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Abstract: There exists serious heavy metal contamination of agricultural soils in China. It is not only
time- and labor-intensive to monitor soil contamination, but it also has limited scope when using
conventional chemical methods. However, the method of the heavy metal monitoring of soil based on
vegetation hyperspectral technology can break through the vegetation barrier and obtain the heavy
metal content quickly over large areas. This paper discusses a highly accurate method for predicting
the soil heavy metal content using hyperspectral techniques. We collected leaf hyperspectral data
outdoors, and also collected soil samples to obtain heavy metal content data using chemical analysis.
The prediction model for heavy metal content was developed using a difference spectral index, which
was not highly satisfactory. Subsequently, the five factors that have a strong influence on the content
of heavy metals were analyzed to determine multiple regression models for the elements As, Pb, and
Cd. The results showed that the multiple regression model could better estimate the heavy metal
content with stable fitting that has high prediction accuracy compared with the linear model. The
results of this research provide a scientific basis and technical support for the hyperspectral inversion
of the soil heavy metal content.
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1. Introduction

Soil is the basis for plant growth and development, supplying the water, air, and
mineral elements on which plants depend. At the same time, it is also the basis for building
a good ecological environment and an important factor in maintaining national ecological
security. In 2014, China conducted a national survey on soil pollution, which showed an
alarming overall soil environment, especially for heavy metal pollution on farmland and
industrial and mining wasteland [1,2]. With the rapid development of industry, agriculture,
and urbanization, environmental issues have gradually been brought to people’s attention,
among which air and water pollution have become prominent and drawn great attention.
However, soil pollution has not received sufficient attention due to its lagging nature
and hidden nature [3,4]. Although soil has a certain ability to purify pollutants, when
the amount of soil pollutants exceeds the environmental capacity of the soil, it will cause
changes in the structure and functionality of the soil and even cause serious harm to the
entire ecosystem [5]. Excessive heavy metals in soil will not only cause stress to crops
and affect their growth and development [6-8], but also accumulate in crops through the
food chain and ultimately in the human body, which makes them a major safety hazard
to human health and the environment [9-11]. For example, Minamata disease and bone
pain disease were identified to be caused by heavy metal pollution in Japan in the 1950s,
which made heavy metal one of the most urgent problems in soil pollution and caused
widespread concern in the international community [12,13]. Therefore, it is crucial to detect
the distribution of heavy metal elements in soil in large areas rapidly, and many scholars
have been trying to monitor the soil environment using hyperspectral techniques.
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The traditional methods of monitoring heavy metals in soil are usually based on
chemical analysis; the results are more accurate, but it requires a lot of manpower, mate-
rials, and financial resources, and the monitoring of large areas cannot be achieved [14].
In contrast, hyperspectral remote sensing technology is quicker and more efficient, has
high resolution and accuracy, which makes it more suitable for monitoring at large spa-
tial scales [15-17]. It is a promising alternative detection technology and is gradually
developing and maturing [18-20].

At present, many scholars have conducted research on heavy metal pollution in soil by
using ground object reflectance spectroscopy, aiming to reflect the status of soil pollution in
study areas through the variation characteristics of reflectance spectroscopy [21]. Hang et al.
explored the feasibility of using soil reflectance spectroscopy to estimate Cd, Pb, As, Cr, Cu,
and Zn in suburban soils, and showed that the combination of visible and near-infrared
reflectance spectroscopy with partial least squares regression was an alternative method
for the rapid monitoring of heavy metal pollution in suburban soils [22]. Shi et al. studied
the spectral variation characteristics of navel orange leaves by conducting pot experiments
with artificially added cadmium (Cd), and then established a prediction model based
on the spectral index and obtained good model accuracy [23]. Kooistra et al. used the
hyperspectral vegetation index and red edge position to monitor the pollution status of
heavy metals in floodplain soil, indicating that the spectral characteristic parameters of
heavy metals in some bands could be used as effective indicators [24]. Zhao et al. selected
two Cd gradient sample plots in Guixi to study the effect of rice Cd pollution on the spectral
characteristics, and the results showed that with an increased Cd content in the soil, the
depth of the blue and red valleys became shallow, the slope of the red pass became smaller,
the NDVIyj5 (Normalized Difference Vegetation Index) value decreased, and the reflectance
decreased in the near-infrared waveband (Ry50_1250) [25]-

Based on previous studies, the hyperspectral monitoring of the soil heavy metal
content can be divided into the following two aspects: the direct estimation of heavy metal
content using soil reflectance spectroscopy [26-28] and the indirect estimation of heavy
metal content using vegetation reflectance spectroscopy [29,30]. The direct estimation
method was established by finding a direct relationship between the concentration of
heavy metals in soil and the spectral reflectance, but in fact, most of the surface soil is
covered by vegetation, which makes it difficult to obtain the soil reflectance spectra directly,
and that also leads to difficulties in data acquisition and processing. The indirect estimation
method tries to excavate the correlation between the elemental content of soil heavy metals
and the vegetation reflectance spectra in order to establish an inversion model. It remains
to be further studied how to make full use of the characteristics of heavy metals in soil,
fully exploit the leaf spectral information, and improve the accuracy and wide applicability
of hyperspectral inversion models. In addition, pot experiments are used to artificially
and quantitatively add isogradient heavy metals to study the changes in plant spectral
characteristics. It allows for a better estimation of the concentration of the soil heavy metal
content to be made, which is due to favorable measurement conditions. Virtually, the leaf
spectra measured in the field environment are influenced by many factors, such as soil
type, soil moisture, solar illumination, and ambient temperature. It is significantly different
from the corresponding factors affecting the spectra obtained in the laboratory, and hence
the inversion models obtained in the laboratory are often difficult to be directly applied
in the field. It is necessary to establish a suitable and accurate prediction model for the
heavy metal content in the field using vegetation spectroscopy. Currently, many inversion
models have been developed, among which the widely used ones are linear models as
well as nonlinear models. Nonetheless, these models have their own drawbacks. For
example, linear models cannot fit nonlinear data, support vector machines are difficult to
achieve large training samples, and random forests are prone to overfitting and difficult to
maintain. In addition, the physical and chemical soil properties vary among different types
of soils, as well as the variability of geographic location and environment in the study area,
which will affect the prediction accuracy of the models. However, it does not mean that
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the modeling has greater uncertainty; instead, it is essential for us to build corresponding
prediction models for different geographical areas.

To address the shortcomings of the current study, we used peach trees as the research
object to estimate the soil heavy metal element content by comparing different regression
models and using leaf spectral reflectance data, which provides a new theoretical basis
and innovative ideas to explore the feasibility of monitoring the soil heavy metal element
concentration using hyperspectral technology and using it for spatial inversion.

2. Materials and Methods
2.1. Study Area

The study area is located in the northeastern part of Beijing, China, about 70 km from
the center of the city, near a tailings pond with serious pollution (Figure 1). The region’s
terrain is high in the northeast and low in the southwest, with a temperate continental mon-
soon climate, hot and rainy in summer and cool and humid in autumn. The annual average
temperature is 11.7 °C, the coldest in January with an average temperature of —5.4 °C
and the hottest in July with an average temperature of 26.1 °C. The annual precipitation
is 629.4 mm, mainly concentrated in summer, at 453.0 mm, which is 72% of the annual
precipitation. It is rich in agricultural resources and an important agricultural and sideline
product base in Beijing. It has a geographical environment that is surrounded by mountains
in the north, east, and west, leading to large mountainous and semi-mountainous areas
suitable for fruit and forest production. There are 720,000 mu of forest, and the ratio of eco-
nomic to ecological forest is 2:3. Peach trees are widely planted in this area, and the Pinggu
big peach is famous in the market and is a Chinese geographical indication product. The
area contains a variety of minerals such as gold, silver, copper, and manganese. At present,
there are two tailings ponds, including Liujiadian and Wanzhuang. With the intensification
of agricultural production, the development of industry, the scale of livestock and poultry
farms, and increased municipal waste emissions, the risk of soil heavy metal pollution in
the study area has increased; therefore, it is especially urgent to be able to monitor the soil
in the whole area quickly and on a large scale.
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Figure 1. Study area and distribution of sampling points.
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2.2. Data Acquisition
2.2.1. Peach Leaf Reflectance Spectrum Acquisition

In this study, spectra were collected using a portable FieldSpec 4 feature spectrometer,
manufactured by ASD, USA. The specific operating parameters of the spectrometer are as
follows: wavelength range from visible to near infrared (350-2500 nm), spectral sampling
interval of 1.4 nm in the range of 350-1000 nm and 2 nm in the range of 1001-2500 nm, and
a field of view of 30°. Due to the large noise generated at both ends of the spectral band,
the data from 350 to 400 nm and 2400 to 2500 nm were excluded. Accordingly, a total of
2000 spectral bands of data were obtained.

First, after the survey of the study area, a reasonable survey route was formulated
indoors based on the survey results. We adopted a combination of administrative and
environmental units and set up 58 sampling points (Figure 1). Based on the distribution of
peach tree cultivation and the information provided by farmers about peach tree growth,
similar agricultural land with peach trees was selected to obtain a reliable sampling based
on the administrative village, taking into account environmental factors such as the size of
the peach tree cultivation area and soil type, in order to cover the variability of the study
sites as much as possible. We used the 10 m x 10 m regular grid method to lay out plots at
the identified sampling sites, covering the cinnamon soil and the peach trees. After that,
we measured the data between 10:00-14:00 in clear weather. Along the diagonal position
of the square sample plot, at the two top corners as well as at the geometric center, we,
respectively, selected a mature peach tree 5-8 years old, which satisfied a height of 5-6 m
and a diameter at breast height of 8-10 cm. At the same time, it records, in detail, the
geographical coordinates, ambient temperature and humidity, solar radiation, etc. After
the peach trees were identified, we could start measuring the leaf spectra by selecting
5-10 leaves per tree and collecting 10 spectral data points per leaf. We selected mature
dark green peach leaves and required intact, healthy, and disease-free leaves. Then, we
retrieved the reflectance spectrum information of peach leaves at sampling points, and the
acquisition steps were as follows (Figure 2): Step 1: optimize the spectrometer, then scan
the standard white plate for calibration, and start measuring when it collects a straight
horizontal footprint for a certain period of time; Step 2: adjust the projection mode, then
make sure the probe is 5-10 cm vertically down from the leaf surface; Step 3: utilize the
instrument to collect data, and take care to keep the value stable after reading. During the
collection of spectral information, we had to re-optimize the calibration every 15 min. We
imported the obtained leaf spectrum curve into ViewSpec Pro (version 6.0) software and
calculated the first derivative after removing the abnormal spectrum curve (Curves with
apparently too high or apparently too low reflectivity). Finally, the average value of all
data was calculated as the actual reflectance information of this point.

[ Sensor

Figure 2. Schematic diagram of spectrometer measuring leaf spectrum.

2.2.2. Soil Sample Collection and Heavy Metal Content Determination

We collected soil samples while measuring the leaf spectrum information, and the
soil type of the sample in this experiment was mainly cinnamon soil. Each sampling point
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comprised 5 to 10 sub-sampling points, and the sampling depth was 0—40 cm. When taking
soil samples from one sampling point, we collected samples from multiple points in the
vicinity, picked off impurities such as dead leaves, root stumps, stones, and gravel, and
fully mixed the samples from these sub-sampling points. The excess soil was discarded
according to the quartile method, and about 1 kg was retained as a test sample for analysis
and testing. The soil sample was loaded into a numbered self-sealing bag and brought
back to the laboratory. After natural air-drying, the collected soil samples were passed
through a 2-millimeter nylon sieve to remove impurities. Then, the samples were dried
at 60 °C in an oven, ground with agate mortar, and passed through a 100-mesh nylon
sieve, the result of which was sealed in a numbered bag for the next step of testing. The
related data of heavy metal content in soil samples were obtained using laboratory chemical
detection and analysis. The soil PH value is determined by using the spot method through
a PH meter. The soil organic matter content was tested using the potassium dichromate
volumetric method through an electric furnace. The element cadmium (Cd) was measured
using graphite furnace atomic absorption spectrophotometry, with an atomic absorption
spectrometer. The chromium (Cr), lead (Pb), and copper (Cu) were analyzed using flame
atomic absorption spectrophotometry, with an atomic absorption spectrometer; the amount
of total mercury (Hg) was obtained using the cold atomic absorption method with a
mercury measuring instrument; and the arsenic (As) content was quantified using silver
diethyldithiocarbamate spectrophotometric method with a spectrophotometer.

2.3. Construction of Spectral Index

In remote sensing of vegetation, the spectral index has always been regarded as an
effective indicator that can monitor or evaluate growth and development [31]. It can
amplify the characteristic information of the plant spectrum and reduce the interference of
external factors such as the atmosphere and underlying surfaces on the spectral information.
In order to extract the wavelength combination with the strongest correlation between
heavy metal content and the spectral index, four typical spectral indices were selected for
calculation in this study. In the 400-2400 nm spectral wavelength range, we calculated the
spectral index for all wavelengths of the original hyperspectral combination in pairs. The
four spectral indices were calculated as shown in Table 1.

Table 1. Spectral index and calculation formulas.

Name of Spectral Index Formula
Difference vegetation index (DVI) Ry, =Ry,
Simple ratio vegetation index (SRVI) Ry, /Ry,
Normalized difference vegetation index (NDVI) (R, = Ry,)/(Ry, + Ry,)
Inverse difference vegetation index (IDVI) 1/Ry, — 1/R,,

In the formulas, A1 and A; represent the position of any wavelength in the 350-2500 nm
band, and R, and R), represent the original spectral reflectance at the wavelength position
of A1 and Ay, respectively.

2.4. Correlation Analysis

In order to analyze the relationship between spectral indices and soil heavy metal
elements, we explored the correlation between four spectral indices with different wave
combinations and six soil heavy metal elements, by which we determined the sensitive
wave combinations of each heavy metal element. We introduced the Pearson correlation
coefficient to describe this relationship that argues for the feasibility of indirect inversion of
soil heavy metal elements using hyperspectral techniques. The calculation formula of the
Pearson correlation coefficient is as follows:

L w-DE-D
\/Z?:l(yi —7) L g(x —%)°
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In the formula, y; represents the content of heavy metals in soil at the ith sampling
point; x; represents the difference vegetation index (DVI), simple ratio vegetation index
(SRVI), normalized difference vegetation index (NDVI) or reciprocal difference vegetation
index (IDVI) of the peach leaves at the ith sampling point; i represents the average value
of the soil heavy metal content; ¥ represents the average value of the DVI, SRVI, NDVJ, or
IDVI of peach leaves; and # is the number of samples.

The calculation of different spectral indices in the whole waveband was realized and
run in the Python programming language, which was also used for correlation analysis
between the soil heavy metal content and spectral indices.

2.5. Modeling Method

Before modeling, the samples are divided into two sets, the training set and the test
set. The training set is used to generate the prediction model, while the test set is used to
examine whether the performance of the generated model is excellent. Within the identified
58 sample points, 38 samples were randomly selected as the training set for building the
prediction model, and the remaining 20 samples were chosen as the test set for evaluating
the prediction accuracy of the model.

2.5.1. Univariate Linear Regression Model

In this paper, the regression model was constructed for spectral index and the soil
heavy metal content by using univariate and multiple linear regression methods. The
univariate linear regression is a method to analyze the linear correlation of only a single
independent variable (independent variable x and dependent variable y). When the
elements affecting the dependent variable have only one major and decisive role, the model
will have good prediction accuracy. The basic form is as follows:

Y=ax+Db
h— LY _azxi
n n
_nyxYi -y XY
ny x— (T x;)?

In the formula, Y represents the dependent variable of the prediction model and Y;
is the soil heavy metal content of the ith sampling point; x represents the independent
variable of the prediction model and x; is the spectral index of the ith sampling point; and
a and b are the parameters of the univariate linear regression equation.

2.5.2. Multiple Linear Regression Model

The multiple linear regression method was first proposed by Francis Galton in the
late 19th century, which was applied to model prediction at the earliest opportunity. It
predicts the independent variable, y, using the optimal combination of multiple dependent
variables, x, to build a linear regression model, which is a classical statistical analysis
method based on the least square method. The general expression of a multivariate linear
regression equation is as follows:

Z=PBo+p1 X1+ PaXo+ -+ P Xk te

where Z is the soil heavy metal content, X} is the spectral index of the kth sampling point,
B is regression coefficient, n is the number of sampling points, and ¢ is the random error.

2.6. Model Accuracy Evaluation

For assessing the fitting and generalization ability of the model, the following two
determinants were used for evaluation: coefficient of determination (R?) and root mean
square error (RMSE). R? indicates the stability of model construction and validation [32].
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The closer the R? is to 1, the more stable the model is and the better the fit is. The RMSE
indicates the predictive power of the model [33]. The smaller the RMSE is, the higher the
predictive accuracy is. Calculations are performed according to the following equation:

Rz =1— ?:1 Z:l:l(y_y,\)z
S Y (y—7)

RMSE =

|-

™=

(v—19)°

i=1

3. Results
3.1. Statistical Characteristics of Soil Heavy Metal Content

According to the laboratory test results, the organic matter content of the soil was
mainly between 10 and 30 g/kg, which is neutral to weakly alkaline, with a pH value
between 6 and 8. The heavy metal content in the measured soil samples was statistically
analyzed, and the results are shown in Table 2. The background values in the table are
quoted from the book “Monitoring and Evaluation of Environmental Quality of Agricul-
tural Produce”, published in 2013 [34]. The standards in the table are grade I and II, as
specified in the National Soil Environmental Quality Standards (GB 15618-1995) [35]. It
can be seen from the table that the coefficient of variation was moderate, between 10 and
100%. The mean values of all the heavy metals exceeded the background values of the soil
environment in the 58 samples collected. The average values of three metals, Cr, As and
Pb, are higher than the national grade I standard, and the rest are lower than the standard
value. Moreover, all the metals were lower than the national grade II standard, showing
that the soil environmental quality was generally passable in the area. However, from
the maximum value, the content of six heavy metal elements exceeded the national level
standard, and some heavy metals exceeded the secondary standard, which indicated that
the soil environment in the study area was polluted within different degrees and had a
certain impact on the cultivation of peach trees.

Table 2. Statistics of heavy metal content in soil.

Maximum Minimum Mean

Coefficient Background  National Grade  National Grade II

Element of Variation Value I Standard Standard
(mg/ke)  (mg/kg) (mg/kg) (%) (mg/kg) (mg/kg) (mg/kg)

Cd 0.76 0.09 0.27 58.71 0.12 0.20 0.30

Cr 172.99 52.85 82.81 24.88 56.47 90.00 250.00
Hg 0.24 0.02 0.06 57.65 0.04 0.15 0.30

As 132.96 7.75 28.70 90.85 8.14 15.00 30.00
Cu 53.60 22.18 31.07 23.08 18.50 35.00 50.00
Pb 497.24 20.36 91.41 90.83 13.78 35.00 300.00

3.2. Spectral Response of Peach Tree Leaves to Soil Heavy Metals

In order to show the spectral response pattern of peach tree leaves to soil heavy metal
elements more clearly and intuitively, the collected leaf spectral curves were grouped
according to heavy metal content with background values as interruption points (Table 3).
Spectral curves with heavy metal content higher than the background value were regarded
as polluted areas, and spectral curves with heavy metal content lower than the back-
ground value were regarded as background areas. Then, the average values were taken,
respectively, to compare and analyze the spectral curves of the peach tree leaves.



Forests 2021, 12, 1208

8 of 22

Table 3. Statistics of soil heavy metal content in polluted and background area.

Heavy Metal Cr Cu As Cd Pb Hg

y (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)
Polluted Area 74.85 29.44 34.36 0.28 94.45 0.06
Background Area 54.98 18.04 8.03 0.11 10.16 0.03

The original spectral curves of the peach leaves in polluted and the background
areas are shown in Figure 3a. The trend of reflectance is generally consistent in both
areas. However, due to the different content of heavy metals in the soil, the response
mechanisms reflected in the different wavebands are different. From the analysis of the
spectral reflectance curves of the peach tree leaves, it is found that the spectral reflectance
in the background areas is generally lower than in the polluted areas, and the reflectance
is positively correlated with the heavy metal content in the soil. In order to visualize the
difference of the original spectral curves under different contamination, we use the spectral
curves of the background area minus the spectral curves of the contaminated area and
plot it as Figure 3b. As shown in Figure 3b, between the wavelengths of 760 and 1300 nm,
the spectral reflectance was significantly different in the background and polluted areas,
with the maximum difference reaching 13.41%, indicating that the spectrum of this band is
relatively sensitive to soil heavy metals.
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Figure 3. Original curves of and differences between spectra of polluted and background areas:
(a) Original spectral curve, (b) Original spectral difference curve.

In the visible range of 400-760 nm, the spectral characteristics of plant leaves are
mainly affected by various pigments, among which chlorophyll plays a major role. With
an increased soil heavy metal content, green peak reflectance increased, with a maximum
difference of 6.26%. This is because of the enrichment of heavy metals in plants, which
leads to further toxicity. Furthermore, the chlorophyll content and light absorption rate
decreased, resulting in increased reflectance. In the spectral range of 680-780 nm, the
spectral reflectance of peach leaves increased sharply, and the typical “red edge” effect
of vegetation appeared. The leaf spectral curve in the polluted areas rose significantly
more than that in the background areas, and there was a high reflectance platform in the
780-1300 nm range. The reflectance of the polluted areas was between 50.96 and 61.88%
and that of the background area was between 41.41 and 50.76%. There are two absorption
valleys near 1460 and 1930 nm in the spectrum, which are mainly formed by water vapor
absorption. The absorption valley of leaves in the polluted areas is lower than that in the
background areas.

Figure 4 shows the first derivative of the peach leaf spectrum curves in the polluted
and background areas. The first derivative curve can better eliminate most of the influence
of background noise on the spectrum, reduce the scattering and absorption of light by the
atmosphere in the process of spectrum collection [36], which can accurately determine
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the position of the reflectance peak and absorption valley of the original spectrum curve.
Among them, the “trilateral” parameter is important in the first derivative spectrum [37].
It can be seen from Figure 4b that the red, yellow, and blue edges of the peach tree leaves
in the contaminated and background areas did not move significantly; the red edge is at
720 nm, the blue edge is at 520 nm, and the yellow edge is at 572 nm. It shows that the soil
heavy metal content did not significantly interfere with the trilateral parameters. The red
edge slope is the maximum value of the red edge area, which can reflect the chlorophyll
content of the leaves. The analysis shows that the influence of heavy metals on the red
edge slope is very obvious. With an increased soil heavy metal content, the enrichment of
heavy metals in the plant leaves deepens and the chlorophyll content decreases, leading to
a sharp increase in the red edge slope. The blue edge slope showed the pollution area > the
background area, which increased with an increased soil heavy metal content. The slope
of the yellow edge is negative in both the contaminated and background areas, and the
analysis shows that the slope increases when the heavy metal contamination increases. In
summary, the red, blue, and yellow edge positions of the leaves were very insensitive to
the interference of soil heavy metal and showed a strong anti-interference ability. However,
the slope of the edges had an obvious response to heavy metals and increased with the
increased in the soil heavy metal content.
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Figure 4. Spectral curves of the first derivative treatment of the polluted and background areas:
(a) First derivative spectral curve; (b): Reflectance spectral trilateral parameter.

3.3. Correlation Analysis of Soil Heavy Metals and Spectral Reflectance

Figure 5 shows the correlation curve between different heavy metals in the soil and
spectral reflectance. Overall, the soil Cr and spectral reflectance are moderately correlated
and not significant, and the correlation coefficient value of each band is stable at about —0.6.
The correlation coefficients of soil Cu and reflectance fluctuated in the range of 0.14-0.42,
which revealed that there was a weak linear correlation between Cu and spectral reflectance.
The correlation coefficients between Hg and reflectance are all below 0.3; therefore, it can be
considered that there is no correlation between Hg and spectral reflectance. The correlation
between soil As, Pb, and Cd and spectral reflectance varies greatly in different wavelength
ranges, reaching the 0.1 significance level in some band ranges, and the overall correlation
curve trend was the same. There is a positive correlation in the whole range, and the
correlations are ranked in the order As > Pb > Cd. For example, soil As, with a strong
correlation, was significantly correlated in the range of 380-515 nm, with a maximum value
at 481 nm (0.76). After that, the correlation decreases and then recovers in the range of
515-674 nm, dropping to the minimum value at 553 nm (0.59). The curve is obviously
concave at 674-1453 nm, and the shortwave near-infrared spectrum belongs to this range,
indicating that the sensitivity of the shortwave near infrared to soil As is lower than that of
the other wavebands. The variation of the long-wave near infrared is large, where all of
the three elements are significantly correlated in the range of 1886-2119 nm. Meanwhile,
the soil arsenic element also had a significant correlation at 23462400 nm.
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Figure 5. Correlation between heavy metals in soil and spectral reflectance.

3.4. Correlation Analysis of Soil Heavy Metals and Spectral Index

The results of the above research show that the correlation between single-band
spectra and soil heavy metal elements was generally low, and only part of the band range
of some elements reached a significance level of 0.1, while the other elements could be
considered irrelevant. Therefore, the stability and accuracy of predicting the heavy metal
content using a single band cannot meet the needs of practical application. In order to
clearly characterize the sensitive bands of each element, this paper uses the data of six
soil heavy metal elements to establish the spectral DVI, SRVI, NDSI, and IDVI and their
correlation coefficient distribution map in the whole band. Only the heat maps of each
metal and the DVI spectral index are shown here (Figures 6-11). Further information on
the distribution of the correlation coefficients of each metal element with spectral indices
can be found in Appendix A.
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Figure 6. Correlation coefficient distribution of As and DVI spectral index.
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Figure 7. Correlation coefficient distribution of Pb and DVI spectral index.
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Figure 8. Correlation coefficient distribution of Cd and DVI spectral index.
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Figure 9. Correlation coefficient distribution of Cr and DVI spectral index.
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Figure 10. Correlation coefficient distribution of Hg and DVI spectral index.
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Figure 11. Correlation coefficient distribution of Cu and DVI spectral index.

In the distribution map, the coloring from blue to red indicates the correlation coeffi-
cients from small to large, and the deeper the color is, the greater the correlation coefficient
is. Appendix A Figures A1-A3 show the correlation coefficient distribution diagrams
constructed with the three elements As, Pb, and Cd and the four spectral indices, and
their distributions are very similar. By comparison, the heavy metal content and DVI
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have a wider sensitivity range, darker color, and larger correlation coefficient, indicating
that the prediction model can be built more accurately using the difference spectral index
of these three elements. In Figure A4, the correlation coefficient between Cr and DVI
is relatively small, and the diagrams of Cr and SRVI, NDVI, and IDVI are similar; the
correlation coefficients mostly fall between 0.5 and 0.7, and the correlation is medium. The
distribution diagrams of the correlation coefficients of Hg and Cu and the four spectral
indices in Figures A5 and A6 are generally blue, and the sensitive band range is narrow,
which indicates that there are fewer band combinations with a strong correlation.

The wavelength positions where the heavy metal content was significantly correlated
with the spectral index and the maximum correlation coefficient was located were extracted
from Figures A1-A6, as shown in Table 4. It can be seen that the rmax values of the spectral
indices and heavy metal contents are all higher than 0.65, indicating that the correlation is
good. Among them, the DVI has the highest correlation coefficient with each heavy metal.
The band combination of the strongest correlation between the six heavy metals and the
SRVI and NDSI was the same, and the correlation of NDSI was stronger than that of SRVI.
The IDVI has the worst correlation with the different heavy metal elements. As, Pb, and Cd
have the best correlation with DVI and NDSI at the 0.01 significance level; therefore, these
three heavy metals were suitable for the prediction models of elemental content using the
DVI and NDSL

Table 4. Correlation coefficients between best band combinations of spectral index and heavy metals.

Heavy Metal Element Spectral Index Al A2 Correlation Coefficient
DVI 655 480 0.711 **
SRVI 605 603 0.705 *
As NDsI 605 603 0.709 **
IDVI 877 876 0.707 *
DVI 651 451 0.711 **
SRVI 604 603 0.702 *
Pb NDSI 604 603 0.705 **
IDVI 877 876 0.703 *
DVI 646 432 0.711 **
SRVI 604 603 0.706 *
Cd NDSI 604 603 0707 **
IDVI 877 876 0.703 *
Cr DVI 572 528 0.699 *
SRVI 410 403 0.693 *
NDsI 410 403 0.695 *
IDVI 407 401 0.681 *
Hg DVI 914 786 0.687 *
SRVI 561 541 0.683 *
NDSI 561 541 0.684 *
IDVI 918 915 0.678 *
Cu DVI 596 520 0.700 *
SRVI 560 544 0.694 *
NDSI 560 544 0.695 *
IDVI 554 552 0.681 *

Note: * Significant correlation at 0.05 level (double tail); ** significant correlation at 0.01 level (double tail).

3.5. Modeling and Accuracy Verification
3.5.1. Prediction Model of Heavy Metal Elements Based on Single Variable

From the above study, it is clear that the DVI of specific band combinations has a high
and significant correlation with the soil heavy metal elements. Therefore, in this paper, a
regression analysis was conducted with the DVI as the independent variable and the soil
heavy metal element content as the dependent variable to establish a prediction model of
soil heavy metal element content in a univariate linear form.

The prediction model was fitted using training set data based on SPSS data analysis
software. After the model was determined, the coefficient of determination (R2) and
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root mean square error (RMSE) were calculated using the test set to test the stability and
prediction accuracy of the model. The coefficient of determination reflects the proportion
of all the variations of the dependent variable that can be explained by the independent
variable through the regression relationship. Generally speaking, a larger coefficient
of determination indicates that the dependent variable can be better explained by the
independent variable and the model has a better fit. Root mean square deviation is used
to measure the deviation of the observed value from the true value, and the smaller the
value is, the higher the stability of the model is. As shown in Table 5, the prediction model
adapted with the DVI for As, Pb, and Cd content was correlated at a significance level of
0.05, and the order of the coefficient of determination was As > Pb > Cd. Of these, the
DVI prediction model for As works best. The root mean square error (RMSE) was found
to be large after testing, which indicates that the prediction model established using the
difference spectral indices of the content of these three elements and their optimal band
combinations are generally accurate and not stable. The DVI prediction models of Cr,
Hg, and Cu heavy metals have a relatively poor fit, with poor prediction accuracy, and
low stability.

Table 5. Prediction model of soil heavy metal elements.

Heavy Metal Spectral Index Linear Model R? RMSE
As R655-R480 Y = —2772.418X + 59.774 0.612 * 1.129
Pb R651-R451 Y = —6368.798X + 174.448 0.606 * 1.235
Cd R646-R432 Y = —8.610X + 0.435 0