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Abstract: The frequency and severity of spruce bark beetle outbreaks are increasing in boreal forests
leading to widespread tree mortality and fuel conditions promoting extreme wildfire. Detection of
beetle infestation is a forest health monitoring (FHM) priority but is hampered by the challenges
of detecting early stage (“green”) attack from the air. There is indication that green stage might be
detected from vertical gradients of spectral data or from shortwave infrared information distributed
within a single crown. To evaluate the efficacy of discriminating “non-infested”, “green”, and “dead”
health statuses at the landscape scale in Alaska, USA, this study conducted spectral and structural
fusion of data from: (1) Unoccupied aerial vehicle (UAV) multispectral (6 cm) + structure from motion
point clouds (~700 pts m−2); and (2) Goddard Lidar Hyperspectral Thermal (G-LiHT) hyperspectral
(400 to 1000 nm, 0.5 m) + SWIR-band lidar (~32 pts m−2). We achieved 78% accuracy for all three
health statuses using spectral + structural fusion from either UAV or G-LiHT and 97% accuracy for
non-infested/dead using G-LiHT. We confirm that UAV 3D spectral (e.g., greenness above versus
below median height in crown) and lidar apparent reflectance metrics (e.g., mean reflectance at 99th
percentile height in crown), are of high value, perhaps capturing the vertical gradient of needle
degradation. In most classification exercises, UAV accuracy was lower than G-LiHT indicating that
collecting ultra-high spatial resolution data might be less important than high spectral resolution
information. While the value of passive optical spectral information was largely confined to the
discrimination of non-infested versus dead crowns, G-LiHT hyperspectral band selection (~400, 675,
755, and 940 nm) could inform future FHM mission planning regarding optimal wavelengths for this
task. Interestingly, the selected regions mostly did not align with the band designations for our UAV
multispectral data but do correspond to, e.g., Sentinel-2 red edge bands, suggesting a path forward
for moderate scale bark beetle detection when paired with suitable structural data.

Keywords: forest health monitoring; data fusion; hyperspectral; UAV; lidar; spruce bark beetle;
airborne remote sensing; G-LiHT

1. Introduction

The spruce beetle (Dendroctonus rufipennis (Kirby)) is endemic to the natural range of
spruce trees (Picea spp.) throughout the western United States and Canada. The beetles are
generally confined to colonizing windthrown spruce trees unless environmental conditions
and stand age lead to increased beetle populations or stressed forest stands, allowing for
infestation of live spruce [1]. Outbreaks are a natural component of spruce systems, typi-
cally occurring after one or more years of above average warm and dry conditions, though
they are expected to increase in frequency and severity with climate change [2]. Increased
temperatures and drought support longer breeding seasons and weaken potential hosts,
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fueling a cycle of surging beetle populations and widespread mortality of spruce [2]. In the
Alaskan boreal forest (the site of this study), there is currently a large beetle outbreak under
way, and has impacted 1.2 million acres in Southcentral Alaska since 2016 [3]. However,
extensive monitoring is challenging in this vast landscape with limited road access, thus
highlighting the need for airborne and satellite-based approaches to quantifying beetle
damage.

Early detection of outbreaks will be critical if forest managers are to minimize threats
to economic and natural resources, including forestry timber stands, protected watersheds,
sensitive ecosystems, and recreation areas [1,4,5]. To date, visual aerial survey has been
most accurate in detecting the precise location and extent of infestations, but only after
visible changes in foliage color [6]. Unfortunately, aerial visual detection of initial beetle
colonization is typically not possible because spruce foliage can appear green for multiple
seasons after the initial spruce beetle attack, even if imperceptible physiological changes
occur as soon as a few weeks post-infestation [7,8]. By the time an infestation is observable
through foliage changes from green to yellow and red, egg-bearing adults have spread to
trees up to two or three kilometers away [1,9].

Physiological response has been shown to manifest in multiple regions of the elec-
tromagnetic radiation (EMR) spectrum [6,7], opening the door to automated detection of
infestation through remote monitoring. Satellite platforms provide the optimal scale for
regional infestation assessments, but previous research has demonstrated mixed success
in their ability to separate health statuses. Setinel-2 (10 m visible-near infrared (VNIR)
and 20 m red-edge and SWIR) imagery detected statistically significant differences in
mean reflectance between healthy and green pixels in NIR (842 nm), SWIR1 (1610 nm),
and SWIR2 (2190 nm) bands, but only achieved 67% overall accuracy (OA) in separating
healthy and recently infested pixels [7]. Higher spatial resolution RapidEye (6.5 m) and
SPOT5 (10 m) images were used to assess bark-beetle induced spectral changes within a
spring-summer time series [10]. In this case, RapidEye red-edge (690–730 nm) and SPOT5
SWIR (1580–1750 nm) maximized separability between healthy and green pixels for the
full study duration. Differences between health statuses were more evident for RapidEye
versus SPOT5, suggesting the utility of higher spatial resolution data for a physiological
process that can vary at the crown scale.

Unoccupied Aerial Vehicles (UAV) [11] provide ultra-high resolution imagery facilitat-
ing individual crown assessment and informing more efficient implementation of costly
management actions like culling or spraying repellent [2]. Many previous UAV-based
forest health monitoring (FHM) studies, including temporal change surveys, have been
conducted using multispectral and hyperspectral sensors [12]. Red-green-blue (RGB) and
NIR (760 nm) UAV-mounted cameras observed sub-annual changes in newly infested
Norway spruce and found the Greenness Index (red:green) to be increasingly effective with
time since infestation 78% accuracy after initial physiological symptoms were visible, and
96% accuracy after full decline [5].

The documented successes of UAV platforms working at the scale of the individual
crown make them desirable for targeted FHM efforts, but a UAV-based methodology is
not viable at regional extents due to technical and regulatory restrictions on unoccupied
flight [13]. Piloted aircraft, by contrast, can also image at sub-decimeter resolution and
provide landscape- to regional-scale data coverage for forest inventory (Alonzo et al., 2020).
Niemann et al. [14] used aircraft-based hyperspectral VNIR (400–2500 nm) data to success-
fully detect (Overall Accuracy [OA] = 73%) crown-level change in girdled versus healthy
plantation Lodgepole pines (Pinus contorta). Näsi et al. [15] similarly used hyperspectral
VNIR data to classify healthy, late-infestation, and yellowing, and dead Norway spruce
crowns (0.5 m; OA = 73%) at a level comparable to UAV imagery (10 cm, OA = 81%). Like
past research using other platforms, aircraft studies found the green (551 nm), red (626
and 680 nm), red-edge (726, 773, 794 nm), and SWIR (1200 nm) spectral regions to be most
useful for health status monitoring.
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Spectrally based approaches dominate past research and can be used to separate
healthy from late-stage infested trees. Classification that includes newly infested or green
status trees in a natural forest setting remains challenging [15–17]. Research on bark beetle
infested trees has demonstrated that older needles within the upper canopy and away
from branch ends experience discoloration first, possibly concurrent to development of
new needles at branch tips [1,9]. This location-specific discoloration and the presence of
mixed-age needles suggest the need for remote sensing tools capable of capturing spectral
information along a vertical gradient through the canopy.

UAV structure-from-motion (SfM) may support detection of location-specific dis-
coloration through the inherent link of spectral and structural data. Past efforts have
demonstrated the utility of SfM for tree crown segmentation, biophysical surveys, biomass
and health assessments, and species identification [18–20]. While several SfM-based health
assessments involving the detection of beetle infestation utilized combinations of spectral
and structural data for crown segmentation [5,15,17,21], very few have attempted health
status classification using this fused data [19]. Although the ability of SfM to collect data
from inside tree canopies is largely minimized since SfM is an imagery-based approach,
Alonzo et al. [13] found high correlation among SfM and lidar-derived sub-canopy shrub
structural metrics, indicating that some information from the crown interior is available.

Fusion of airborne imagery and lidar provides an alternative method of spectral and
structural fusion at the regional scale. Lidar has consistently proven a reliable tool for forest
inventory with the capacity to detect information inside or below the canopy [22,23] and
the ability to generate a digital terrain model for crown height reference [24,25]. The utility
of using intensity (or apparent reflectance) of the lidar return energy to detect canopy water
content and beetle-induced green status has been suggested, especially if its wavelength
lies within the SWIR range [6,8,14,20]. Still, the point cloud density of airborne scanning
lidar is relatively sparse compared to UAV SfM and does not include color information,
potentially limiting utility in detecting change within the crown [1,9]. Marginal success,
albeit in a different species (I. typographus; OA = 66%), by [26] in classifying no, low, and
moderate infestation Norway spruce using terrestrial laser scanning (TLS) intensity metrics
(dual beam 905 and 1550 nm) illustrates the limitation of lidar on its own. While structural
data has potential to provide location-specific details within the crown, inclusion of spectral
data likely remains important.

To date, there has been limited research relating to the detection of white spruce
health status using fusion of spectral and structural features from either UAV or piloted
aircraft. Therefore, the goal of this study is to demonstrate a method for classifying white
spruce health statuses (“non-infested”, “green”—green-stage infested, or “dead”—red
or gray-stage infested) at the individual tree crown scale using high-resolution multi- or
hyperspectral data fused with structural information. Within our Alaskan boreal forest
study site, we: (1) used fusion of UAV multispectral imagery and SfM to classify crown
health status; (2) fused hyperspectral imagery and SWIR apparent reflectance lidar returns
from NASA’s Goddard Lidar Hyperspectral (G-LiHT) platform to classify health status;
(3) reported the optimal wavelengths and structural metrics for detecting crown-level
health status; and (4) compared UAV and G-LiHT results to understand the tradeoffs
between high spatial (UAV) and high spectral (G-LiHT) resolution image data; high point
cloud density of SfM and SWIR apparent reflectance lidar data; and canopy penetrating
lidar versus SfM.

2. Materials and Methods
2.1. Study Area

The study area comprises three separate, but qualitatively similar, road-adjacent
sites located within Denali State Park, roughly 250 km north of Anchorage, Alaska, on
Highway 3 (Figure 1): Ermine Hill Trailhead (Ermine, 62.827◦, −149.903◦), Upper Trouble-
some Creek Trailhead (Troublesome, 62.630◦, −150.226◦), and K’esugi Ken Campground
(K’esugi, 62.602◦, −150.230◦).
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Figure 1. (a) Study area in Southcentral Alaska. (b) Zoom showing Ermine, Troublesome, and K’esugi
study sites. (c) Data example: An RGB-colored point cloud from SfM (2 cm resolution) at Ermine.

2.2. Field Data Acquisition

A total of 152 white spruce crowns were catalogued across five sites in the summer
of 2018. For logistical reasons, only three sites were flown by UAV, resulting in 87 crowns
available for this analysis (Table 1). Each tree was marked as “non-infested”, “green”, or
“dead”. Trees that were “non-infested” had no visible evidence of infestation and had green
needles. “Green” trees were identified by the presence of boring dust at bark crevices and
at the base of the tree, pitch tubes or resin exudation from the bole, and needles that were
still green. In cases where it was unclear if a tree had been successfully infested, some bark
was removed to search for newly constructed egg galleries in the phloem. Trees that were
“dead” had clear signs of previous spruce beetle infestation, and brown, gray, or missing
needles. The GPS location of each tree was located to a post-processing precision of <0.5 m
using either a Trimble Geo7x (Trimble, Sunnyvale, CA, USA) or a Javad Triumph-2 (Javad
GNSS, Inc., San Jose, CA, USA) GPS unit. Troublesome and K’esugi sites had a balanced
number of crowns across all health statuses, while Ermine had no dead crowns and a high
proportion of green and non-infested crowns.
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Table 1. Crown and study site statistics.

Site (Area) Crowns Non-
Infested Green Dead Data Acquisition Solar Zenith

Angle Weather

Troublesome (80,900 m2) 31 11 9 11 20 July 2018, 18:00 57.5◦ Clear skies
Ermine (103,900 m2) 36 4 32 — 22 July 2018, 12:00 42.2◦ Clear skies
K’esugi (104,200 m2) 20 6 7 7 17 July 2018, 14:00 47.4◦ Variable clouds

Totals 87 21 48 18

2.3. UAV Data Collection and Processing

UAV data were collected within a five-day window between 17 and 22 July 2018 with
some variability in illumination conditions (Table 1). We acquired imagery at each site
using two UAVs: one to capture structural and RGB information at the highest possible
resolution, and the other to gather five-band multispectral data for generating common
remote sensing vegetation indices. Fine-resolution RGB imagery was acquired using the
DJI Phantom 4 Pro (P4P; DJI, Shenzhen, China), a consumer-grade quadcopter with a
20 Megapixel camera. Multispectral imagery was acquired using the MicaSense RedEdge
(MicaSense, Seattle, WA, USA) flown aboard the DJI Matrice 210. The RedEdge samples in
the visible and near infrared wavelengths, collecting five bands with center wavelengths
of 475, 560, 668, 717, and 840 nm (hereafter referred to as blue, green, red, red-edge, and
NIR). The RedEdge sensor is paired with an upward looking irradiance sensor to correct
radiance imagery to at-sensor reflectance.

To generate data acquisition grids and flight parameters we used the iOS app
Pix4DCapture (Pix4D, Lausanne, Switzerland). We established flight boxes based on
the bounding boxes of the field data collection at each site, with box sizes ranging between
8.1 and 10.4 ha. In order to establish convergent view geometry and maximize 3D infor-
mation content, the P4P was flown in a double, perpendicular serpentine grid pattern
at nominal 55 m AGL with camera angle 20◦ off nadir and 90% image overlap [18,27].
Following [18], we deployed five bright colored ground targets throughout the plot in areas
with full sky view. Each target was located to a post-processing precision of 0.1 m using
the GPS receivers referenced in Section 2.2. Precision of ground targets is higher than that
of tree stems because of purposeful selection of sites with high sky view.

For each acquisition, raw image data (6–10 cm multispectral and 2–3 cm RGB) were
processed to a sparse point cloud using SfM followed by densification, leveraging multi-
view stereo algorithms in the Pix4D software. We followed standard Pix4D processing
procedures, including: the computation of tie points among overlapping images and bundle
block adjustment; manual alignment of the ground targets to differentially corrected ground
control points followed by re-optimization of computed camera positions and internal
camera parameters; and generation of dense point cloud using default image scale and
point density options (Pix4D, 2017). On the same campaign but at a different, more complex
site, the median absolute 3D positional error of our SfM point clouds was 0.25 m, based on
leave-one-out cross-validation of ground control points (Alonzo et al., 2020). Final point
cloud densities averaged ~700 points m-2 with some variability depending on site-specific
vegetation structure, ground sample distance, availability of viable tie points, and other
acquisition parameters. Using R software (R Core Team, 2020), points were translated to
heights via subtraction of the 1 m G-LiHT lidar-based DTM [13,18,28] and points with a
height less than 2 m were removed to avoid confusion with understory vegetation.

2.4. G-LiHT Data Collection and Processing

The Goddard Lidar Hyperspectral Thermal (G-LiHT) is equipped to collect high
pulse density, small-footprint lidar data, VNIR hyperspectral imagery, broadband thermal
imagery, and high resolution (RGB) aerial photos (https://gliht.gsfc.nasa.gov; [29] accessed
on 23 August 2021). Precision GPS and inertial measurements and pre- and post-campaign

https://gliht.gsfc.nasa.gov
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boresight alignment ensures lidar returns have a known horizontal and vertical positional
accuracy of 0.1 and 0.2 m, respectively.

Here, we sought to understand the spectral and structural manifestations of bark
beetle infestation using G-LiHT VNIR hyperspectral data and lidar. G-LiHT imaging
spectroscopy data were collected between 400 and 1000 nm using the Headwall Photonics
Micro-Hyperspec E-series sensor. This spectral range is initially sampled at 1.6 nm spacing
and then binned to 5 nm to improve signal to noise. The Micro-Hyperspec sensor is a
line-scanner (pushbroom) with 1600 across-track pixels leading to a ground instantaneous
field of view of ~0.5 m at the nominal flight altitude of 335 m. G-LiHT collects structural
information using two, 1550 nm Riegl VQ-480i (Horn, Austria) scanning lidars with a
300 kHz pulse repetition frequency. At G-LiHT’s typical flight altitude of 335 m, the pulse
footprint diameter is approximately 0.1 m. G-LiHT imagery and lidar were collected on
3 July 2018. Final point cloud density averaged 32 returns m−2 in forested areas.

The hyperspectral and lidar data were processed to yield surface reflectance imagery
and a height-normalized point cloud, respectively. At-sensor hyperspectral reflectance
was computed based on observed downwelling irradiance and atmospherically corrected
to surface reflectance using the FLAASH module in ENVI (L3 Harris Geospatial). Image
orthorectification and alignment with the lidar data employs telemetry from the GPS/INS
system, coincident lidar generated surface topography, and coefficients from boresight
alignment procedures. A DTM was generated following standard G-LiHT data process-
ing protocols [29] and yielded a median absolute deviation compared to GPS validation
points—collected during the same field campaign but not at the same site—of 0.32 m [13].
Point normalization and filtering followed the same procedure as in Section 2.3 for SfM.
Lidar apparent reflectance (i.e., instrument calibrated and range-corrected laser energy
reflectance estimate) intensity (“intensity” and “apparent reflectance” used interchange-
ably) was also used in this study, since it has been previously shown that discrimination of
green stage and non-infested trees is improved using shortwave infrared (e.g., 1500 nm)
information [6]. In our study, lidar apparent reflectance intensity data are used similarly to
uncalibrated intensity measurements that have previously proven useful for other forest
research [13,30,31].

2.5. Crown Delineation and Feature Extraction

Two sets of crowns were manually digitized in ArcGIS (ESRI, Redlands, CA, USA) by
overlaying GPS crown locations onto the UAV digital surface model (DSM) and G-LiHT
color-infrared (CIR) image (Figure 2). The off-nadir view geometry of G-LiHT imagery
necessitated a separate crown set to account for relief and height displacement. During
digitization, each crown was labelled with its true health class to be used for classification
model calibration and validation.

2.5.1. Extraction of Pixel-Based Spectral Information from UAV and G-LiHT Imagery

The digitized crowns were used to extract separate sets of UAV and G-LiHT spectral
and structural features from UAV imagery, G-LiHT imagery, UAV SfM point clouds, and
lidar point clouds (Figure 2). All data extraction was completed in R. Multispectral pixel-
based feature vectors were extracted from each UAV crown for the five VNIR bands,
retaining crown-level health status and unique ID. At a nominal resolution of 6 cm, the
number of pixels per crown ranged 76 to 1449. To represent crown-scale spectral variability
while reducing the impact of shadows and exposed branches, we selected only the brightest
20% of pixels per crown based on a NIR reflectance threshold [15]. G-LiHT Hyperspectral
data were extracted following similar procedures, but given coarser resolution, requiring a
>80% of a pixel to be within the crown. At a nominal resolution of 0.5 m, the number of
pixels per crown ranged between 2 and 42.



Forests 2021, 12, 1145 7 of 19Forests 2021, 12, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 2. Workflow for data processing, crown delineation, extraction of image and point cloud data, and feature selection 
and classification. White boxes are processes and gray boxes are data products. 

2.5.1. Extraction of Pixel-Based Spectral Information from UAV and G-LiHT Imagery 
The digitized crowns were used to extract separate sets of UAV and G-LiHT spectral 

and structural features from UAV imagery, G-LiHT imagery, UAV SfM point clouds, and 
lidar point clouds (Figure 2). All data extraction was completed in R. Multispectral pixel-
based feature vectors were extracted from each UAV crown for the five VNIR bands, 
retaining crown-level health status and unique ID. At a nominal resolution of 6 cm, the 
number of pixels per crown ranged 76 to 1449. To represent crown-scale spectral 
variability while reducing the impact of shadows and exposed branches, we selected only 
the brightest 20% of pixels per crown based on a NIR reflectance threshold [15]. G-LiHT 
Hyperspectral data were extracted following similar procedures, but given coarser 
resolution, requiring a >80% of a pixel to be within the crown. At a nominal resolution of 
0.5 m, the number of pixels per crown ranged between 2 and 42. 

2.5.2. Extraction of Structural Metrics from UAV SfM 
Points associated with each crown were extracted from the SfM point cloud, resulting 

in each point being assigned the appropriate unique ID and health status (Figure 3). We 
created 86 SfM-based structural features that can be roughly grouped as relating to color 
brightness, crown heights, and vertical distribution of points in a crown (Table 2; [18]). 
Points were randomly sampled to a maximum of 1000 points per crown to improve 
computational performance, after confirming no negative ramifications on classification 
accuracy. 

Figure 2. Workflow for data processing, crown delineation, extraction of image and point cloud data, and feature selection
and classification. White boxes are processes and gray boxes are data products.

2.5.2. Extraction of Structural Metrics from UAV SfM

Points associated with each crown were extracted from the SfM point cloud, resulting
in each point being assigned the appropriate unique ID and health status (Figure 3). We
created 86 SfM-based structural features that can be roughly grouped as relating to color
brightness, crown heights, and vertical distribution of points in a crown (Table 2; [18]).
Points were randomly sampled to a maximum of 1000 points per crown to improve
computational performance, after confirming no negative ramifications on classification
accuracy.

2.5.3. Extraction of Structural Metrics from Lidar Data

The lidar points for each crown were extracted in the same manner as the UAV SfM
(Figure 3). We created 79 lidar-based structural features that can be roughly grouped
as relating to apparent lidar reflectance and vertical distribution of points in crown
(Table 3; [13]).

2.6. Random Forest

Random forest (RF) classifiers in hold-out cross-validation mode were applied sep-
arately to UAV and G-LiHT spectral and structural data (Figure 2) to yield crown-level
classification, using the randomForest package in R (version 1.2.5033) (Liaw, 2002). Each
classifier produced a confusion matrix, overall classification accuracy, and Kappa coefficient
by tabulating the health status having the highest proportion of pixel-level predictions for
each crown (i.e., winner-take-all) and comparing with field-verified observations.

Table 2. Structural features extracted from UAV SfM. “[color]” notation indicates that each variable was constructed from
each color (red, green, and blue).

Variable Description

brightness_mean Mean overall brightness
brightness_med Median overall brightness
brightness_std Standard deviation of overall brightness
brightness_skw Skew of overall brightness

[color]_mean Mean red, green, or blue brightness
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Table 2. Cont.

Variable Description

[color]_med Median red, green, or blue brightness
[color]_std Standard deviation of red, green, or blue brightness
[color]_skw Skew of red, green, or blue brightness

[color]_norm_mean Mean normalized red, green, or blue brightness
[color]_norm_med_lower50 Median normalized red, green, or blue brightness of points below median height
[color]_norm_med_upper50 Median normalized red, green, or blue brightness of points above median height
[color]_ratio_upper_lower Ratio of red, green, or blue brightness between points above and points below median height
[color]_norm_med_25th Median normalized red, green, or blue brightness of points within ±0.05 m of 25th percentile height
[color]_norm_med_75th Median normalized red, green, or blue brightness of points within ±0.05 m of 75th percentile height
[color]_norm_med_99th Median normalized red, green, or blue brightness of points above 99th percentile height

[color]_ratio_75_25 Ratio of [color]_norm_med_75th to [color]_norm_med_25th for red, green, or blue brightness
[color]_25th 25th percentile of red, green, or blue brightness
[color]_75th 75th percentile of red, green, or blue brightness

HVAR Variance of crown height
HSD Standard deviation of crown height
HCV Coefficient of variation of height

HKUR Kurtosis of crown height
HSKE Skew of crown height

TotalReturns Total number of points
n_25 Number of points within ±0.005 m of 25th percentile height
n_75 Number of points within ±0.005 m of 75th percentile height

n_ratio_75_25 Ratio of n_75 to n_25
n_99 Number of points above 99th percentile height

Table 3. Structural features extracted from lidar point cloud.

Variable Description

IMAX Max intensity
IMIN Min intensity

IMEAN Mean intensity
IMEDIAN Median intensity

IMODE Mode of intensity
IVAR Variance of intensity
ISD Standard deviation of intensity
ICV Coefficient of variation of intensity

IKUR Kurtosis of intensity
ISKE Skew of intensity

I05TH, I10TH, I15TH, I20TH, I25TH Percentiles of intensity (e.g., 5th percentile, 10th percentile, 15th percentile, etc.)
I30TH, I35TH, I40TH, I45TH, I50TH
I55TH, I60TH, I65TH, I70TH, I75TH

I80TH, I90TH, I95TH, I99TH
HVAR Variance of crown height
HSD Standard deviation of crown height
HCV Coefficient of variation of height

HKUR Kurtosis of crown height
HSKE Skew of crown height

TotalReturns Total number of points
n_10, n_20, n_30, n_40, n_50, n_60 Number of points between major height percentiles

n_70, n_80, n_90, n_100 (e.g., n_20 = points between 10th and 20th percentiles)
n_ratio_30_10 Ratio of n_30 to n_10
n_ratio_90_10 Ratio of n_90 to n_10
n_ratio_90_20 Ratio of n_90 to n_20
n_ratio_80_10 Ratio of n_80 to n_10
n_ratio_80_20 Ratio of n_80 to n_20
n_ratio_70_10 Ratio of n_70 to n_10
n_ratio_70_20 Ratio of n_70 to n_20



Forests 2021, 12, 1145 9 of 19Forests 2021, 12, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. Cross-sectional view of point clouds from the same crown with example structural 
metrics where (a) is UAV SfM and (b) is G-LiHT lidar. Points below the solid grey line are 
understory vegetation removed prior to analysis. 

Table 2. Structural features extracted from UAV SfM. “[color]” notation indicates that each variable was constructed from 
each color (red, green, and blue). 

Variable Description 
brightness_mean Mean overall brightness 
brightness_med Median overall brightness 
brightness_std Standard deviation of overall brightness 
brightness_skw Skew of overall brightness 

[color]_mean Mean red, green, or blue brightness 
[color]_med Median red, green, or blue brightness 
[color]_std Standard deviation of red, green, or blue brightness 
[color]_skw Skew of red, green, or blue brightness 

[color]_norm_mean Mean normalized red, green, or blue brightness 
[color]_norm_med_lower50 Median normalized red, green, or blue brightness of points below median height 
[color]_norm_med_upper50 Median normalized red, green, or blue brightness of points above median height 

[color]_ratio_upper_lower 
Ratio of red, green, or blue brightness between points above and points below  

median height 

[color]_norm_med_25th 
Median normalized red, green, or blue brightness of points within ± 0.05 m of  

25th percentile height 

[color]_norm_med_75th 
Median normalized red, green, or blue brightness of points within ± 0.05 m of  

75th percentile height 

[color]_norm_med_99th 
Median normalized red, green, or blue brightness of points above 99th percentile 

height 

Figure 3. Cross-sectional view of point clouds from the same crown with example structural metrics
where (a) is UAV SfM and (b) is G-LiHT lidar. Points below the solid grey line are understory
vegetation removed prior to analysis.

2.7. Data Fusion and Classification
2.7.1. Classifying Spectral and Structural Information Separately

A RF classifier using the most important features was applied to UAV and G-LiHT
spectral and structural data sets. In each spectral-only and structural-only classifier we
applied a hold-out cross validation strategy where each crown was classified 100 times
based on random draws of a balanced (n = 15 crowns per health status) training set.
This strategy allowed for mitigation of concerns associated with imbalanced classes and
also gave a more realistic picture of how high variability in training data can influence
classification accuracy. Two-class RF classifiers were also trained to determine simple
non-infested versus dead separability, an additional capability of interest to the FHM
community.

2.7.2. Classification Using Fused Spectral and Structural Data

Each spectral-only RF classifier also produced an estimate of per-pixel health status
probabilities that we averaged at the crown level. In our hierarchical classification scheme,
these crown-level probabilities were concatenated to corresponding crown-scale structural
data to calibrate and validate a fused spectral-structural classifier. Fused models followed
the general leave-one-out cross validation process noted previously.

2.8. Feature Selection

Each spectral-only and structural-only classifier used the most important features
identified by its corresponding RF feature selector. RF has become a commonly accepted
method of feature reduction through determining feature importance, even with small
numbers of predictors [32,33]. Each spectral-only and structural-only feature selector
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calculated the mean decrease in Gini for each feature, indicating their relative ability to
predict the true health status. The top 20 features with the highest mean decrease in Gini
were selected over 100 repetitions. Results from each iteration were tabulated and sorted
by frequency of feature appearance and the most important were considered those that
appeared in 90 or more iterations, but with consideration for the degree of correlation
among finalist features. Spectral features were additionally analyzed for their ability to
separate classes using the normalized F-ratio following [34].

3. Results
3.1. Classification Results

The UAV fusion model (OA = 78%, kappa = 0.64) and G-LiHT fusion model (OA = 78%,
kappa = 0.65) achieved the best overall accuracy for separating non-infested, green, and
dead classes (Table 4e,f). The G-LiHT fusion model provided an improvement over in-
dividual G-LiHT structure-only (OA = 77%, kappa = 0.64) and spectral-only (OA = 62%,
kappa = 0.42) models. The UAV models demonstrated similar performance trends with
the fusion model outperforming the individual structural (OA = 75%, kappa = 0.59) and
spectral (OA = 55%, kappa = 0.29) models.

Table 4. Confusion matrices for all models. Results reported at crown level (n = 87) following winner-take-all (i.e., mode)
classification. All results shown here are from multiple hold-out cross validation, meaning that each crown was classified
100 times using random subsets of the training data: (a) UAV spectral; (b) G-LiHT spectral; (c) UAV structural; (d) G-LiHT
structural; (e) UAV spectral-structural fusion; and (f) G-LiHT spectral-structural fusion.

(a) UAV Spectral Actual Class
Total

User’s
Accuracy

(b) G-LiHT Spectral Actual Class
Total User’s Accuracy

Predicted Class Alive Green Dead Predicted Class Alive Green Dead

Alive 7 14 1 22 0.32 Alive 11 20 0 31 0.35

Green 10 26 2 38 0.68 Green 7 25 0 32 0.78

Dead 4 8 15 27 0.56 Dead 3 3 18 24 0.75

Total 21 48 18 87 Total 21 48 18 87

Producer’s accuracy 0.33 0.54 0.83 Producer’s accuracy 0.52 0.52 1.00

Overall accuracy 0.55 Overall accuracy 0.62

Kappa coefficient 0.29 Kappa coefficient 0.42

(c) UAV Structural Actual Class
Total

User’s
Accuracy

(d) G-LiHT Structural Actual Class
Total User’s Accuracy

Predicted Class Alive Green Dead Predicted Class Alive Green Dead

Alive 14 8 4 26 0.54 Alive 15 9 0 24 0.63

Green 5 37 0 42 0.88 Green 3 34 0 37 0.92

Dead 2 3 14 19 0.74 Dead 3 5 18 26 0.69

Total 21 48 18 87 Total 21 48 18 87

Producer’s accuracy 0.67 0.77 0.78 Producer’s accuracy 0.71 0.71 1.00

Overall accuracy 0.75 Overall accuracy 0.77

Kappa coefficient 0.59 Kappa coefficient 0.64

(e) UAV
Spectral-Structural

Fusion
Actual Class

Total
User’s

Accuracy

(f) G-LiHT
Spectral-Structural

Fusion
Actual Class

Total User’s Accuracy

Predicted Class Alive Green Dead Predicted Class Alive Green Dead

Alive 13 7 2 22 0.59 Alive 15 10 0 25 0.60

Green 5 39 0 44 0.89 Green 5 35 0 40 0.88

Dead 3 2 16 21 0.76 Dead 1 3 18 22 0.82

Total 21 48 18 87 Total 21 48 18 87

Producer’s accuracy 0.62 0.81 0.89 Producer’s accuracy 0.71 0.73 1.00

Overall accuracy 0.78 Overall accuracy 0.78

Kappa coefficient 0.64 Kappa coefficient 0.65

Non-infested vs. green health statuses were consistently challenging to discriminate
using either UAV or G-LiHT data, as indicated by having the lowest producer’s and user’s
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accuracies across all classifiers. Crowns within these two health statuses were frequently
confused but both were accurately distinguished from dead crowns. The UAV spectral-only
model (Table 4a) was the poorest performer for non-infested (producer’s accuracy = 33%,
user’s accuracy = 32%) and green (producer’s accuracy = 54%, user’s accuracy = 68%).
Spectral information on its own was least useful in both the UAV and G-LiHT models for
separating green and non-infested classes. Structural, or at least 3D spectral information
(e.g., UAV median normalized green brightness of points at 25th percentile height, G-LiHT
99th percentile height, Table 4c,d), drove higher classification accuracies in both structure-
only and fusion models. Dead crowns in the three-class setup were classified well by all
models.

All two-class cross-validated models successfully separated non-infested and dead
crowns. The G-LiHT fusion was the overall best performing model (OA = 97%, kappa = 0.95)
followed by the spectral-only (OA = 95%, kappa = 0.90) and structural-only (OA = 92%,
kappa = 0.85) models of the same platform. UAV fusion and spectral-only models had the
same overall performance (OA = 0.85, kappa = 0.69) while UAV structural-only (OA = 82%,
kappa = 0.64) was the overall poorest model. Producer’s and user’s accuracies demon-
strated the same trend as overall accuracy and kappa values with G-LiHT fusion returning
the best for non-infested (producer’s accuracy = 95%, user’s accuracy = 100%) and dead
(producer’s accuracy = 100%, user’s accuracy = 95%).

3.2. Most Important Spectral Features

While spectral-only models were limited in their ability to separate non-infested and
green classes, they were useful for separating non-infested and green versus dead. All
five MicaSense (UAV multispectral) spectral bands had a mean decrease in Gini of 100,
thus all were used in classification models, though blue had quite a low F-ratio (Figure 4).
Both UAV and G-LiHT spectral models highlighted the importance of the red spectral
region but the G-LiHT bands selected in the “red edge” (752–759 nm) appear to be more
useful compared to UAV red edge (711–723 nm; Figure 4). Within the G-LiHT data, violet
(<~450 nm) and to a lesser extent, NIR bands were also commonly selected for model
inclusion. To represent a diversity of spectral regions in the G-LiHT model, several bands
were selected from each frequency peak (Figure 4, Table 5). Only the green region was not
represented in the final G-LiHT feature selection, putting a fine point on the challenge in
visually and algorithmically differentiating non-infested from green health statuses.

3.3. Most Important Structural Features

Many of the selected structural or 3D spectral metrics estimate upper crown charac-
teristics or compare upper and lower crown summary values. The final UAV structural
features used in the classification models include several 3D spectral metrics in normalized
or ratio form, e.g., ratio of green brightness between points above and points below median
height (see full list in Table 5). Final G-LiHT structural features featured a mix of lidar
intensity variables at certain heights (e.g., lidar intensity at 99th percentile height in crown)
and other structural variables (Table 5).

Both the UAV and G-LiHT structural feature selection processes initially led to the
selection of over a dozen metrics but with high pairwise correlation (Figure 5). As expected,
correlation was frequently highest between pairs in the same metric subgroup where
member metrics are derived from similar color, brightness, intensity, or point count data.
Thus, we further reduced dimensionality and metric redundancy by selecting only one or
two metrics from each subgroup and avoiding selection of more than one metric from a
high correlation pair, which resulted in final features contributing unique information.
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Figure 4. The five color-coded shaded rectangles show MicaSense sensor bands (blue = 459–491, green = 546.5–573.5,
red = 661–675, red-edge = 711–723, NIR = 813.5–870.5) with a color-coded horizontal bar in each representing the normalized
F-ratio. Gray vertical bars on x-axis show the frequency (out of 100 model runs) that each G-LiHT spectral band was
selected by RF model. Dark grey bars with text labels highlight the final selected G-LiHT bands. Dashed black line shows
normalized G-LiHT F-ratios. Dark green, green, and red lines are normalized mean G-LiHT spectrum per non-infested,
green, and dead health statuses, respectively.

Table 5. Final variable selection for spectral and structural classification models.

Model Final Variables Selected Description

UAV spectral 840 717 668 560 475 NIR, red-edge, red, green, and blue multispectral bands

UAV structural green_norm_med_25th Median normalized green brightness of points within ±0.05 m
of 25th percentile height

green_ratio_upper_lower Ratio of green brightness between points above and points
below median height

blue_ratio_upper_lower Ratio of blue brightness between points above and points
below median height

blue_norm_med_99th Median normalized blue brightness of points above 99th
percentile height

redness_skw Skew of red brightness

G-LiHT spectral 403 406 409 Violet, red, red-edge, and near infrared hyperspectral bands

671 674 677 680 684
752 756 759 801 935

G-LiHT
structural I99TH 99th percentile intensity

HCV Coefficient of variance of height
ICV Coefficient of variance of intensity

IMEAN Mean intensity
n_70 Lidar returns between 60th and 70th height percentiles
n_ratio_70_10 Ratio of n_70 and lidar returns below 10th percentile height
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4. Discussion

This study demonstrated the capabilities of high-resolution multi- and hyperspectral
data fused with structural information for boreal FHM. We showed that non-infested, green
(but infested), and dead trees can be best discriminated using fusion of both structural
and spectral information using data from either a UAV or airborne platform (OA = 78% in
both cases). Consistent with previous efforts, dead crowns were easily identified, while
non-infested and green crowns were much harder to separate [7,15,17,35]. Indeed, for
discriminating only non-infested from dead, the G-LiHT fusion model achieved very high
accuracy (OA = 97%), performing better than the best UAV model (OA = 85%). Three-
dimensional spectral information from either the vertical distribution of color in the UAV’s
RGB point cloud or G-LiHT lidar apparent reflectance were critical components of the three-
class classifier. Spectral information was more beneficial for differentiating non-infested
and dead crowns (Figure 4). Our results suggest that higher spatial resolution from UAV
collection does not improve classification. Rather, 0.5 m spectral information from G-LiHT
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better aggregates the health status signal resulting from changes in leaf properties and
biomass. Additionally, 3D SWIR information in the form of lidar apparent reflectance
data were useful, suggesting, as others have previously, the utility of shortwave infrared
wavelengths for detecting vegetation stress.

4.1. Classification of Health Status Groups

Previous research on detecting early infestation or green health status has largely relied
on spectral data, where the specific platform employed dictated the spectral and spatial
characteristics of the imagery. The high degree of variability in classification accuracies
from these studies highlights the difficulty of green status detection using solely spectral
data. Like [17], the imbalanced distribution of health statuses in our data reduced the
effective sample size available for analysis, and unlike [14,36] who simulated attack vectors
through girdling and herbicide injection, our data were subject to the inherent variability
of a natural setting and changes in illumination conditions over our several day field
campaign. Our spectral-only models (UAV OA = 55%, G-LiHT OA = 62%) were less
accurate when compared to existing multispectral [5,36] and hyperspectral research (~11%
lower) [14,15], with comparable spectral and spatial resolution but lacking SWIR bands.
The G-LIHT structure-only model result (OA = 77%), using calibrated and range-corrected
lidar apparent reflectance (1550 nm) was comparable to previous hyperspectral research
in the same SWIR region [6,14,37] and somewhat more accurate than previous terrestrial
lidar work using lidar intensity [26].

Dead crowns were classified well by all models due to substantially different spectral
and structural characteristics compared to non-infested crowns based on cessation of
needle photosynthesis and, in some cases, needle drop. The UAV spectral-only model
was worst at separating dead from non-infested or green crowns. Commission error
was high (44%) possibly indicating that the high spatial resolution of the UAV led to
misrepresentation of non-photosynthetic vegetation (e.g., branches) in live crowns as dead.
The 6 cm resolution of UAV pixels reduces integration, leading to multimodal reflectance
distributions with respect to both sunlit and shade as well as green vs. non-photosynthetic
vegetation. Accordingly, using the 20% brightest UAV pixels achieved better health status
mean separation, narrowed the within-crown reflectance ranges, and reduced outliers for
most bands [5,15]. By contrast, the 0.5 m spatial resolution of G-LiHT captured more varied
reflectance from entire crowns or portions of crowns, thus integrating more information
about canopy structure and composition. While G-LiHT fusion was the most effective in
separating dead from non-infested and green crowns, the G-LiHT spectral-only model
performed similarly for this task, showing that averaging green and non-photosynthetic
vegetation in 0.5 m pixels was helpful in establishing the overall status of the crown.
The higher success with relatively larger pixel size is consistent with past research that
suggested aggregation of UAV data to 1 m improved classification results [36].

4.2. Contribution to Classification: Spectral Regions

Consistent with previous research, we demonstrate the utility of red and red-edge
wavelengths for differentiating health status groups and, importantly, note that the specific
wavelength ranges matter, highlighting one advantage of a hyperspectral
system [5–7,15,17,36]. We found high non-infested and green versus dead class sepa-
rability in the red bands between 660–690 nm based on both UAV and G-LiHT F-ratios and
RF feature selection (Figure 4). The chlorophyll absorption feature centered on 685 nm expe-
riences significant change as green vegetation senesces, particularly during post-infestation
as white spruce transform from green to red [1,9,14]. G-LiHT, and to some extent UAV data,
also yielded high separability in red-edge bands, but it is not entirely clear which red edge
features are most important for FHM. A common definition of the “red edge” suggests
inclusion of wavelengths from 690 to 750 nm, based on rapid change in this region from the
dominance by chlorophyll absorption of red light to leaf mesophyll and canopy (e.g., LAI)
structural amplification of NIR reflectance [38]. The UAV red edge band is centered on
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717 nm and ranges between 711 and 723 nm, clearly sitting in the range of rapid reflectance
increase in our data (Figure 4). Class separability using the red edge reflectance value
based on F-ratio was middling but higher than blue or green, and the band was important
in classification models. Note, that the value of the red edge region is commonly found
in terms of reflectance slope (rather than absolute values), which can be characterized to
some extent with vegetation indices such as Red Edge NDVI (RENDVI). We tested this
and similar indices but ultimately found greater classification success with the raw bands.
Interestingly, this region appeared to offer very limited spectral separability when assessed
using the G-LiHT F-ratio and low G-LiHT band selection (Figure 4). By contrast, the
G-LiHT bands between 752 and 759 nm were quite important to separability with the high-
est overall F-ratio and frequent band selection (Figure 4). While these bands fall outside of
the previously mentioned 690 to 750 nm range, they are included in or near Sentinel-2 “red
edge” bands 6 and 7 (~740 nm ± 15 nm and ~783 nm ± 20 nm respectively [39]. Thus, with
20 m spatial resolution at these wavelengths and 10 m spatial resolution at red wavelengths,
Sentinel-2 data, particularly when paired with lidar, may offer a viable path forward for
more extensive forest health monitoring.

Frequent G-LiHT violet band selection and high UAV NIR and green F-ratios suggest
usefulness of these spectral ranges. A high UAV NIR F-ratio also reinforced feature
selection importance for bands surrounding 840 nm, consistent with [6,7,26,36]. The high
F-ratio for G-LiHT data in the NIR spectral region indicated general utility of these bands
but, ultimately, band selection was infrequent (Figure 4). This is possibly due to high
correlations between NIR bands and those selected at 752–759 nm. The selection of violet
by the G-LiHT feature selector exhibits the opposite relationship. The G-LiHT F-ratio
provided no indication of separability in this wavelength range but bands 403–409 nm were
selected over 50% of the time. This is consistent with [6] who identified differences of health
status group means at 368 nm to be statistically significant but no other hyperspectral
literature reviewed in this study included bands below 400 nm. Bands below 400 nm are
commonly excluded from analyses due to pervasive issues of poor sensor signal-to-noise
(SNR) and strong interference by Rayleigh scattering [34]. G-LiHT SNR is highest at 550 nm
and degrades substantially below 420 nm and above 920 nm. A marginal selection of green
(560 nm) by the UAV model and absence of selection by the G-LiHT model, regardless
of the latter F-ratio indicator, indicates the absence of green region discriminatory power.
This is in line with previous research mentioned herein and the expectation of difficult
non-infested-green separability, given both statuses visually appear green.

4.3. Contribution to Classification: Structural Metrics

The majority of selected structural features from both UAV and G-LiHT related to 3D
spectral or structural variability within the upper canopy or between the upper and lower
canopy. Fifteen of the 16 selected UAV metrics pertained to the 3D distribution of RGB
color while 12 of 19 G-LiHT metrics captured the distribution of lidar intensity, supporting
the overarching utility of spectral information but stressing the importance of examining
its vertical gradient within the crown. Our frequent selection of structural and 3D spectral
metrics in the upper crown envelope is consistent with literature, which suggests that
post-infestation change first occurs in the upper, inner canopy [1,9].

The selection of lidar intensity metrics as important G-LiHT features suggest that
SWIR-band lidar may be useful for assessing vertical variation in canopy water content and
indicative of tree health status. The utility of SWIR information has been previously con-
firmed by [6,14,37], who achieved 83% (2080–2350 nm), 73% (1250 nm) and 86% (2202 nm)
OA. While evidence has been provided regarding the utility of SWIR information in passive
optical data [6] and we have shown the benefit of lidar apparent reflectance, other studies
show limited use for SWIR optical data [14] and SWIR-band lidar [26]. The apparent
inconsistency in SWIR utility may be attributable to differences in instruments and opera-
tions (e.g., image resolution, lidar footprint size), environmental conditions at the time of
acquisition (e.g., soil moisture, time of day, air temperature, and vapor pressure deficit),
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or derivation from 2D passive optical data where the ability to compare upper and lower
canopy foliage is not possible. However, it must be noted that, beyond canopy moisture
content, lidar intensity is influenced by the target scattering cross section, complicating
interpretation of this reflectance signal [30]. Future research with multispectral lidar is
warranted given potential sensitivity to vertical gradients in photosynthetic function, leaf
structure, and canopy water content [26].

4.4. Site-Specific Differences

Collection of UAV data occurred at different times of the day over a series of days with
varying sky conditions while G-LiHT was completed on the same, clear day with a minimal
time elapsed. Examination of downwelling irradiance data from the MicaSense RedEdge
sensor reveals inconsistent irradiance received by the UAV over the course of its flight
(Figure 6). In the Troublesome and Ermine plots, the regular pattern of alternating higher
and lower irradiance point groups indicates directionality of UAV movement during its
flight, while the outliers between each high–low or low–high pairing are turn-arounds at
the end of each flight line. At these two sites, within flight line illumination variability is
quite low (but the effects of high solar zenith angle are notable at Troublesome; Figure 6).
At K’esugi, however, we see alternating peaks and valleys indicating the presence of
patchy cloud cover, as well as an overall irradiance increase over the duration of the
flight. The K’esugi flight began under higher cloud cover that dissipated as time elapsed,
possibly explaining the overall trend. Thus, while our imagery was corrected to at-sensor
reflectance—nominally removing the artifacts from variable illumination conditions—one
can never fully remove the effects of clouds and cloud shadows from these data. As the use
of UAV data proliferates in ecological studies requiring stable spectral information [40], it is
important that practitioners keep in mind that just because flying under clouds is possible,
it does not mean that it is recommended [41].
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Figure 6. Relative irradiance plots at three UAV sites flown on different days. Solar zenith angles
were 57.5◦ (Troublesome), 42.2◦ (Ermine), and 4.74◦ (K’esugi).
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5. Conclusions

Detection of early infestation or green health status has been suggested as key for
mitigation of bark beetle outbreaks and management of forests on a regional scale [6,42].
To be effective, remote sensing methods must be timely, accurate, and of adequate spatial
extents [43]. This study demonstrates that health status mapping is possible at modest
accuracy when including green stage and the expected high accuracy when only mapping
non-infested versus dead. Physiological changes experienced by crowns during early
infestation may be best detected using structural metrics capable of comparing spectral
reflectance or intensity in upper and lower canopy regions. Further research into methods
capable of detecting the interior canopy, where physiological change typically occurs first,
may bolster classification success. Importantly, we show that G-LiHT data is as useful, or
more useful, than UAV data for achieving classification goals due to a feature-appropriate
spatial resolution, spectral band availability, and SWIR-band lidar. This opens the door
for regional-scale FHM efforts across large swaths of the boreal region in a manner not
possible with either ground-based field assessment or UAV.
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