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Abstract: The ecological environment is suffering from great human disturbance. Scientific assess-
ment of landscape ecological risks can provide scientific guidance for land use management. This
study focused on Chaoyang County in China, used ecological risk assessment methods to characterize
the impact of land use/land cover (LUCC) change, and revealed the risk aggregation pattern with the
help of spatial autocorrelation analysis. The results showed that ecological risk was increased from
2000 to 2010 but decreased from 2010 to 2018. The ecological risk of the Daling River and Xiaoling
River basin was at a relatively high level, and low in the northwest and southeast of the study which
covered by forest land. Occupying cultivated land for built-up and large-scale deforestation were
two of the main factors to contribute to the increase of ecological risk. The distribution of High-High
(HH) and Low-Low (LL) risk agglomeration areas was basically the same as risk levels, but the scope
is smaller and more precise. Thus, HH and LH risk agglomeration area should be paid more attention
to prevent the adverse impact of adjacent areas. Our study gave a novel perspective to investigate
the pattern of ecological risk in order for government managers to identify key risk areas.

Keywords: land use/land cover; ecological risk; spatial autocorrelation

1. Introduction

Global warming is unprecedented challenge mankind faces today and posed a serious
threat to the sustainable development of human society. The Intergovernmental Panel on
Climate Change (IPCC) proposed that achieving the 1.5 ◦C temperature control target was
expected to avoid the irreversible negative effects of climate change on human society and
natural ecosystems, and this required the joint efforts of all countries to reach net zero
CO2 emissions by 2050 [1]. China proposed that achieve peak carbon dioxide emissions by
2030 and carbon neutrality by 2060 at the 75th General Assembly of the United Nations.
Several studies had shown that if China were to achieve the goal of achieving carbon
neutrality before 2060, this would relieve global warming projections by around 0.2 to
0.3 ◦C [2]. Land use/land cover change has an effect on the increase of global atmospheric
carbon dioxide content, second to the effects of burning fossil fuels [3]. Among them, the
carbon sink function of forests plays an important role in the entire terrestrial ecosystem,
accounting for about 2/3 of the entire terrestrial ecosystem [4]. Therefore, reasonable land
use is one of the effective ways to alleviate this problem. However, the demand for land has
surged since the 21st century [5], and land use activities have become more intense with
the rapid economic development. Large-scale land development and deforestation have
led to the imbalance of the internal structure and function of the natural ecosystem [6,7],
which inevitably leads to a series of ecological and environmental problems [8], such as soil
erosion [9], land desertification [10], and biodiversity loss. These problems could cause an
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increase in ecological risk [11]. In turn, the increased ecological risk constrains the rational
use of land, which creates an undesirable cycle.

Risk assessment originated in the 1980s, which was initially limited to the field of
human health assessment. In the following years, Environmental Impact Assessment
(EIA) was proposed to investigate the ecological impact of chemical pollutants with tox-
icological analysis methods [12]. In 1983, The risk assessment framework centered on
human health and safety was proposed by the National Research Council (NRC) of the
United States. And then a series of technical guidelines were issued by the U.S. EPA, which
basically formed the scientific system of risk assessment. Since the 1990s, the focus of risk
assessment gradually shifted to ecological risk assessment, and risk factors and receptors
were gradually diversified [13], which symbolizes a relatively complete ecological risk
assessment system initially formed. From the end of the 20th century to the beginning
of the 21st century, researchers paid more attention to the connection between ecological
risk assessment and landscape ecology and then established the abovementioned coupling
relationship. On this basis, landscape ecological risk assessment was formed. Landscape
ecological risk assessment aims to evaluate the possibility and extent of various adverse
disturbances caused by human activities/natural factors changes to the ecosystem [14,15].
At present, two main evaluation methods, i.e., of risk source-sink [16,17] and landscape
pattern [18,19], were used in landscape ecological risk assessment. Landscape ecological
risk evaluation pays more attention to the impact of land use/land cover change based
on landscape pattern which is obviously different previous ecological risk evaluations.
Several studies have shown that there is a close ecological relationship between land use
and ecological risk. And the landscape pattern can quantitatively reflect land use/land
cover change [20]. The risk receptor of this method is the ecosystem itself that carries
the landscape pattern, instead of its elements. And the risk source was the risk effect
caused by the deviation of the existing landscape pattern from the optimal pattern, rather
than a specific and well-defined source of the disturbance. Therefore, the spatiotemporal
heterogeneity of landscape ecological risk and the influence of existing landscape patterns
on risk is the focus of this method [21], and the role of ecological theory in this process
has been paid more attention. However, few studies applied the spatial autocorrelation
analysis to explore the agglomeration regularity of landscape ecological risk. In fact, spatial
autocorrelation analysis can help us to effectively highlight the spatial pattern of ecological
risk distribution, and rapidly identify high-risk areas that need to be focused on in environ-
mental management. Otherwise, the existing research areas of landscape ecological risk
assessment were mainly concentrated in ecologically fragile areas such as industrial and
mining areas [21], river basins [22], nature reserves [23], and large-scale urban areas [14].

The Northeast region of China has experienced large-scale and dramatic land use
changes in a short period [24]. In addition, the area of Northeastern forests is the largest
in China [25], accounting for 1/3 of the country’s forest area. Negative land use such as
deforestation, destroying forests for reclaiming wasteland and disorderly expansion of
construction land not only threaten ecological security, but also caused damage to carbon
sequestration capacity of forests. Chaoyang County as a typical county-level administrative
district of Northeast China was selected in this study. On the basis of the land use data
in 2000, 2010, and 2018, the spatiotemporal distribution of landscape ecological risk was
analyzed. We aimed to scientifically assess the ecological risk of the landscape based on
LUCC and provide experience for county-level administrative units to prevent and resolve
ecological risks which could give some help to achieve the goal of carbon neutrality. The
specific objectives of this study are: (1) Analyze the spatiotemporal characteristics of land
use change in the study area from 2000 to 2018; (2) Establish the landscape ecological risk
Index (ERI) assessment model to explore the regular distribution of landscape ecological
risk; (3) Identify key risk areas through spatial autocorrelation analysis.
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2. Materials and Methods
2.1. Study Area

Chaoyang County, lying between 36◦55′ N and 38◦22′ N and 96◦15′ E and 98◦15′ E, is
located in the west of Liaoning Province, China, with a total area of 425,350 hm2 (Figure 1).
It belongs to the temperate continental monsoon climate zone, with an annual average
temperature of 8.3~8.9 ◦C (http://www.cyx.gov.cn (accessed on 18 July 2021)) [26]. The
terrain of Chaoyang County presents an appearance of high in the northwest and low in
the southeast, with an average altitude of 197 m. The Daling River and Xiaoling River flow
from southwest to northeast. Forest land is the main land-use type, and the area accounts
for more than 40% of the total area, which is far exceeding the national forest coverage. The
population in the study area is dominated by the agricultural population, accounting for
94.2%. Thus, Chaoyang County is a typical agricultural county with the area of cultivated
land accounting for 30%.

Figure 1. Study Area of Chaoyang County.

2.2. Data Collection and Processing

The land use/land cover dataset (30 m resolution, raster, 2000, 2010, 2018) was pro-
vided by Data Center for Resources and Environmental Sciences Chinese Academy of
Science (RESDC) (http://www.resdc.cn (accessed on 18 July 2021)) [27–30] Land-use data
for 2000 and 2010 were interpreted from Landsat TM/ETM remote sensing image data, and
the date for 2018 is from Landsat 8 remote sensing image data. It has been verified by field

http://www.cyx.gov.cn
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investigation points random sampling inspection, interpretation accuracy reached 95.58%;
By random sampling inspection check line, interpretation accuracy reached 95.72% [31].
The database is the most authoritative remote sensing monitoring data product of land
use in China [32]. The land-use types were reclassified as six categories by using ArcGIS
10.2: cultivated land, forest land, grassland, water area, built-up land and unused land
based on land resources, and land use attributes. DEM image of ground elevation (30 m
resolution) was downloaded from Geospatial Date Cloud of the Computer Network In-
formation Center, Chinese Academy of Sciences (http://www.gscloud.cn (accessed on 18
July 2021)) [33]. The slope data was calculated with DEM with the help of ArcGIS 10.2.
Water system data (shapefile) was provided by National Catalogue Service for Geographic
Information (https://www.webmap.cn (accessed on 18 July 2021)) [34]. The landscape
pattern indexes, such as patch number, average patch area, etc., were calculated through
FRAGSTATS which is a software program designed to compute a wide variety of landscape
metrics for categorical map patterns.

2.3. Methods
2.3.1. Land Use Transfer Matrix

The land use transfer matrix was an important method to analyze structural changes
in land use, which could reveal the transformation direction and sources of different land-
use types in a certain period [35]. In addition, this method was also applied in transfer
analysis of ecological risk in this study, and help us determine specific trends in landscape
ecological risk change. The internal connection between land-use change and ecological
risk change can be revealed more accurately. A two-dimensional matrix was widely used,
and its manifestation is as follows:

Sij =


S11 S12 . . . S1n
S21 S22 . . . S2n

...
...

...
...

Sn1 Sn2 . . . Snn

 (i, j = 1, 2, . . . , n) (1)

where Sij is the area of land type i converted to land type j; n is the number of land use
types.

2.3.2. Landscape Ecological Risk Index

• Determine the risk evaluation unit

Landscape ecology suggested that landscape patch size should be 2–5 times the
average patch area [36]. The average patch size in the study area was 0.8218 km2. Based
on the actual situation of the study area and other previous research experiences [37], the
equal interval sampling method (1.5 km × 1.5 km) was used to divide the study area into
2078 ecological risk assessment units. The ERI was calculated in each assessment unit, and
the results were assigned to the central point of the assessment units.

• The ERI assessment model

ERI was constructed by the composition of different land-use types in each evaluation
unit and landscape ecological risk index, which reflects the relationship between landscape
patterns and ecological risk [38]. The formula is as follow [39]:

ERIi = ∑N
i=1

Aki
Ak

Ri (2)

Ri =
√

Ui·Fi (3)

where ERI is the ecological risk index of each ecological risk assessment unit; Aki is the area
of landscape i in the area k; Ak is the area of the kth evaluation unit; Ri is the loss index [40]

http://www.gscloud.cn
https://www.webmap.cn
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of land type i; Ui is the landscape disturbance index of land type i; Fi is the vulnerability
index of land type i; N is the number of landscape types.

a. The landscape disturbance index Ui

The landscape disturbance index was used to measure the ability to resist the distur-
bance of external factors, especially human activity. The formula is as follow:

Ui = aCi + bSi + cDi (4)

where Ci is the landscape fragmentation of landscape i; Si is the landscape isolation of
landscape i; Di is the landscape dominance index of landscape i; a, b, c are the weights of
the three, based on previous studies [41,42] and actual situation of the study area: assign
value a equal to 0.5, b equal to 0.3, c equal to 0.2.

Ci =
ni
Ai

(5)

Si =
1
2

√
ni
A
· A
Ai

(6)

Di =
(Qi + Mi) + 2Li

4
(7)

Among them, ni is the number of patches of landscape type i; Ai is the total area
of landscape type i; A is the total landscape area of the study area; Qi is the ratio of the
landscape i area to the total area of the study area; Mi is the number of patches of landscape
i divided by the number of total patches; Li is the ratio of the number of evaluation units
that the landscape i appearing to the total number of evaluation units.

b. The landscape vulnerability index Fi

The landscape vulnerability index can reflect the sensitivity of different land-use types
to artificial or natural disturbance responses. Judged from previous studies [18,43] and
the situation of the study area, the Delphi Method was adopted to classify the landscape
vulnerability into 6 levels: 6 for unused land, 5 for water body, 4 for cultivated land, 3 for
grassland, 2 for forest land, 1 for built-up land. And the landscape vulnerability index was
obtained after normalization.

2.3.3. Spatial Autocorrelation Analysis

Global spatial autocorrelation can present the agglomeration characteristics of spatial
variables in the total study area [44,45] and was often represented by the Global Moran’s I.
Global Moran’s I range from −1 to 1. Assuming the absolute value is more approaching 1,
it means it has a stronger autocorrelation. In this study, the Global Moran’s I was used to
characterize the relationships between ecological risks in space. The formula is as follows:

Ig =
m

ΣiΣjwij
+

ΣiΣjwij(xi − x)
(
xj − x

)
Σi(xi − x)2 (8)

where xi is the observed value; wij is a spatial weight matrix, which is a symmetric matrix
of m × m, m is the number of rows or columns of the symmetric matrix of m × m. When
the spatial elements are adjacent, wij is equal to 1; when non-adjacent, wij is equal to 0.

Local spatial autocorrelation can effectively reflect the spatial variables’ distribution
state of local heterogeneity [46,47] and was often represented by Local Moran’s I. In this
study, Local Moran’s I was used to reflect the correlation between the landscape ecological
risk of each evaluation unit in the study area. The formula is as follows:

Il =
(xi − x) ·∑m

j=1 wij
(

xj − x
)

∑n
1=1(xi − x)2 (9)
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The meaning of each symbol is the same as that of Formula (8).

3. Results
3.1. Spatiotemporal Characteristics of Land Use/Land Cover Change

The spatial distribution maps of land use/land cover in Chaoyang County from 2000
to 2018 are shown in Figure 2. The area and proportion of each land-use type are shown in
Table 1. From 2000 to 2018, forest land and cultivated land were the dominant land use
types, accounted for more than 40% and 30%, respectively.

Figure 2. Land use/land cover in Chaoyang County in (a) 2000, (b) 2010, (c) 2018.

Table 1. Land use type area and proportion in 2000, 2010 and 2018.

Year Cultivated
Land Forest Land Grassland Water Body Built-Up

Land
Unused

Land

2000
Area (hm2) 165,021.30 207,844.60 29,719.98 7933.23 11,567.34 513.36

Area (%) 39.05 49.18 7.03 1.88 2.74 0.12

2010
Area (hm2) 140,370.10 173,192.80 74,384.82 12,385.08 22,082.49 184.50

Area (%) 33.22 40.98 17.6 2.93 5.23 0.04

2018
Area (hm2) 139,998.40 172,447.60 73,951.47 11,772.99 23,510.16 913.86

Area (%) 33.13 40.81 17.5 2.79 5.56 0.22

In 2000, the forest land was mainly distributed in the northwest and south of the study
area, covering an area of 207,844.6 hm2, which was up to 49.18%. From 2000 to 2018, the
area of forest land continued to decline, a decrease of 8.37%, which was mainly manifested
in the decline of forest areas in the southeast. The awareness of environmental protection
in the region was weak during this period, and indiscriminate logging was serious, and the
logged arable land was either reclaimed as cultivated land or degraded into grassland. The
cultivated land area was 165,021.3 hm2, accounting for 39.05%. It was mainly distributed in
the relatively flat mountain basin of the Daling River and Xiaoling River, with a cumulative
decrease of 5.92% in 18 years. The cultivated land was reduced dispersedly with a wide
range; The grassland distribution was concentrated in 2000, mainly in the east of the study
area and western small-scale, accounted for only 7.03%. In the past 18 years, the area
of grassland has increased significantly, with an increase of up to 150%. The increased
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grassland is mainly distributed in the west and southeast of the study area. The area of
built-up land was only 11,567.34 hm2 in 2000, occupied to 2.74%. Since Chaoyang County is
a typical “county without city” administrative region in China, it shares an administrative
center with Chaoyang City, so most of the built-up lands were rural settlements. The
distribution of built-up land was scattered in the Daling River and Xiaoling River basin,
especially most densely distributed in the Daling River basin in the west of the study area.
In the past 18 years, rural settlements have been expanded outwards on the original basis,
gradually showed a trend of along the river and road connections, but it has not yet formed
a large residential agglomeration phenomenon. The area ratio increased from 2.74% in
2000 to 5.56% in 2018. The area of the water body increased firstly and then decreased,
mainly reflected in the increase or decrease of the pond reservoir along the river and the
shrinkage of the riverbank. Unused land is scattered along the trunk stream of the Daling
River, with an area of only 0.12%. It decreased firstly and then increased in 18 years and
was the land use type with the largest change during the study period. The change of land
use was more dramatic in the decade during 2000–2010 and slowed down in the eight
years during 2010–2018.

The land-use transfer matrix from 2000 to 2010 and 2010 to 2018 are shown in Tables 2
and 3, respectively. And the expression of the spatiotemporal transfer of land use types
is shown in Figure 3. The land use transfer in 2000–2010 was large-scale and a large area
of concentrated transfer occurred. In this period, the most significant change was the
conversion of forest land to grassland, and the conversion area reached 46,516.41 hm2,
mainly occurred in the southeast. The conversion of forest land to cultivated land Scattered
occurred in the entire study area, which was manifested by the expansion of the original
cultivated land edge, and the conversion area reached 26,569.35 hm2. Therefore, the largest
area transferred out land use type was forest land. The land-use type with the second-
largest transfer area was cultivated land, and the main transfer target was forest land,
grassland, and other ecological land. 24,934.05 hm2 and 18,014.49 hm2 of cultivated land
were converted to forest land and grassland, respectively. It mainly occurred in the area
bordered by cultivated land and forest land in the Daling River and Xiaoling River basin.
Built-up land was mainly expanded by occupying cultivated land, with 10,695.15 hm2 of
cultivated land converted to built-up land. The conversion of cultivated land to built-up
land mainly occurred in densely constructed areas in the Daling River and Xiaoling River
basin. Another noteworthy phenomenon was that a large area of grassland in the eastern
was converted to forest land. Large-scale afforestation, deforestation, and land reclamation
co-existed during this period. From 2010 to 2018, different degrees of transfer among
various types of land still existed in the entire study area, but the intensity of transfer has
been greatly weakened. This reflected the small-scale adjustment of the land use structure
in the region.

Table 2. Land use transfer matrix from 2000 to 2010 (hm2).

Land Use
Types

Area of Land in 2010/hm2

Cultivated
Land Forest Land Grassland Water Body Built-Up

Land
Unused

Land

Area of land
in 2000/hm2

cultivated land 106,398.7 24,934.05 18,014.49 4861.53 10,695.15 117.36
forest land 26,569.35 129,520.7 46,516.41 1282.05 3895.47 60.57
grassland 3422.61 16,908.93 8675.46 168.03 540.54 4.41

water body 1050.57 701.37 311.67 5782.14 86.49 0.99
built-up land 2514.42 1117.98 863.64 205.74 6864.39 1.17
unused land 414.45 9.72 3.15 85.59 0.45 0
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Table 3. Land use transfer matrix from 2010 to 2018 (hm2).

Land Use
Types

Area of Land in 2010/hm2

Cultivated
Land Forest Land Grassland Water Body Built-Up

Land
Unused

Land

Area of land
in 2010/hm2

cultivated land 137,318.2 935.55 710.64 219.78 1032.21 153.63
forest land 1113.39 170,904.8 277.65 106.38 724.14 61.83
grassland 673.65 366.03 72,812.25 32.58 425.52 74.43

water body 335.52 112.41 41.13 11,403.27 63.18 429.39
built-up land 550.62 127.44 109.08 10.89 21,265.11 19.26
unused land 7.02 1.35 0.72 0.09 0 175.32

Figure 3. Land use transfer in Chaoyang County in (a) 2000–2010, (b) 2010–2018.

3.2. Spatiotemporal Changes of Landscape Ecological Risk Analysis

In Chaoyang Country, the landscape ecological risk was divided into five levels with
the help of the natural break point method [48], as shown in Table 4.

Table 4. Ecological risk classification.

Risk Level Lowest Risk Lower Risk Medium Risk Higher Risk Highest Risk

ERI <0.1267 0.1267–0.1367 0.1367–0.1464 0.1464–0.1642 >0.1642

The ecological risks in the study areas were distributed at interval zonal distribution
from northwest to southeast (Figure 4). Lowest risk areas and lower risk areas were mainly
distributed in the northwest, southeast and middle of the area. The common feature of
the areas was that they were mostly covered by forests. Due to the high terrain, it was
less affected by human activities, and its ecosystem was in a higher stable state with a
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relatively high level of biodiversity. Higher risk areas and highest risk areas were mainly
distributed in the Daling River and Xiaoling River basin. These areas were suitable for
human production and living due to their natural conditions. Cultivated land was the
dominant landscape of the area, and built-up land was densely distributed among them.
The landscape fragmentation degree was at a relatively high level caused by human-
induced. Medium risk areas were mainly distributed in the transition zone between higher
risk areas and lower risk areas.

Figure 4. Landscape ecological risk level distribution of Chaoyang County in (a) 2000, (b) 2010, (c) 2018.

From the perspective of temporal changes in landscape ecological risk, the ecological
risk increased from 2000 to 2010 and decreased from 2010 to 2018 (Figure 5). medium
risk and lower risk areas accounted for the largest proportion in the study area, up to
60%. Higher risk and lowest risk areas were followed, and the highest risk areas were the
least. From 2000 to 2010, The lower and lowest risk areas decreased by 8.49% and 13.5%,
respectively. And the higher risk areas rapidly increased by 14.64%. The combined effect
was an increase in the ERI in this period. From 2010 to 2018, the higher risk areas decreased
by 15.76%. The proportion of lower and lowest risk areas increased by 16.92%.

Figure 5. Proportion of different landscape ecological risk area of Chaoyang County.

From the perspective of spatial change in landscape ecological risk, the landscape
ecological risk levels increased significantly before 2010 but declined after 2010 (Figure 6).
From 2000 to 2010, the main change of risk levels was increased by one or two levels.
The most obvious change was distributed in the southwest of the study area due to the
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deforestation of forest land into grassland. And the southwest of the study also had a
significant level increase where sporadically increased an amount of built-up land and
aggravated landscape fragmentation. The ecological risk level in the northern part of
the study area has also increased, mainly due to the degradation of forest land and the
expansion of built-up land. The ecological environment is showing a deteriorating trend in
this period. But from 2010 to 2018, this trend was reversed. The main change of risk levels
is decreased by one level in most of the total area. Residents were gradually conscious
of the significance of environment conservation, and the land use types conversion was
weakened. Simultaneously, the landscape fragmentation was greatly reduced.

Figure 6. Changes in landscape ecological risk levels in Chaoyang County in (a) 2000–2010, (b) 2010–2018.

3.3. Spatial Autocorrelation Analysis

Moran’s I was used to describe global spatial autocorrelation of the ecological risk in
the study area. The values of Moran’s I index in 2000, 2010, and 2018 were 0.565, 0.526,
and 0.575, respectively, indicating that the landscape ecological risks had a significant
agglomeration effect in the 18 years. That is to say, areas in high risks values have high risk
values in surrounding areas, areas in low risks values have low risk values in surrounding
areas. The Moran’s I revealed a declining trend from 2000 to 2010 and an increasing trend
from 2010 to 2018. This implied that the spatial aggregation of ecological risk was gradually
weakened from 2000 to 2010 and enhanced slightly from 2010 to 2018.

The LISA cluster map of the landscape ecological risk index was used to express the
local spatial autocorrelation (Figure 7). Four types of significant autocorrelations “High-
High” (HH), “Low-Low” (LL), “Low-High” (LH), and “High-Low” (HL) have appeared in
the study area. The distribution of High-High (HH) and Low-Low (LL) risk agglomeration
areas was basically the same as risk levels, but the scope is smaller and more precise. The
HH risk agglomeration risk areas accounted for the total number of samples in the total
study area 17.6%, 16.8%, 17.3% in 2000, 2010, 2018, respectively. The result showed a trend
of decreasing first and then increasing. And the HH risk agglomeration areas are primarily
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distributed along the Daling River and the Xiaoling River basin. The ecological environment
of this area needs more attention, and without related risk management measures, it could
be worse. The LL region accounted for 15.2%, 16.4%, 17.4%, respectively, which showed
an increasing trend, and mainly intensively located in the forests of the Southwest and
Northern. It is noteworthy that LH risk agglomeration risk areas appeared southwest
and southeast of the study area. There are mutual influences between adjacent ecological
risk areas. Thus, the possibility of a sudden increase in ecological risk in this area should
be noticed. HL risk agglomeration risk area appeared around HH risk agglomeration of
the Daling River basin, which a send us a good signal: to properly guide the ecological
environment may improve in this area.

Figure 7. Local autocorrelation index of landscape ecological risk in Chaoyang County in (a) 2000, (b) 2010, (c) 2018.

4. Discussion
4.1. Effects of Land Use Changes on Ecological Risk

The policy is a factor that affects changes in ecological risks. The “Grain for Green”
project in China is a major measure to use land resources rationally and improve the
ecological environment [49]. Especially, it aimed to prevent soil erosion in the high-slope
cultivated land region. Grain for green project was fully launched in 2002 [50,51]. In
Figure 8, the transfer of cultivated land to forest land and grassland in Chaoyang County
was mainly concentrated in areas with a slope of 6–25◦ near the Daling River and Xiaoling
River which strengthen the stability of ecosystems to a certain extent. However, The
“Grain for Green” intensified the unbalance between food production and ecological
protection [52]. Chaoyang County is a typical agricultural county population-based which
the agricultural population accounts for 94.1% of the total population. From 2000 to
2010, a large number of forest land near residential areas was felled into cultivated land,
especially in the Xiaoling river basin. These conversions made the landscape fragmentation
increased [53], and the landscape pattern more complex. Therefore, the ecological risk
of the landscape in the Daling River and Xiaoling River basin increased, and the higher
risk areas of the Xiaoling River basin have expanded significantly. From 2010 to 2018, the
awareness of ecological protection increased, and government control was stricter, the
number of cultivated land and forest land tended to stabilize.
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Figure 8. Implementation of the “Grain for Green” project in study area (a) 2000–2010 (b) 2010–2018.

The expansion of rural settlements is an incentive for changes in ecological risks.
According to statistics, the population of Chaoyang County was 627,477, 566,350, and
552,489 in 2000, 2010, and 2018, respectively, which showed a trend of decreasing. In
theory, the area of rural settlements increases with the increase in population, and vice
versa. In fact, the area of rural settlements in most provinces in China showed an increasing
trend between 2002 to 2010 [54]. From 2000 to 2010, the area of rural settlements land in
Chaoyang increased from 11,567.34 hm2 to 22,082.49 hm2. The main reason for this factor
is that the rapid industrialization process provided a large number of non-agricultural
employment opportunities, which increased the income level of the agricultural population
and enabled them to improve their living standards, increase housing area, and build
new homesteads. The expansion of settlements during this period lacked macro guidance
from policies, so it showed a disorderly expansion. And the landscape fragmentation
and isolation landscape index of built-up land increased [55,56], thus the loss index was
increased [57]. From 2010 to 2018, driven by the tide of urbanization, the expansion of rural
homesteads weakened.

Deforestation can also lead to increased landscape ecological risk. The forest land
is rich in species, and the ecosystem structure is relatively stable [58]. So, the landscape
ecological risk of the forest land is low. Chaoyang County lacked a unified management
organization and policy system for land use in the early stage. And the forest land in
the southeast of the area suffered huge destruction, either reclaimed as cultivated land or
degraded to grassland. The landscape ecological risk increased in this period.

4.2. Ecological Risk Management Suggestions

On the basis of the results, and in view of the need for ecological risk management
and sustainable economic and social development in Chaoyang County. The following
suggestions are put forward. On the one hand, as the main production and living space,
the ecological risk of the Daling River and Xiaoling River Basin needs to be focused on.
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The urban expansion will continue for a long time. Nevertheless, it doesn’t mean that
cultivated land can be occupied without limits. Cultivated land protection and agricultural
intensification must be taken seriously. Moreover, the government should increase the
utilization intensity and stop the unreasonable expansion of built-up. On the other hand,
the policy of forest land protection should be implemented continuously to protect existing
forest land in the northwest and southwest from damage. And for the damaged forest land,
corresponding biological measures or engineering measures should be taken to prevent
further degradation and gradually restore the damaged vegetation. It is worth noting
that the restoration of forest land is a gradual process, selecting reasonable tree species
for sowing according to local conditions. The government should mainly use government
finance to guide social capital to invest in this process.

4.3. The Innovations and Limitations

In previous studies, landscape ecological risk assessments were mostly based on
landscape pattern indexes, focusing on the analysis of the impact of indicators such as
fragmentation and separation on landscape ecological risks [37,59,60]. However, we ana-
lyzed from the perspective of land use/land cover change into the indicator system which
could highlight the influence of human-induced factors. Several studies have shown that
most land-use changes are driven by humans [61]. However, the impact of specific pres-
sure processes was neglected. In future research, we should explore how to construct an
evaluation method for comprehensive land use landscape patterns and ecological pressure
index systems. Incorporate indicators such as pesticide and fertilizer input, water pollution
monitoring data, and soil quality into the evaluation system.

Spatial autocorrelation analysis was applied to explore the spatial epidemiological
characteristics of tuberculosis and identified and visualized the main clustering areas of the
disease (predicting areas with a high incidence of diseases) [62]. At present, we introduced
this method into ecological risk assessment. And we found that the ecological risks in
Chaoyang County also had certain agglomeration characteristics in the spatial distribution.
Since the manpower and material resources that the government can invest in is limited,
spatial autocorrelation analysis can guide us to focus on the HH risk agglomeration areas.
And alerted us to the sudden deterioration of the ecological environment in the LH risk
agglomeration areas. Furthermore, we can better identify the risk pattern from another
angle. On the whole, a large local risk level difference may lead to the expansion of the
large risk range, so we identify different areas and give different strategies.

5. Conclusions

In this study, we revealed the influence of land use/land cover change on distribution
and pattern of landscape ecological risk in Chaoyang County. 2010 is an inflection point
of the three-year ecological risk change in the study area. The ecological risks showed
increased and decreased trends in the period of 2000 to 2010 and 2010 to 2018, respectively.
In general, the ecological risk of the river basin presented a “high level”, i.e., poor status,
with development-driven built-up land sprawl and part of deforestation. It could be
concluded that occupying cultivated land for built-up and large-scale deforestation were
two of the main factors contributing to the increase of ecological risk from the perspective
of the land-use change. Anthropogenic activities (characterized by stability of land use
structure) had less impact on the area of lower and lowest ecological risk which mainly
covered by extensive forest land with high terrain. In addition, HH (located in the Daling
River and Xiaoling River basin) and LH (located in southwest and southeast of the study
area) risk agglomeration should be paid more attention to prevent environment degradation
due to interactions with neighboring risk areas.

Our study investigated the effects of land-use change on ecological risk and also gave a
novel perspective to investigate the pattern of ecological risk. Spatial autocorrelation could
deepen the research on ecological risk assessment, identify key risk areas and provide
support for government departments to adopt different policy measures according to
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different ecological risk patterns. Our study could give some advice to management of
ecological risk for policymakers.
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