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Abstract: Height-diameter (H-D) models are important tools for forest management practice. Sandy
Mongolian pine plantations (Pinus sylvestris var. mongolica) are a major component of the Three-North
Afforestation Shelterbelt in Northern China. However, few H-D models are available for Mongolian
pine plantations. In this paper we compared different equations found in the literature for predicting
tree height, using diameter at breast height and additional stand-level predictor variables. We tested
if the additional stand-level predictor variable is necessary to produce more accurate results. The
dominant height was used as a stand-level predictor variable to describe the variation of the H-D
relationship among plots. We found that the basic mixed-effects H-D model provided a similar
predictive accuracy as the generalized mixed-effects H-D model. Moreover, it had the advantage of
reducing the sampling effort. The basic mixed-effects H-D model calibration, in which the heights of
the two thickest trees in the plot were included to calibrate the random effects, resulted in accurate
and reliable individual tree height estimations. Thus, the basic mixed-effects H-D model with the
above-described calibration design can be an accurate and cost-effective solution for estimating the
heights of Mongolian pine trees in northern China.

Keywords: height-diameter; mixed-effects model; dominant height; model calibration; Pinus sylvestris
var. mongolica

1. Introduction

Shelterbelt establishments are an effective solution in preventing natural disturbances
and hazards such as soil erosion, avalanches or landslides [1]. The Three-North Shelter
Forest Program is the largest artificial forest shelter program in the world [2]. This shelter
forest program plays a vital role in carbon sequestration and sand fixation, soil conservation,
wood production and supply for the local communities [3]. By 2018, a forest area plantation
of 3.01 × 107 hm2 had remained from the Three-North Shelter Forest Program [3]. Sandy
Mongolian pine (Pinus sylvestris var. mongolica) is one of the most important and common
species used for afforestation in the Three-North Shelter Forest Program. The area of sandy
Mongolian pine plantations in northern China exceeds 7 × 105 hm2 [4].

Tree height and diameter at breast height are two elementary input variables used
in forest management practice [5,6], with tree height being an input variable needed in
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most allometric equations that estimate tree biomass and volume [7–9]. Furthermore,
tree height estimates are needed in growth and yield modelling. However, tree height
measurements are difficult, time-consuming and laborious, while tree diameters at breast
height are relatively easy to measure. Therefore, heights are generally estimated by H-D
models based on a subsample of height measurements [10].

Until now, many H-D models with various mathematical forms have been described
for different tree species in various forest types around the world [5,8,11–14]. Although
the results of these studies have indicated differences in H-D models between species and
forest types, general sigmoidal or nonlinear growth curves are suitable for H-D model
development [15–17]. Furthermore, the H-D relationship varies between stands of the same
species due to stand site quality, stand age, and competition [16,18,19]. In order to reduce
the H-D relationship variation between stands, various stand-level predictor variables are
usually introduced into a simple basic H-D model, with the aim of developing a generalized
H-D models [20,21]. Usually, generalized H-D models are developed at a regional scale,
providing the necessary prediction accuracy at the stand level by reducing at the same time
the sampling effort needed to build simple H-D models for each stand [17,22,23].

The forestry data are hierarchical, and the traditional ordinary least squares (OLS)
regression models always induce biased results in parameter estimation and height pre-
dictions. Nonlinear mixed-effects models have, therefore, become increasingly popular
in the development of regional H-D models [5,24]. Many studies have reported better
goodness-of-fit values and higher prediction accuracies for nonlinear mixed-effects H-D
models compared to OLS regression models [25,26].

Mixed-effects models can easily account for the variations in H-D relationships among
stands by including stand-level random effect parameters [27,28]. Furthermore, less sam-
pling effort is required and similar accuracy is achieved by calibrating H-D mixed-effects
models compared with the sampling effort necessary to build a local H-D model [6,15].
However, stand-level predictor variables may not always be necessary in mixed-effects
H-D models’ modelling framework. Previous research has demonstrated that the inclusion
of additional stand-level predictor variables did not improve the model’s predictive ability
and accuracy under the mixed-effects framework [5,25]. Hence, a high accuracy can also
be obtained by using a parsimonious model that requires less sampling effort. Considering
these aspects, a practical approach is needed to establish if the inclusion of additional
predictors is really required to obtain the desired accuracy.

Considering the important ecological and economic functions of Mongolian pine plan-
tations in North China, an efficient management system is required based on appropriate
scientific tools. To the best of our knowledge, an appropriate H-D model and information
on the best calibration design for this species have not yet been well described in the
scientific literature. Thus, H-D models are needed for this species not only for volume and
biomass estimations but also for future yield and growth models. Here, we hypothesized
that: (1) generalized mixed-effects models have better performance than basic mixed-effects
models both in fitting and calibration; (2) the model calibration performance will improve
with the number of prior tree height measurement increasing; and (3) tree height measured
from different diameter classes would help improve the model calibration performance.

2. Material and Methods
2.1. Study Area

The data used in this study were collected from plantations in Northwest Liaoning
Province, northeast China (42◦39′~42◦43′ N, 122◦22′~122◦33′ E), which is part of the Three-
North Shelter Forest Program. Autumns and winters in this region are dry, the multiyear
mean annual temperature is approximately 5.3 ◦C, and the multiyear annual precipitation
ranges from 300 to 500 mm [29]. The major local vegetation consists of P. tabuliformis,
Agriopyllum squarrosum, Salix gordejevii, Artemisia halodendron, and Calamagrostis epigeios [30].
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2.2. Ssampling Design and Data Collection

For this research thirty-five temporary sample plots of 400 m2 (20 m × 20 m) were
established in Mongolian pure pine stands. The sampling plots cover different stand ages
and stand structures of the Mongolian pine plantations. The stand age ranges from 13 to
62 years, and includes young, half-mature, mature, and old forests. For each stand age the
sampling plots include different stand densities. The detailed sampling workflow can be
found in [29,30]. Stand age was obtained for each plot based on the afforestation records.
Stand density was registered as the counts of living trees. For all living and healthy trees in
each plot, the diameters at breast height (D: 1.3 m above ground) were measured using
diameter tape with a precision of 0.1 cm; tree height (H) of all living trees was measured
using an infrared dendrometer (Criterion™ RD1000) with a precision of 0.1 m.

Only the trees with D ≥ 5 cm were used in this analysis. A total of 1070 paired
height-diameter measurements were chosen for the model development. This dataset was
used for the parameter estimation and model calibration. The distributions of the height
and diameter at breast measurements are illustrated in Figure 1.

Forests 2021, 12, x FOR PEER REVIEW 3 of 15 
 

 

mean annual temperature is approximately 5.3 °C, and the multiyear annual precipitation 
ranges from 300 to 500 mm [29]. The major local vegetation consists of P. tabuliformis, Agri-
opyllum squarrosum, Salix gordejevii, Artemisia halodendron, and Calamagrostis epigeios [30]. 

2.2. Ssampling Design and Data Collection 
For this research thirty-five temporary sample plots of 400 m2 (20 m × 20 m) were 

established in Mongolian pure pine stands. The sampling plots cover different stand ages 
and stand structures of the Mongolian pine plantations. The stand age ranges from 13 to 
62 years, and includes young, half-mature, mature, and old forests. For each stand age the 
sampling plots include different stand densities. The detailed sampling workflow can be 
found in [29,30]. Stand age was obtained for each plot based on the afforestation records. 
Stand density was registered as the counts of living trees. For all living and healthy trees 
in each plot, the diameters at breast height (D: 1.3 m above ground) were measured using 
diameter tape with a precision of 0.1 cm; tree height (H) of all living trees was measured 
using an infrared dendrometer (Criterion™ RD1000) with a precision of 0.1 m. 

Only the trees with D ≥ 5 cm were used in this analysis. A total of 1070 paired height-
diameter measurements were chosen for the model development. This dataset was used 
for the parameter estimation and model calibration. The distributions of the height and 
diameter at breast measurements are illustrated in Figure 1. 

 
Figure 1. Distributions of the diameter at breast height (a) and height (b) as well as plot-specific fitted height-diameter 
lines (c). Plot-specific line was obtained by fitting height-diameter (H-D) relationships in each plot using the best basic 
model determined below. 

2.3. Basic Model Selection 
As reported in previous studies, nonlinear curves are more suitable than linear ones 

for representing H-D relationships [15,16]. Following these findings and examining the dis-
tributions of our H-D dataset, we chose 8 nonlinear candidate H-D models (Table 1). To 
ensure parsimony and convergence for each plot, only models with two parameters were 
selected. The suitability of all candidate models in predicting height was validated in previ-
ous research papers [12,31]. The models’ performances were compared using the coefficient 
of determination (R2), the mean absolute error (MAE), and the root mean squared error 
(RMSE). The expressions of R2, MAE, and RMSE are shown in Equations (9)–(11): 

  

Figure 1. Distributions of the diameter at breast height (a) and height (b) as well as plot-specific fitted height-diameter lines
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2.3. Basic Model Selection

As reported in previous studies, nonlinear curves are more suitable than linear ones
for representing H-D relationships [15,16]. Following these findings and examining the
distributions of our H-D dataset, we chose 8 nonlinear candidate H-D models (Table 1).
To ensure parsimony and convergence for each plot, only models with two parameters
were selected. The suitability of all candidate models in predicting height was validated
in previous research papers [12,31]. The models’ performances were compared using the
coefficient of determination (R2), the mean absolute error (MAE), and the root mean squared
error (RMSE). The expressions of R2, MAE, and RMSE are shown in Equations (9)–(11):

Table 1. Candidate height-diameter models.

Model Formula References Equation No

M1 H = 1.3 + a[D/(1 + D)]b + ε Curtis [8] (1)
M2 H = 1.3 + aD + bD2 + ε Curtis [8] (2)
M3 H = 1.3 + aDb + ε Stoffels and Soest [32] (3)
M4 H = 1.3 + a exp(b/D) + ε Schumacher [33] (4)
M5 H = 1.3 + exp[a + b/(D + 1)] + ε Wykoff, et al. [34] (5)
M6 H = 1.3 + aD/(b + D) + ε Bates and Watts [35] (6)
M7 H = 1.3 + 10a Db + ε Larson [36] (7)
M8 H = 1.3 + a[1 − exp(−bD)] + ε Meyer [37] (8)

H is the height, D is the diameter at breast height, a and b are the model coefficients, ε is the error term.
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where R2 is the coefficient of determination; MAE is the mean absolute error; RMSE is the

root mean squared error; Hij and
ˆ

Hij are the observed and predicted heights of tree j on
plot i, respectively; H is the average of the observed heights; ni is the number of trees in
the plot i; m is the total number of sample plots; n is the total number of trees.

2.4. H-D Generalized Model

Additional stand-level predictor variables were added to the best basic H-D model in
order to develop the generalized H-D model. Among the stand-level predictor variables
considered were stand age (Age), stand dominant height (DH), stand basal area (BA), stand
density (N), relative spacing (RS), stand quadratic mean diameter (Dg), stand arithmetic
mean diameter (AMD), maximum diameter (Dmax), minimum diameter (Dmin), diameter
range per plot (Dr) (Table 2). In the present work, DH was defined as the mean height of
the 100 largest-diameter trees per hectare [10], as there are no available dominant height
models developed for this species.

Table 2. Summary statistics of evaluated stand-level predictor variables.

Variables Minimum Mean ± SD Maximum

Age (year) 13 36 ± 14 62
DH (m) 3.2 9.7 ± 3.0 13.6

BA (m2 ha−1) 2.92 14.70 ± 6.12 33.34
N (trees ha−1) 300 774 ± 461 2500

RS 1.03 0.45 ± 0.18 0.16
Dg (cm) 7.7 16.7 ± 5.0 23.9

AMD (cm) 6.7 16.4 ± 5.1 23.7
Dmax (cm) 10.0 22.0 ± 5.4 29.1
Dmin (cm) 1.9 11.2 ± 4.8 18.0

Dr (cm) 5.7 10.9 ± 2.2 16.5
SD means standard deviation. Age is the stand age; DH is the dominant height; BA is the basal area per hectare;
N is the stand density; RS is the relative spacing; Dg is the stand quadratic mean diameter; AMD is the stand
arithmetic mean diameter; Dmax and Dmin are the maximum and minimum diameter of the plot, respectively;
Dr is diameter range per plot.

To obtain a generalized model with a high accuracy and an easier biological inter-
pretation, a two-stage reparameterization method was used [38]. In the first step linear
regression was conducted using the estimated coefficients for each plot as response vari-
ables and the stand-level predictor variables as independent variables. The variables with
variance inflation factor (VIF) > 5 were removed to eliminate multicollinearity. Finally, the
remaining and most significant variables were used to develop the generalized H-D model.

2.5. Nonlinear Mixed-Effects Model

Based on the OLS basic and generalized models we developed nonlinear mixed-effects
models taking into account the hierarchical structure of the data. Additional random
parameters associated with the equation’s coefficients were considered.
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The Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
were used to determine the prediction gain by including additional random effects in the
following general form of the mixed-effects model [28]:

yi = f (β, ui, xi) + εi (12)

where xi and yi are the response and predictor variables, respectively; f is a nonlinear
function between the response and predictor variables; β is a q × 1 fixed parameter vector;
ui is a random effects parameter for plot i and is assumed to be distributed normally with
variance-covariance matrix Ψ, i.e., ui~N(0, Ψ); εi is error term and is assumed to be normally
distributed with the within-sample-plot variance-covariance matrix for Ri, i.e., εi~N(0, Ri).

The expression of Ri is as follows [39]:

Ri = σ2Gi
0.5Γi Gi

0.5 (13)

where σ2 is the scale; Gi is a diagonal matrix describing the heteroskedasticity; and Γi is an
autocorrelation structure of error and is an identity matrix in this study.

Three variance functions: exponential, power, and constant plus power, with D as
the predictor, were compared in accounting for the heteroscedasticity. These formulas are
shown below:

var(εi) = σ2 exp(2δDij) (14)

var(εi) = σ2Dij
2δ (15)

var(εi) =
(

δ1 + Dij
δ2
)2

(16)

where σ2 is the scale, and δ is the parameter to be estimated.

2.6. Parameter Estimation

The parameters of the basic and generalized H-D models were first estimated with OLS
method using the nls function in R software [40]. Parameters of the mixed-effects models
were estimated in the mixed-effects modelling framework using the nlme function and the
restricted maximum likelihood (REML) method in the nlme package in R software [40,41].

2.7. Evaluation of Model Prediction Performance and Appropriate Calibration Design

The mixed-effects models were used for the following types of height predictions in
the stand of the entire data:

(1) Fixed-effects prediction of the mixed-effects model, where only the fixed part was
used as follows:

Hi = f
(

β̂, 0, xi
)
+ εi (17)

where Hi and xi are the height and predictor vectors of plot i; β̂ is the vector of estimated
fixed parameters; εi is error term.

(2) Random-effects prediction of the mixed-effects model for a specific plot.
The random-effects predictions require the random-effects parameters ui to be calcu-

lated with the following Equation [42]:

ûi = ψ̂ẐT
i (Ẑiψ̂ẐT

i + R̂i)
−1[

Hi − f
(

β̂, 0, xi
)]

(18)

where ûi is the estimated random effects parameters; ψ̂ and R̂i are the estimations of Ψ and
Ri, respectively; Ẑi is the design matrix for the random effects; and ẐT

i is the transpose
matrix of Ẑi.

In this paper, ûi was calculated using the empirical best linear unbiased prediction
(EBLUP) method [43].
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The calibration design involved different sampling strategies. The tree size categories
sampled include the thinnest, medium-sized and thickest trees. A total of 4 designs with
47 combinations were evaluated in the random-effects predictions.

(i) One-six (in order) trees from the same diameter size category were selected.
(ii) One-three (in order) trees were chosen separately from two diameter size categories.
(iii) One tree from each of the three diameter size categories was selected separately.
(iv) Two trees were selected separately from each of the three diameter size categories.

In order to determine the reliable and most accurate calibration we first used the
paired Wilcoxon rank-sum test to test which calibration design leads to an unsignificant
difference between predicted and observed heights. Then, the best calibrations obtained for
each number of trees sampled were further compared using MAE and RMSE to determine
the best calibration solution for the two mixed-effects models developed.

3. Result
3.1. Basic and Generalized Fixed Model

Although the performances did not drastically differ among the eight models (Table 3),
model 4 (M4) had the highest R2, and the lowest MAE and RMSE values. In addition, M4
could also fit each plot in our dataset (Figure 1c). Thus, M4 was selected as the basic model
for further model development.

Table 3. The coefficient of determination (R2), the mean absolute error (MAE), and the root mean
squared error (RMSE) for basic height-diameter model.

Model R2 MAE RMSE

M1 0.6927 1.3573 1.7381
M2 0.6654 1.4738 1.8136
M3 0.6595 1.4848 1.8296
M4 0.6936 1.3526 1.7357
M5 0.6916 1.3631 1.7412
M6 0.6650 1.4743 1.8149
M7 0.6595 1.4848 1.8296
M8 0.6654 1.4738 1.8136

The majority of stand-level predictor variables were significantly correlated with the
coefficient β1 in M4 (Equation (19)), while no stand-level predictor variable was significantly
correlated with the parameter β2 of Equation (19) (Figure 2). Finally, only the DH was
retained in the generalized H-D model (Equation (20)) according to the two-step linear
regression and correlation (Figure 3). The generalized model obtained significantly better
goodness-of-fit (p < 0.0001):

Hij = 1.3 + β1 exp(β2/Dij) + εij (19)

Hij = 1.3 + (β1 + β2DHi) exp(β3/Dij) + εij (20)

where Hij and Dij are the H and D of tree j in plot i, respectively; β1, β2, β3 are fixed
coefficients; DHi is the dominant height for sample plot i; and εij is the error.

3.2. Mixed-Effects Models

The final formulas for the basic and generalized mixed-effects models are presented
in Equations (21) and (22), respectively. The power variance function showed better
performance than the other two functions in removing the heteroscedasticity of basic and
generalized mixed-effects models (Table S1, Figure 4).

Hij = 1.3 + (β1+ ui) exp(β2/Dij) + εij (21)

Hij = 1.3 + (β1 + ui + β2DHi] exp(β3/Dij) + εij (22)
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Figure 2. Correlation among the stand-level predictor variables and basic height-diameter (H-D)
model coefficients. Age is the stand age; DH is the dominant height; BA is the basal area per hectare;
N is the stand density; RS is the relative spacing; Dg is the stand quadratic mean diameter; AMD is
the stand arithmetic mean diameter; Dmax and Dmin are the maximum and minimum diameter of
the plot, respectively; Dr is diameter range per plot; β1 and β2 are model parameters. * and ** denote
the significant correlation at level of p < 0.05 and p < 0.01, respectively.
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The generalized mixed-effects model had lower AIC and BIC values than the basic
mixed-effects model (Table 4) and was also significantly different from the basic mixed-
effects model (p < 0.0001). The random-effects values of the basic mixed-effects model were
larger than those of generalized mixed-effects model, as the standard deviation of the basic
model random-effects was ten times larger than that of the generalized mixed-effects model.
The DH explains the high variety of H-D relationships as random-effects do (Figure 5a). In
addition, for the trees with same diameter, the tree height increased with the increase in the
stand DH (Figure 5b). The basic mixed-effects model, however, had an almost similar (even
better) performance as the generalized mixed-effects model according to the R2, MAE, and
RMSE (Table 4). In addition, the two mixed-effects model had similar distributions of the
standardized residuals (Figure 4).

Table 4. Parameter estimations and statistical criteria of the basic and generalized mixed-effects models.

Parameters Basic Generalized

β1 10.76302 0.06223
β2 −5.06705 1.08832
β3 −4.86799
σu 3.25644 0.30297
δ 0.50097 0.48913
σ 0.21609 0.22302

AIC 2746.0 2610.8
BIC 2770.9 2640.6
R2 0.933 0.932

MAE 0.612 0.615
RMSE 0.810 0.815

3.3. Mixed-Effects H-D Model Calibration

The random-effects predictions had lower MAE and RMSE values than the fixed
predictions and were closer to the observed height values (Figures 6a,b and 7a,b, Table S2).
The generalized mixed-effects model had better prediction accuracy than the basic mixed-
effects model under the majority of calibration designs with lower MAE and RMSE
(Figure 6a,b, Table S2). In addition, the number and the diameter size of measured trees
had an obvious effect on the prediction accuracy of the basic mixed-effects model; however,
this was not the case for the generalized H-D model (Table S2). The calibration accuracy
increased with the increase in prior height measurements; nevertheless, the accuracy in-
creased negligibly (<5 cm) when the number of trees used for calibration was higher than
two (Table S2).
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Although the best design with different tree number showed that increasing height
measurements improved the prediction accuracy of the basic mixed-effects model, the
improvement of accuracy was negligible (<5 cm) when the number of measured trees
was more than two (Table S2). In addition, the difference in random-effects prediction
performances between the two mixed-effects models was very small when more than
two tree heights were available (Figure 6a,b).

To obtain an increased prediction accuracy with as few prior tree height measurements
as possible, the basic mixed-effects model required the two thickest trees’ heights, and the
generalized mixed-effects model required one medium tree height. The two mixed-effects
models had similar predicted results based on the above-mentioned designs (Figure 7).
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4. Discussion
4.1. Basic and Generalized H-D Models

Our study’s aim was to build an appropriate H-D model for the Mongolian pine
stands in Zhanggutai, where the oldest introduced sandy Mongolian pine plantations
in China are located [44]. We developed a mixed-effects H-D model and determined an
economical method and a simple but effective calibration design for estimating the heights
of Mongolian pines to aid forest management planning [6,21].

We used equations with only two coefficients due to the nonconvergence associated
with three-parameter models when fitting each plot. Nonconvergence issues have been
reported in several studies that aimed to develop nonlinear H-D models [6,27,45]. Among
the eight candidate models, the model of Schumacher [35] was selected as the basic H-D
model because it had the highest accuracy compared to the other seven models tested. This
model has also chosen as a basic mathematical form, suitable for further improvement in
similar research studies [7,21,27].

Developing generalized H-D models is an effective solution to account for the varia-
tions in H-D relationships among plots. Generalized H-D models can broaden the applica-
tions of such predictive tools. In this work, we used a common method to link the parame-
ters and stand-level predictor variables and to develop the generalized H-D model [38].
This method has been widely employed to build generalized H-D models [6,7,15]. Among
the tested stand-level predictor variables, only the DH was determined to be necessary for
developing the generalized H-D model. DH positively and significantly correlated with
the asymptote coefficient of the candidate model. Our results are consistent with those of
many previous studies [5,17,21,46] that used dominant height as an additional stand-level
predictor variable associated with the asymptote coefficient. This could be expected, as DH
is a measure of the stand’s maximum height potential, which is usually associated with the
site productivity and the site index [47]. DH is a result of the competition process present
in the stand, the stand density [17], and the stand quality [5,46]. Although significant
correlation between the coefficients and the stand-level predictor variables such as the
Age, the N and the BA was detected, adding other stand-level predictor variables did not
increase the model performances significantly. In this work, DH was significantly corre-
lated with other stand-level predictor variables except the Dr. One of the reasons why the
stand-level predictor variables that were significantly correlated with the coefficient of the
basic model did not significantly improve the H-D model is the multicollinearity. Finally,
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the generalized H-D model containing only DH as an additional stand-level predictor
variable was chosen as the best generalized H-D model for the Mongolian pine stands in
the study area.

4.2. Mixed-Effects H-D Models

Mixed-effects models are more flexible and have a better predictive accuracy in
modeling H-D relationships. Furthermore, they can considerably improve the model
prediction accuracy through different calibration scenarios [17,24]. In this study, the basic
mixed-effect model includes only one random-effect parameter. In addition, the random-
effect was included in the asymptote coefficient, which indicated that the maximum height
had a high variation between stands [17,25].

Generalized mixed-effects models containing stand-level predictor variables that can
account for the variability among stands generally achieve a better performance in fitting
and prediction [27]. The DH stand-level predictor variable significantly improved the basic
model according to the AIC and the BIC statistics. In addition, the generalized mixed-effects
model also had better predictive accuracy under the majority of calibration designs, which
is consistent with our first hypothesis. Nevertheless, the MAE and RMSE statistics did
not improve based on the results of fitting and the best calibration design. Similar results
were described by Zang et al. (2016), where their basic mixed-effects H-D model for larch
plantations in northern and northeastern China provided better RMSE and MAE statistics
than the generalized mixed-effects model [25]. Furthermore, Huang et al. (2009) found
that the basic mixed-effects model performed as well as or better than the generalized
mixed-effects model for aspen grown in boreal mixed wood forests in Alberta, which is
similar to our study in that the inclusion of other stand-level predictor variables in the
model did not produce more accurate predictions [5]. A possible explanation for why
the generalized mixed-effects H-D model does not provide a better accuracy compared to
the basic mixed-effects model is related to the capacity of the random-effect parameter to
explain the various H-D relationships among stands. Our results support this theory, since
both the stand-level predictor variable and the random effects were introduced alongside
the asymptote coefficient of the model, and the random effects of the basic mixed-effects
model were significantly larger than those of the generalized mixed-effects model. In
addition, the estimated random-effects of the basic mixed-effects model were strongly and
significantly correlated with the stand-level predictor variable DH. However, generalized
models provide a better biological representation of the process studied and are helpful
for large datasets [25,48]. Thus, whether or not the generalized mixed-effects model is
still needed to predict the height for the sandy Mongolian pine plantations needs further
investigation. Furthermore, DH models are not yet available for this species as far as we
know. This would make the generalized model even more difficult to apply as the field
work would involve measuring the height of the tallest 100 trees or estimating DH based on
a sample plot. Considering that similar results can be obtained with the basic mixed-effects
model by predicting the random effect with a reduced number of trees measured on the
field, we recommend the use of the basic mixed-effects model to reduce the necessary
field work.

4.3. Calibration for Random-Effects Prediction

The most important reason for developing H-D models is to estimate tree heights
using tree diameters at breast height for new stands where these measurements are miss-
ing. The mixed-effects framework allows for the calibration of the fixed effects in order
to obtain more accurate predictions than the ones obtained using the population mean
coefficients. The calibration design (which mainly includes the number and the size of
trees) has an obvious effect on the predictive accuracy of the model [49–51]. Furthermore,
the appropriate calibration design varies between forest types and species [6,7,17]. To
determine the most appropriate prediction strategy, 47 calibration combinations were
analyzed separately for the generalized and basic mixed-effects H-D models. As we sug-
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gested in our second hypothesis, the MAE and the RMSE decreased with the increase
in the number of trees. However, the decrease in the MAE and the RMSE was different
for each of the two mixed-effects models. The MAE and the RMSE for the generalized
mixed-effects H-D model fluctuated slightly when changing the sampling design, similar
to Crecente-Campo et al. (2014) [52]. Unlike the generalized mixed-effects H-D model,
the basic mixed-effects H-D model requires less field work effort and costs for random-
effects calibration. Moreover, the basic mixed-effects H-D model does not require the
extra DH measurement in addition to the D measurements. Moreover, the basic mixed-
effects H-D model required only two height measurements for the calculation of random
parameters and yielded similar MAE and RMSE when compared with the generalized
mixed-effects model.

Unexpectedly, the third hypothesis was not confirmed for our dataset: sampling trees
from different diameter classes did not lead to better calibration results. In this study, we
found that for the basic mixed-effects H-D model only the two thickest tree heights are
needed in order to calibrate the model and to produce reliable and labor-saving predictions.
In contrast to our findings, Bronisz and Mehtätalo (2020) reported that using the extreme
trees (the thinnest and the thickest) in Betula pendula stands led to better performances
than any other analyzed sampling strategy [7]. Our results are close to those obtained by
Ciceu et al. (2020), who reported that the diameter at breast height of medium and thickest
trees was the best for model calibration for Picea abies in mixed uneven-aged stands [6].

Our basic mixed-effects model calibration results can be explained based on the strong
correlation between the DH and the asymptote coefficient. The heights of the two largest
trees serve as an estimation of the dominant height, thus replacing the importance of
this variable in the H-D relationship between stands. Thus, using the thickest trees pro-
vided more additional information for calibrating the basic mixed-effects model than the
information brought by the median tree height in the generalized H-D model.

Following the above-mentioned results, we recommend sampling the two thickest
trees per plot for a practical height prediction. However, our study was only conducted in
Mongolian pine plantations on sandy land in northwest Liaoning Province of China, as
there was no available independent dataset for model validation in other regions. These
results should be carefully validated when the region is changed.

5. Conclusions

Basic and generalized H-D models were obtained for the Mongolian pine plantations
on sandy land in northern China. We found that the Schumacher [37] model had the best
performance in modeling local H-D relationships relative to the other basic H-D models
found in the literature. The DH was found to significantly describe the H-D relationships
among plots.

We found that the basic mixed-effects H-D model produces similar prediction to the
generalized model but with less sampling effort, which is more suitable for practical appli-
cations. Thus, the basic mixed-effects H-D model can be a solution for easily estimating
individual tree heights in Mongolian pine plantations where DH measurements are not
available. Furthermore, an increased accuracy could be obtained by calibrating the random
effects using additional height measurements of the two thickest trees.

The use of this method would reduce the necessary field work which would otherwise
be needed to determine the dominant height of the stand by measuring only two heights
for random effects calibration.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12091144/s1. Table S1: Akaike information criterion (AIC) and the Bayesian information
criterion (BIC) of different variance function in fitting heteroscedasticity for mixed-effects models.
Bold indicates the lowest AIC and BIC. Table S2: Mean absolute error (MAE) and root mean squared
error (RMSE) for different calibration designs of mixed-effects H-D models.
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