
TWOODt+1 ≥ TWOODt − δ, t = 1, 2, . . . T − 1

(3)

where δ is the maximum wood flow fluctuation in m3 between consecutive periods;
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and:

βr

T

∑
t=1

yr
t = zr r ∈ R′ (4)

where: zr stands for the provision of ecosystem service r over the planning horizon T; the
coefficients βr are equal to 1 for total values or 1/T for average values; and R′, R′ ⊂ R is
the subset of the ecosystem services used in the tradeoff analysis.

The list of total (or average) values for ecosystem services zr includes:

TWOOD—total amount of wood flows;
CARB—average carbon stock;
CORK—total adult cork yield;
EROS—total erosion;
BIOD—biodiversity indicator;
FRES—fire resistance indicator.

These ecosystem services were used as criteria in the multi-objective optimization
problem formulation. The decision maker will be interested in maximizing five criteria and
minimizing two criteria:

TWOOD→max, CARB→max, CORK→max, BIOD→max, FRES→max
δ→min, EROS→min

In some cases, the restrictions:

TWOOD ≥ TWOOD; CARB ≥ CARB; CORK ≥ CORK; BIOD ≥ BIOD;
FRES ≥ FRES

δ ≤ δ, EROS ≤ EROS
(5)

can be imposed to cut off undesirable criteria values.
Let x be the vector of binary variables xij; z the vector composed by the criteria

TWOOD, CARB, CORK, BIOD, FRES, EROS, δ; X the feasible set of decision variables x
defined by constraints (Equations (1)–(5)) in the decision space. Then, the problem can be
represented in the standard MOIP formulation.

Maximize or minimize z = f(x) subject to x ∈ X

To see the full mathematical model formulation, the reader is referred to Appendix A.

2.4. Solving the MOIP

The information about tradeoffs between management planning criteria should be pro-
vided to the decision maker in a meaningful way, meeting simplicity and user-friendliness
criteria [17,18]. The methodology that we used to solve the formulated MOIP is based
on the ideas proposed in [43]. It involves the approximation of the Pareto frontier in the
criterion space, the visual analysis of the constructed set in the form of interactive decision
maps, the choice of a preferable point ẑ (with coordinates ẑr) in the criterion space of z (with
coordinates zr) and, finally, the solution of the model using the reference point method
(RPM) proposed in [44]:

minimize

{
maxr∈R′ (ẑr − zr) + ∑

r∈R′
εr(ẑr − zr)

}
(6)

Subject to z = f(x), x ∈ X

where εr are small positive parameters (to avoid weak Pareto points).
Since ẑr is close to the non-dominated frontier of the EPH, the solution of this op-

timization problem is an efficient decision x∗ that provides the achievement vector z∗

that best reflects the decision-maker preferences ẑ. The RPM can be considered as a vari-
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ant of the goal programming method [45,46], which is one of the most commonly used
multi-objective programming methods [47] that was successfully applied [48].

In MOIP problems, attainable sets in the objective space are not continuous. They
consist of discrete points corresponding to the potentially large but finite number of feasible
solutions. A typical Pareto frontier for MOIP problems is represented in Figure 2, where
a, b, c, d and e are non-dominated (Pareto) points. The union of their dominant cones
forms the Edgeworth–Pareto hull. The EPH border is shown by the blue line a-b-c-d-e.
The dominant points of the EPH and of the MOIP problem are the same. As it is easy
to see in Figure 2, the EPH is not a convex set. As a consequence, some dominant, or
supported [49], points can be found by maximizing linear support functions (points a, c, d
and e), while others (point b) cannot be found (not supported). The exact description of
the Pareto frontier of MOIP problem consists of a large number of non-dominated points,
and its finding is a very difficult computational problem, especially in the case of several
criteria. To describe a convex hull, it is sufficient to find its vertices.
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In our approach, the Pareto frontier is used to support the selection of points using the
RPM. Therefore, high accuracy is not required, and we can use the non-dominated frontier
of the envelope (convex hull) of EPH (depicted by the black line in Figure 2) as a surrogate
representation of the Pareto frontier of MOIP problem. Exploring the effective frontier of
the feasible criterion set envelope by the IDM technique and identifying the goals on it is
known as reasonable goal method [48].

To determine the validity of replacing the EPH by its convex hull, we used the
following procedure: on the Pareto frontier of the envelope of the EPH constructed for
a pair of criteria, a set of uniformly distributed points ẑs, s = 1, . . . ,S is selected for each
of solution z∗s defined in the set of Equation (7) (Figure 3). The distance ‖ẑs − z∗s ‖ shows
the proximity of the vector z∗s to the MOIP solution x∗s with respect to the reference point
ẑs. Then if the value maxs=1,...,S‖ẑs − z∗s ‖ is sufficiently small, we can consider the use
of the envelope of EPH as acceptable for the aims of the study. A similar check can be
performed in the case of three or more criteria. The envelope of EPH will be called a convex
Edgeworth–Pareto hull (cEPH).
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2.5. Decomposition Approach to Constructing Pareto Frontier with MOIP Problems

The problem under consideration has a large number of integer variables and con-
straints, which makes it difficult or even impossible to solve on modern personal computers.
In addition, the construction of the Pareto frontier description requires solving a series of
optimization problems. For this reason, the following decomposition approach was applied:

Suppose the initial problem is formulated as:

Maximize/minimize z

subject to

z = f(x) (7)

x ∈ X

Let the whole set I of the stand identifiers be partitioned into K non-intersecting
subsets Ik, I = I1 ∪ I2 ∪ . . . ∪ Ik. Forest stands belonging to the subset Ik form subarea K.
For each of the subareas, it is possible to introduce its own criteria vector zk and to consider
the corresponding sub-problem:

Maximize/minimize z

subject to

zk = f
(

xk
)

(8)

xk ∈ Xk

Then, vector z for the whole area can be found as:

z =
K

∑
k=1

zk (9)
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Taking into account that, for the problem under consideration, the Pareto frontier can
be approximated by effective points of the cEPH, we can apply the approach described
in [21]. Let us construct a description of cEPH for each subarea k in the form of a system of
linear inequalities:

Ckzk ≤ dk (10)

where Ck is a real number matrix and dk is real number vector, using the algorithms
described in [20]. Then, we can consider the system:

Maximize/minimize z

subject to

z =
K

∑
k=1

zk (11)

Ckzk ≤ dk, k = 1, . . . , K

and construct its cEPH. Using the results of Lotov in [20], it is possible to show that the Pareto
frontier of the problems (9) and (11) is the same. Due to the small size of system (11), the
construction of its Pareto frontier is very easy, the computational details can be found in [21].

Now, using the IDM techniques, a certain reference point ẑ can be specified which is
decomposed into ẑ1, . . . , ẑk by the RPM method applied to the system (11). In the last step,
the optimal solutions of xk can be found by applying the same method for the systems (10)
with reference points ẑk.

3. Results
3.1. Tradeoff Analysis for the Sub-Problems

The decision maps built from each subarea were generated and analyzed using the
four MOIP models. We had three objectives: maximize TWOOD, minimize EROS and
minimize δ (Figure 4).

3.2. Tradeoff Analysis for the Master Problem after Merging the tradeoffs from All Subareas

The construction of the model for the forested landscape of EDSCP was obtained from
the four MOIP formulations for each subarea. Since the Pareto frontier generated using
MOIP formulations is convex, the feasible criteria (WOODk, EROSk and δk) for all subareas
and the corresponding polyhedral sets can be described by the system of linear inequalities.
In this application, a total of 397 inequations was used to approximate the Pareto frontier
of the problem for the whole EDSCP.
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Figure 4. Tradeoffs between three ecosystem services in each subarea. TWOOD—total amount of wood harvested and
thinned (in ×106 m3), EROS—representing the total soil erosion (in ×106 Mg) and δ—representing the maximum wood
flow fluctuation (in ×106 m3). Each of the 6 (Paiva North), 7 (Paiva South and Paredes) and 8 (Penafiel) decision maps
corresponds to a level of soil erosion.

The generation of the Pareto frontier for the whole area is possible (Figure 5) and
presents the decision maps obtained for the three criteria: maximization of TWOOD and
minimization of soil erosion (EROS) and of δ as the total wood flow fluctuation in each
planning period. These three criteria range between 0 and 11.5 × 106 m3, 16 and 29 Mg and
0.07 and 0.39, respectively. The execution time for this problem took about 45 s to generate
the Pareto frontier for the EDSCP with 250,100 prescriptions simulated in about 14,800 ha
and less than one second to obtain the silvicultural plan after the selection of the desired
criteria level (Table 4).
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Table 4. Selection of a target level of three criteria (TWOOD, EROS and δ) in the Pareto frontier generated for the EDSCP
and the contribution of each subarea. Run execution times to generate Pareto frontiers with 3 criteria and the level of all
criteria in the subareas, when selecting the point corresponding to respective contribution for the final target (Figure 4).

Target Level of Each Criterion in the EDSCP Problem
Contribution of Each Subarea to the Target Level of Each Criterion

Paiva North Paiva South Paredes Penafiel

Optimized
Criteria

TWOOD (×106 m3) 9.1661 1.6738 2.7574 1.2747 3.4602
δ (×106 m3) 0.1135 0.0560 0.1712 0.0816 0.1464

EROS (×106 Mg) 19.8151 3.6524 66511 3.7878 5.7238

Solution in the subareas

PF generation time (in seconds) 3327 1359 484 4367

Optimized
Criteria

TWOOD (×106 m3) 1.6657 2.7504 1.2704 3.4611
δ (×106 m3) 0.0539 0.1617 0.0837 0.1375

EROS (×106 Mg) 3.6582 6.6496 3.7789 5.7218

Other criteria

CARB (×106 Mg ha−1) 2.0264 2.6791 0.3621 2.6061
Cork (×105 arroba) 0.0316 0.0000 0.0000 0.0162

CULTSERV (-) 0.8824 1.2801 2.9342 3.3211
FRES (-) 2.6197 2.0456 2.0869 2.1123
BIOD (-) 3.1401 2.9815 2.6467 2.7561

Area_Ct (ha) 64 17 3 119
Area_Ec (ha) 726 1833 542 865
Area_Mp (ha) 1315 1300 1569 3824
Area_Po (ha) 774 1439 18 203
Area_Rp (ha) 22 48 23 8
Area_Co (ha) 34 0 0 18

Where: arroba = 14.7 kg.



Forests 2021, 12, 1244 11 of 20

When the decision maker selects a target level of each criterion (Table 4) in the Pareto
frontier (Figure 5) for the whole EDSCP, the solution retrieved provides information about
the contribution of each subarea for the level of each criterion in the global problem
(Table 4). Regarding the target established for total wood provision for the case-study
area in the 90-year planning horizon, the subareas of Paiva South and Penafiel contribute
with about 68% of the demand. Paredes County is the subarea where the wood is thinned
and harvest (14% of the total) is smaller due to the smaller area. The largest values of
soil erosion occur in Paiva South and in Penafiel, whereas the smallest level of erosion is
accounted in Paiva North. The minimum timber flow fluctuation is about 0.05 × 106 m3 in
Paiva North and the maximum fluctuation is 0.17× 106 m3 in Paiva South.

The approximate targets of the three criteria in each subarea were identified in the
respective Pareto frontier, and the management plan was retrieved as well as the value of
all criteria (Table 4).

3.3. Surrogate Pareto Frontier Accuracy

In order to validate the proposed approach to generate the convex hull of the Pareto
frontier of MOIP models with binary variables, we considered two stopping criteria:
precision = 0.01 and maximum number of vertices = 100. Using the Penafiel model and
optimizing the TWOOD and CORK criteria, the convex Pareto hull was obtained. We
tested the approach with more than 60 points to determine the precision and accuracy of
the surrogate Pareto frontier. The computations were performed on a personal computer
with an Intel® Core™ i7-8700 processor with a 3.20 GHz frequency and 16 Gb memory.

For demonstration, six random points with different levels of achievement of two
criteria were identified in the convex Pareto hull represented by the white arrows (Figure 6),
and the nearest corresponding point in the real Pareto frontier was obtained, indicated by
the blue arrows (Table 5).

1 
 

 
Figure 6. Accuracy of the convex Edgeworth–Pareto hull (cEPH) with respect to the Pareto frontier
for the Penafiel model. White arrows represent the points in the cEPH and blue arrows the location
of the nearest point in the real Pareto frontier.
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Table 5. The level of criteria selected in the convex Edgeworth–Pareto hull for the MOIP formulation
in problem of Penafiel and the nearest real point (the integer-feasible solution).

Convex Edgeworth–Pareto Hull Nearest Pareto Frontier Point

TWOOD CORK TWOOD CORK

Point 1 2.800 1.885 2.801 1.885
Point 2 2.996 1.711 3.000 1.711
Point 3 3.200 1.509 3.200 1.523
Point 4 3.399 1.199 3.399 1.201
Point 5 3.598 0.795 3.599 0.802
Point 6 3.669 0.565 3.670 0.570

Our approach evidences a high accuracy since the discrepancy between the point in the
Pareto hull and the nearest integer-feasible solution in the Pareto frontier is very low. The
observed values have residual differences (less than 0.1%). The highest differences between
the points are recorded when the point selection occurs near the extremes (horizontal and
vertical edges) of the Pareto hull.

The decision maps for the three criteria were generated for each MOIP model (Figure 7),
and models Paiva North and Paredes were selected due to the problem size difference. Ten
random points were selected in the Pareto frontier to determine the proximity between the
frontier and the real solutions (points). The results show that the discrepancy between the
Pareto frontiers generated by the convexification of the supported points and the integer-
feasible solution is very low (Table 6) since the highest difference between the two points
(surrogate frontier and feasible point) is about 0.015% registered in point 9 in the EROS
criterion in problem Paiva North. In the IDM generated for the smaller problem, Paredes,
the greatest difference is about 0.003%, registered in point 7, criterion FRES.
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Figure 7. Tradeoffs between three ecosystem services in each sub area. (a) TWOOD—total amount of wood harvested
and thinned (in ×106 m3), (b) EROS—representing the total soil erosion (in ×106 Mg) and δ—representing the wood flow
fluctuation (in ×106 m3). Each of the 7 decision maps corre-sponds to a level of soil erosion.
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Table 6. The level of criteria selected in the convex approximation of the Pareto frontier for the MOIP formulation for Paiva
North and Paredes and the feasible point where SF: surrogate frontier and FP: nearest feasible point.

Model Criteria Point1 Point2 Point3 Point4 Point5 Point6 Point7 Point8 Point9 Point10

Paiva
North

TWOOD
SF 1.2824 1.3298 1.5247 1.4154 1.7287 2.0747 2.1202 2.1676 2.1749 1.8575
FP 1.2826 1.3299 1.5199 1.4115 1.7287 2.0747 2.1204 2.1676 2.1749 1.8561

CARB
SF 2.9741 2.5704 3.8064 4.3027 4.0904 3.7861 4.2018 3.4197 3.9327 4.9365
FP 2.9959 2.5915 3.8098 4.3027 4.1563 3.8564 4.2230 3.5113 4.0648 4.9351

EROS
SF 3.0000 3.0000 3.5000 3.5000 4.0000 5.0000 5.5000 5.5000 6.0000 6.5000
FP 2.9999 3.0000 3.5047 3.4999 3.9998 5.0000 5.4822 5.5000 5.9080 6.4702

Paredes

TWOOD
SF 1.4163 1.4021 1.3837 1.4519 1.2946 1.4120 1.4550 1.4347 1.3696 1.2811
FP 1.4162 1.4030 1.3852 1.4520 1.2950 1.4123 1.4553 1.4347 1.3696 1.2817

FRES
SF 3.1345 3.2027 3.2195 3.2171 3.2829 3.2787 3.2796 3.2763 3.2930 3.2960
FP 3.1348 3.2027 3.2197 3.2172 3.2829 3.2796 3.2693 3.2763 3.2930 3.2961

EROS
SF 5.0000 5.0000 5.0000 4.8000 4.8000 4.6000 4.6000 4.4000 4.4000 4.4000
FP 5.0000 5.0001 5.0009 4.8005 4.8010 4.6008 4.6151 4.4420 4.4025 4.4193

The generation and visualization of the Pareto frontier was tested with the MOIP
models for the four subareas (Paiva North, Paiva South, Paredes and Penafiel). Three
combinations of two and three criteria were randomly selected and used to generate
the Pareto frontiers. The average time (in seconds) to obtain the IDM for these MOIP
formulations was recorded (Table 7). The problem with fewer decision variables (Table 1),
Paredes, was the fastest to solve: in less than one minute when selecting two criteria and
approximately 7.5 min when addressing three criteria. Problems approximately 3.5 times
larger, such as Paiva North and Paiva South, took on average 75 min to be solved when
considering the optimization of three criteria, whereas the Penafiel problem, with the
greatest number of decision variables, generated the Pareto frontier in about 104 min.

Table 7. Average time needed (in seconds) to generate the Pareto frontier with two and three criteria
in each subarea.

Model Alias
Pareto Frontier Generation (in Seconds)

2 Criteria 3 Criteria

Paiva North 223 5219
Paiva South 313 3836

Penafiel 436 6255
Paredes 47 442

3.4. Spatialization of the Solution in Each Block or for All Area

The plan associated with the solution for Paiva County using Paiva North and Paiva
South in periods 1 and 14, as an example, (Figure 8) was visualized geographically using
a new submodule associated with the Pareto frontier method. This submodule reads the
criteria values in the cplex solution file and displays the corresponding harvest plan in each
period of the planning horizon. In this version, the user can visualize, in each planning
period, the main silvicultural options such as harvests, thinnings and cork extractions. The
different colors in the map represent the species associated with the management options.
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Figure 8. Silvicultural intervention plan retrieved from the final solution represented in colors for the different species (e.g.,
dark green are stands with maritime pine that are harvested whereas light green are stands with maritime pine that will be
thinned in the specific period). Where: Ct-thin—thinning of chestnut, Ct-harv—full harvest of chestnut, Ec-harv—harvest of
eucalyptus, Pb-thin—thinning of maritime pine, Pb-harv—full harvest of maritime pine, Qr-thin—thinning of pedunculate
oak, Qr-harv—full harvest of pedunculate oak, Sb-thin—thinning of cork oak, Sb-thco—cork extraction and thinning of cork
oak, Sb-cork—cork extraction of cork oak.

The wood flow (harvested and thinned) and cork extracted in Paiva subareas (North
and South) associated with the solution and the corresponding harvest schedule are dis-
played in a graphical format (Figure 9). The contrast between harvest levels over the
planning horizon is evident in the case of Paiva. The same happened in the case of the
other problems—Paredes and Penafiel.

1 
 

 
Figure 9. Wood (in m3) and cork (in arrobas) flow for each species in the Paiva block. The black line represents the sum of
the wood harvested in each period of all species using a δ of 0.07 × 106 m3.

The user is also allowed to define the maximum limit to be harvested for each species
(Equation (5)). With this limit we avoid the chart peaks on the harvested volume, leading
to a new harvest plan and a new distribution of the species in the case-study area.
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4. Discussion and Conclusions

This paper presents an approach for the generation and visualization of Pareto fron-
tiers when dealing with complex problems with a large number of variables using MOIP.
The method was tested with a forested case study composed of 1346 stands located in
Northwestern Portugal chosen by its representability of the ownership structure as well its
representativeness of forest management practices involving several species. The data and
information management processes to generate the tradeoffs between the forest manage-
ment decision criteria were fully automated thus meeting the forest management process
efficiency requirement.

MOMP may be classified into three classes according to the phase in which the deci-
sion maker is involved in the decision-making process: the a priori methods, the interactive
methods and the a posteriori or generation methods [50]. References [12,17,21,51] devel-
oped work using a posteriori methods in participatory forest planning. Given that usually
there is no unique optimal solution (maximizing simultaneously all the objectives), the aim
is to find the most preferred among the Pareto optimal solutions [6].

Building the Pareto frontier of multi-objective integer or mixed-integer programming
problems is complicated by the non-connectedness of integer solutions and the resulting
non-convexness. This topic is largely discussed in the literature, leading to the develop-
ment of several approaches, such as: ε-constraint methodology (e.g., in [2,4,52–54]), the
alpha–delta method [5] and ε-tabu constraint methodology [55]. These approaches are very
effective when the problem has a small number of decision variables and of criteria to be
optimized (up to two or three). Study [56] proposed the algorithm to address disconnected
feasible domains that are characteristic of integer and mixed-integer programming prob-
lems. The approach proposed to approximate the convex hull was shown to be accurate,
since the discrepancy between the points selected in the Pareto frontier and the real solution
is small (less than 1%) and the execution times are acceptable, considering the problem size
and complexity.

The large number of decision variables (for EDSCP) and complex integer programs
elevate the computational cost. Thus the implementation of a decomposition approach [21]
is influential to solve linear, mixed and integer programming models of large-scale forest
management planning problems. Study [20] used the same technique to decompose
a problem of approximating the Edgeworth–Pareto hull in a multicriteria optimization
problem. The reconstruction of the master problem was possible since the EPHs for the
subareas are convex and, for this reason, can be approximated by polyhedral sets with
any required accuracy [43]. Other decomposition techniques have been used to address
large-scale forest management problems [57,58]. Nevertheless, our technique is unique for
its application to generate Pareto frontiers.

The IDM technique used in our work was simplified by the decomposition in four
subareas. Users will be able to check information about landscape-wide combinations
of these alternatives when making decisions, with the help of the solution visualization
module that displays the management plan on a map. This is an innovation from Mar-
ques et al. [21], where the user could only check when to harvest a stand. As in [18], results
also demonstrate the potential of our Pareto frontier approach to overcome the need by
other methods for specifying a priori ecosystem service target levels [59–61]. The approach
may further facilitate the estimation of the regional potential for the supply of ecosystem
services and complement multiple-criteria approaches designed for that purpose (e.g.,
in [62]).

Further interaction with stakeholders in participatory forest planning is crucial to ensure
the understanding and the further implementation of the solutions. The model formulation
included timber and cork production, erosion control, carbon sequestration, cultural services,
biodiversity and fire resistance. The pairwise combinations are not always conflicting, and
some objectives could be derived from a reduced pool of management objectives.

This paper presents an approach for model building to increase the efficiency to solve
complex problems with a large number of variables and using multi-objective mixed-
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integer programming. The results show the effectiveness of the approach to address
obstacles such as a large number of decision variables. This research may also contribute to
enhancing the analysis of tradeoffs between ecosystem services in large-scale problems and
help forest managers address effectively the demand for forest products while sustaining
the provision of services avoiding the fragmentation of the landscape guaranteed by the
integer solutions.
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Appendix A

The MOIP formulation
Let I = {1,2, . . . ,M} be the complete set of stand identifiers. Let us denote by Ik some

subset of forest stands, IK ⊂ I, by T—the number of planning periods (t = 1, 2, . . . , 30) and
by Ni—the number of prescriptions for each stand i (they include the five shrub cleaning
options and the option to resin, or not, pure stands of maritime pine). In short, the MOIP
problem formulation for this subarea may be described as follows:

∑i∈Ik ∑Ni
j=1 xij = 1 i = 1 . . . M (A1)

∑i∈Ik ∑Ni
j=1 pineijtxij = PineWk

t t = 1 . . . T (A2)

∑i∈Ik ∑Ni
j=1 eucaliptijtxij = EucWk

t t = 1 . . . T (A3)

∑i∈Ik ∑Ni
j=1 chestnutijtxij = ChestWk

t t = 1 . . . T (A4)

∑i∈Ik ∑Ni
j=1 pendoakijtxij = POakWk

t t = 1 . . . T (A5)

∑i∈Ik ∑Ni
j=1 coakijtxij = COakWk

t t = 1 . . . T (A6)

∑i∈Ik ∑Ni
j=1 corkijtxij = Corkk

t t = 1 . . . T (A7)

PineWk
t + EucWk

t + ChestWk
t + POoakWk

t +
CoakWk

t = Twoodk
t

(A8)

∑i∈Ik ∑Ni
j=1 veiijtxij = VEIk

t t = 1 . . . T (A9)
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∑i∈Ik ∑Ni
j=1 carbijtxij = Carbk

t t = 1 . . . T (A10)

1
FA ∑i∈Ik ∑Ni

j=1 ai f raitijtxij = FRAk
t t = 1 . . . T (A11)

1
FA ∑i∈Ik ∑Ni

j=1 aibiodijtxij = Biodk
t t = 1 . . . T (A12)

1
FA ∑i∈Ik ∑Ni

j=1 aira f lindijtxij = RAFLk
t t = 1 . . . T (A13)

∑i∈Ik ∑Ni
j=1 erosionijtxij = Erosionk

t t = 1 . . . T (A14)

∑i∈Ik ∑Ni
j=1 aixij = A_CTk

t f ∈ F f = 1 . . . 8 (A15)

∑T
1 PineWk

t = PineSawlogsk (A16)

∑T
1 EucWk

t = EucPulpWoodk (A17)

∑T
1 Chestk

t = ChestSawlogsk (A18)

∑T
1 POakWk

t = POakSawlogsk (A19)

∑T
1 COakWk

t = COakSawlogsk (A20)

PineSawlogsk + EucPulpWoodk + ChestSawlogsk +
POakSawlogsk + COakSawlogsk = TWOODk (A21)

∑T
1 Corkt

k
t = CORKk (A22)

1
T ∑T

1 Carbk
t = CARBk (A23)

1
T ∑T

1 FRAk
t = FRESk (A24)

1
T ∑T

1 Biodk
t = BIODk (A25)

1
T ∑T

1 RALFk
t = CULTSERVk (A26)

∑T
1 Erosionk

t = EROSk (A27)

TWOODk
t+1 ≤ TWOODk

t + δk, t = 1, 2, . . . T − 1 (A28)

TWOODk
t+1 ≥ TWOODk

t − δk, t = 1, 2, . . . T − 1 (A29)

where:

• xij = 1 if prescription j is applied in management unit i, or 0 otherwise;
• T = the number of planning periods (t = 1 . . . 30);
• F = the number of forest management models (8);
• CTf = the set of prescriptions that were classified as belonging to a cover type;
• FA = total forested area in each subarea;
• ai = the area occupied by each species in the management unit i;
• pineijt = the pine timber flow in period t that results from assigning prescription j to

stand i;
• eucaliptijt = the eucalyptus timber flow in period t that results from assigning pre-

scription j to stand i;
• chestnutijt = the chestnut timber flow in period t that results from assigning prescrip-

tion j to stand i;
• pendoakijt = the pedunculated oak timber flow in period t that results from assigning

to stand i the prescription j;
• coakijt = the cork oak flow in period t that results from assigning to stand i the

prescription j;
• corkijt = the cork timber flow that results from assigning prescription j to stand i in

period t;
• veiijt = the standing volume (in m3) in the ending inventory in stand i when assigning

prescription j in t;
• carbijt = average yearly carbon stock (Mg ha−1) in period t that results from assigning

prescription j to stand i;
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• f raitijt = fire resistance indicator in period t that results from assigning to stand i
prescription j, ranging from 1 (less resistance) to 5 (highest resistance);

• biodijt = biodiversity indicator in period t that results from assigning to stand i prescrip-
tion j, ranging from 0 (bare land or no biodiversity) to 8 (highest level of biodiversity);

• ra f lindijt = RAFL index or cultural services indicator in period t that results from
assigning to stand i prescription j, ranging from 1 (low cultural interest) to 5 (highest
cultural and recreation interest);

• erosionijt = the soil erosion in Mg in period t that results from assigning to stand i the
prescription j;

• A_CT = the area assigned to cover type f;

The description of the models is as follows:

• Equation (A1) states that only one prescription is assigned to each stand in the
MOIP model.

• Equations (A2)–(A6) define, respectively, the pine, eucalypt, chestnut, pedunculated
oak and cork oak timber yield.

• Equation (A7) defines the adult cork yield in each planning period.
• Equation (A8) defines the total amount of wood thinned and harvested in each period.
• Equation (A9) was included to define the standing volume in the case study area at

the end of the planning horizon.
• Equation (A10) defines the average carbon stock in the study area in each planning period.
• Equations (A11) to (A14) define, respectively, the fire resistance indicator, biodiversity

indicator, cultural services indicators and soil erosion.
• Equations (A15) defines the area assigned to each cover type.
• Equations (A16) to (A27) represent, respectively, the total pine sawlog yield, total

eucalyptus pulpwood yield, total chestnut sawlog yield, total pedunculate oak sawlog
yield, total cork oak sawlog yield, total adult cork yield, average over the 30 planning
periods of carbon stock, fire resistance indicator, biodiversity indicator, cultural ser-
vices indicator and total erosion across the planning horizon. These equations thus
define the values of the criteria considered for testing purposes in each subarea.

• Equations (A28) and (A29) establish a maximum fluctuation of δ between periods in
the amount of wood thinned and harvested.
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