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Abstract: This study shows the energy potential of pine wood waste for the production of solid
biofuels, and was carried out in an indigenous community in the state of Michoacán. One of the main
economic activities of this community is the production of handcrafted furniture, which generates
a large amount of wood waste. The most relevant results obtained in this research show that the
community generates approximately 2268 kg of sawdust and 5418 kg of shavings per week, and the
estimated energy potential per year for both sawdust is 1.94 PJ and for shaving is 4.65 PJ. Based on the
particle size observed, the wood residue can be used to generate pellets or briquettes. Other average
results in sawdust and (shavings) are the following: initial moisture content 15.3% (16.8%), apparent
density 169.23 kg/m3 (49.25 kg/m3), ash 0.43% (0.42%), volatile material 84.9% (83.60%), fixed carbon
14.65% (15.96%), hemicelluloses 12.89% (10.68%), cellulose 52.68% (52.82%), lignin 26.73% (25.98%),
extractives 7.69% (10.51%), calorific value 17.6 MJ/kg (17.9 MJ/kg). The major chemical elements in
the ash were Al, K. Fe, Ca, P, Na, and Mg. Finally, the results obtained indicate that this biomass can
be used to generate pellets or briquettes in this indigenous community.

Keywords: lignocellulosic residues; solid biofuels; bioenergy; briquettes; chemical analysis; ulti-
mate analysis

1. Introduction

The use of renewable energy resources is essential. Over the years, various biomasses
that can provide energy with less environmental impact have been discussed. The focus is
on the catalytic conversion of wood biomass, with the aim of mitigating global warming,
and reducing the emission of CO2, through a potential catalyst, together with a sustainable
concept for biorefineries based on lignocellulosic materials [1]. The carbon cycle and the
energy transduced into it serve to feed the planet’s living processes at an economical level
of energy transfer using formed and neutral bonds between carbon molecules. These
processes form the basis for the transfer of energy in the profitable production of fuel
liquids from plant biomass; of particular importance are those aspects related to plant cell
walls and their bioconversion [2] in different products, such as bioethanol [3]. Mexico is an
underdeveloped country that has a low share of renewable energy sources in its energy
matrix [4,5], since its energy system is based on fossil fuels; crude oil represents 59.8% of
primary energy production, followed by natural gas with 24.10%, and coal with 3.64%,
while renewable energies contribute 10.46% (solar 0.64%, wind 0.95% and biomass 5.70%)
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of the total energy demand [6,7]. The increase in world population and economic growth
have created a greater demand for fossil fuels, which present challenges as they are finite
resources and have significant environmental impacts, such as global climate change [8,9].
A transition to renewable sources of energy can help address these issues, as well as aid
in the improvement of social justice and economic equity in local areas [10]. Industries
point to lignocellulosic biomass (wood, straw, cereal grains, etc.) as a raw material for
energy production. Furthermore, the use of lignocellulosic biomass for energy production
allows the use of small-scale cogeneration plants to obtain energy [11]. The urgent shift to
clean and sustainable energy promotes a transition capable of meeting the energy needs
of humanity and making a sustainable future possible [4,12], which is a central theme
for science, politics, and public discourse throughout the world [13]. One important
component of this shift is investment in technologies for the generation of renewable
energy sources [14–16]. The use of these woody biomass raw materials for bioenergy is
desirable, as they are derived from a renewable resource, are locally produced, and carbon
neutral, which can help with energy security, reduce greenhouse gases, and create job
opportunities that support rural development [17]. Studies on the characterization of
biomass properties include proximal analysis, final analysis, and calorimetry [18,19], as
they are of utmost importance to know the available useful energy and the transformation
into densified solid biofuels [20,21]. The use of biomass as an alternative renewable energy
source to reduce the amount of CO2 emissions is relatively new, and accounts for about
10% of the total energy produced worldwide [22–25]. Biomass sources, such as forestry,
depend on technical innovation and the broader social acceptance of these products, as
they represent an emerging alternative renewable energy resource. The current methods
of forest harvesting at a global level lie in sawing and wood processing activities, where
large amounts of by-products are generated in the form of tree branches, tips, bark and
sawdust. These by-products are commonly referred to as biomass, and are often used as
combustibles [26]. In the case of Mexico, this biomass source comes from temperate forests
that are mostly dominated by pine-oak species [27], which cover an area of 31.8 million
hectares [28]. The total national forest production for 2018 was 8.3 million cubic meters
of timber. The states of the Mexican republic with the highest production were: Durango
(30.2%), Chihuahua (19.9%), Oaxaca (9.5%), Veracruz (6.1%), Michoacán (5.4%), and other
states (28.9%). Forest production for the state of Michoacán in this same year by genus or
types of wood had the following distribution: 85.1% (Pinus spp.), 6.2% (Quercus spp.), 5.3%
(Mexican pine “Oyamel”), 3.4% (other hardwoods), 0.46% (common tropical woods), and
0.025% (other conifers). The total forest production of pine wood in the state of Michoacán
was 85.1% and had the following distribution: 93.2% (squared timber), 6.6% (cellulosic
material), 0.1% (posts, piling and fencing). The total forestry production of oak wood was
6.2%, with the following distribution: 69.6% (squared timber), 23.9% (cellulosic material),
4.0% (firewood), and 2.5% (charcoal) [29]. Forest residues for power generation have
grown globally due to their potential as sources of clean, affordable, and renewable energy;
however, knowledge about the availability of raw material, costs, and possible suppliers
of biomass is scarce in Mexico [30]. This study identifies the potential for timber waste in
the indigenous community of Pichátaro, located in the state of Michoacán, Mexico. The
forest of this community is made up of species of pine and oak. The predominant pine
species are Pinus pseudostrobus, P. montezumae, and P. leiophylla. In the case of oak woods,
the most representative species are Quercus rugosa and Quercus laurina [31]. No current
data were available on the trees density per hectare or the forest area of the indigenous
community, but for the year 2014 the forest area was approximately 8484 hectares [32]. In
this community, the main economic activity is the transformation of wood into finished
products, mainly furniture. This activity involves approximately 200 artisan workshops,
in which rustic furniture and other artisan articles are produced (for example: wardrobes,
chairs, dining rooms, board games, and animal figures, among others). It should be noted
that this production is usually manual, and uses manual tools such as handsaws, scroll
saws, circular saws, edgers, roller sanders, framing chisels, jackplanes, and others. This
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artisanal process produces sawdust and shavings as its main waste product. It is important
to know the amount of waste that is generated in this indigenous community, and to
determine its physical, chemical, and energy properties, because this timber waste can be
different from others, either because of the origin of the raw material or through the type
of processing. It is known that wood processing into finished products generates a large
amount of wood waste, which is underused or not used at all, and produces atmospheric
pollution. The amount of this residue is not quantified, therefore the potential or scope
of the development of solid biofuels and its application and benefit to rural communities
is unknown [33,34]. For this reason, this article explores the possibilities of using wood
biomass of Pinus spp., since by determining the physical, chemical, and energetic properties
of the waste generated in the studied community, it may aid the development and small
scale production of densified materials, satisfy the demand for local thermal energy, and
thereby contribute to the generation of biofuel solids derived from waste, thus generating
a lower environmental impact for the planet. Until now, there has been no large-scale
production or use of wood-based biomasses in Mexico and there are no detailed studies on
their technical energy potential, logistics costs, or specific uses [35,36]. In addition to the
energy potential of the wood waste, it is important to understand that the biomass residues
have the potential to meet the energy demands within the same communities. The rural
communities involved can benefit from the increased value of the timber residue, which
will create a new industry and cause the living conditions of the communities involved to
improve.

2. Materials and Methods
2.1. Experimental Section
2.1.1. Community Diagnosis

The study community was San Francisco Pichátaro (latitude 19.55◦, longitude 101.8◦)
located in the state of Michoacán, Mexico [37]. In this indigenous community there are
approximately 200 artisan workshops that transform wood into typical furniture, of which
a sample of 70 artisans was randomly chosen, representing 65% of the total. Chosen artisans
have a common characteristic: their workshops have the basic tools to work, in addition
to the availability to provide information for this research. Through the application of
surveys and home visits, data were obtained on the type of wood used to make furniture
and the amount of wood waste they generate. Subsequently, of the 70 workshops surveyed,
only 10 workshops were chosen, and as the community is divided into 7 neighborhoods,
1 workshop was chosen for each neighborhood, the other three workshops were chosen
at random. From this last sampling, 5 sawdust and 5 shavings samples were obtained for
analysis.

2.1.2. Moisture Content

The initial moisture content of the sawdust and shavings was determined in triplicate
by the dehydration method according to the UNE-EN 14774-1 [38]. Subsequently, the
collected samples were allowed to dry in the open air for 4 weeks, then, a representative
portion of each sample of the wood residues was ground using Wiley equipment to obtain
40-mesh woodmeal, which was used for the analyses described below.

2.1.3. Granulometry

The particle size distribution of the sawdust and shavings samples dried in the open
air was determined following the UNE-EN 15149-1 standard [39]; using a vibrating sieve
(RoTap RX-29), the sieving process it was 3 min.

2.1.4. Bulk Density

The bulk density of the sawdust and shavings samples was determined by the UNE-
EN 15103 [40] standard, using an AS 310.R2 PLUS analytical balance.
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2.1.5. Proximate Analysis

The ash content of the timber residues was determined according to the EN 14775
standard [41], and the volatile matter content according to the ASTM E872-82 standard [42].
For this case, absolutely dry 40-mesh woodmeal was used. Fixed carbon was calculated by
difference, subtracting the ash content and volatiles by 100% [18].

2.1.6. Ultimate Analysis

The content of carbon, hydrogen, nitrogen, and sulfur was measured in an elemental
analyzer (Model 4010; Costech International S.p.A., Milan, Italy) following the UNE-
CEN/TS 15104 EX standard [43]. For this case, absolutely dry 40-mesh (425 µm) biomass
was used. The oxygen content was calculated by difference [44], and the analysis was
performed only once.

2.1.7. Basic Chemical Analysis

To determine the chemical composition of the timber residues (sawdust and shavings),
a fiber analysis was carried out based on the gravimetric method Van Soest using α-amylase
in an ANAKOM-200 equipment [45]. For this purpose, absolutely dry 40-mesh (425 µm)
woodmeal [46] was used.

2.1.8. Ash Microanalysis

A Varian inductively coupled plasma-optical emission spectrophotometer (ICP-AES)
(Model 730-ES; Varian Inc. (Agilent), Mulgrave, Australia) was used to carry out the ash
microanalysis from the wood residue samples [47]. The ash microanalysis searched for the
presence of 29 chemical elements and was only conducted once.

2.1.9. Calorific Value

The calorific value of the sawdust and shavings samples was determined using a
semiautomatic calorimeter (LECO AC600, St. Joseph, MI, USA) according to EN-14918 [48].
For this purpose, absolutely dry 100-mesh (425 µm) woodmeal was used and the analysis
was carried out in duplicate.

2.1.10. Community Energy Potential

The energy potential of biomass is obtained from the relationship that exists between
the mass of dry waste (Mrs) and the energy of the waste per unit mass (E), also known
as calorific value (CV). Equation (1) expresses the relationship between the variables and
proposes an approximate mathematical model [49].

PE = (Mrs)× (E) (1)

where:

PE: Energy potential [TJ/year]
Mrs: Mass of dry residue [t/year]
E: Energy of the residue per unit mass [TJ/t]
CV: Calorific value (MJ/kg)

2.1.11. Statistical Analysis

In order to compare the data obtained in analyses that were conducted more than once,
an analysis of variance was performed at 95% statistical confidence and the mean values
were compared using the multiple range test with the method of least significant difference
(LSD) [50]. The data obtained was processed using Statgraphics Centurion 19.2.01. In all
cases, the average value and standard deviation are reported.
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2.1.12. Multi-Criteria Analysis

Multicriteria analysis is a tool to support decision-making during a certain process
that allows the integration of different criteria according to the opinion of actors in a single
analysis framework to provide a comprehensive vision [51]. This study utilized multi-
criteria analysis to take into account sustainability indicators, considering the methodology
of multicriteria analysis and sustainability evaluation with the help of the MULTIBERSO
program [52].

3. Results
3.1. Community Diagnosis

The data obtained in the diagnosis show that the species most used to obtain wood
used in the manufacture of furniture correspond to the Pinus genus with 90%, followed
by oak wood (Quercus spp.) with 10%. In addition, the diagnosis indicates that 2268 kg of
sawdust (±15.2) and 5418 kg of shavings (±17.8) of Pinus spp. are generated per week on
average for each workshop, with sawdust representing 30.4% and shavings 69.6% of total
waste. Taking into account the 200 artisan workshops, it is estimated that the amount of
timber waste generated per week is 158,760 kg of sawdust and 379,260 kg of shavings.

3.2. Moisture Content

The result of the analysis of variance indicates that there are significant statistical
differences (p = 0.0033), as observed in the graph of means (Figure 1). The initial moisture
found in the sawdust samples ranged from 14.21% (±0.16) to 21.9% (±0.29) with an average
value of 15.30% (±3.83).
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3.3. Granulometry

The particle size found in the sawdust samples (SD) can be seen in Figure 2, and
Figure 3 shows the particle size found in the shavings samples (SH). These values corre-
spond to the average of the five samples taken for each type of material.
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3.4. Bulk Density

The result of variance analysis for density indicates that there are statistically signif-
icant differences (p = 0.0000). The result for the sawdust samples ranged from 143.89
(±5.84) kg/m3 to 196.91 (±13.90) kg/m3 (Figure 4) with an average value of 169.23
(±23.64) kg/m3. The bulk density for the shavings samples ranged from 40.78 kg/m3

(±3.52) to 57.88 kg/m3 (±3.10) with an average value of 49.25 kg/m3 (±8.16).
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3.5. Proximate Analysis

The result of variance analysis indicates that there are no statistically significant
differences (p = 0.7820). The ash content in the sawdust samples ranges from 0.30% (±0.33)



Forests 2021, 12, 977 7 of 18

to 0.64% (±0.39) with an average value of 0.43% (±0.14). The ash content in the shavings
samples ranges between 0.31% (±0.36) and 0.59% (±0.36), with an average value of 0.42%
(±0.11) (Figure 5).
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3.6. Ultimate Analysis

The results of the elemental analysis of the sawdust (SD) and shavings (SH) samples
are shown in Table 1.

Table 1. Ultimate analysis of sawdust (SD) and shavings (SH) samples (%).

Samples C H O N S

SD1 47.73 6.09 45.45 0.71 <0.01
SD2 47.98 6.13 45.49 0.37 <0.01
SD3 48.79 5.98 44.79 0.41 <0.01
SD4 48.12 6.09 45.37 0.40 <0.01
SD5 48.29 6.00 45.26 0.43 <0.01

Average 48.18 (±0.39) 6.06 (±0.06) 45.27 (±0.28) 0.46 (±0.13) <0.01
SH1 47.78 5.99 45.60 0.60 <0.01
SH2 48.31 6.16 45.12 0.38 <0.01
SH3 47.73 6.04 45.81 0.38 <0.01
SH4 47.96 6.05 45.56 0.41 <0.01
SH5 48.96 6.09 44.50 0.43 <0.01

Average 48.15 (±0.50) 6.06 (±0.06) 45.32 (±0.52) 0.44 (±0.09) <0.01

3.7. Basic Chemical Analysis

Table 2 shows the result of the chemical analysis of the sawdust (SD) and shavings
(SH) wood residues. Regarding the sawdust samples, the average result was: hemicellulose
(12.89%, ±2.64), cellulose (52.68%, ±2.82), lignin (26.73%, ±0.89), and extractives (7.69%,
±1.34). For the case of the shavings samples, the average result was: hemicellulose (10.68%,
±2.05), cellulose (52.82%, ±1.73), lignin (25.98%, ±0.99), and extractives (10.51%, ±1.16).

Table 2. Basic chemical composition of sawdust (SD) and shavings (SH) samples (%).

Samples Hemicellulose Cellulose Lignin Extractives

SD1 17.34 48.16 25.60 8.9
SD2 12.41 54.87 26.88 5.84
SD3 11.39 54.54 26.94 7.13
SD4 12.83 51.69 28.01 7.47
SD5 10.49 54.17 26.23 9.11

Average 12.89 (±2.64) 52.68 (±2.82) 26.73 (±0.89) 7.69 (±1.34)
SH1 10.34 51.89 26.01 11.76
SH2 10.51 54.79 25.95 8.75
SH3 9.12 53.86 25.83 11.19
SH4 9.24 53.24 27.46 10.06
SH5 14.19 50.35 24.66 10.8

3.8. Ash Microanalysis

Table 3 shows the result of the microanalysis of the ash from the sawdust (SD) and
shavings (SH) samples.
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Table 3. Ash microanalysis of sawdust (SD) and shavings (SH) samples (ppm).

Element SD1 SD2 SD3 SD4 SD5 SH1 SH2 SH3 SH4 SH5

Ag ND ND ND ND ND ND ND ND ND ND
Al 15,883.66 4770.21 19,198.40 16,808.97 16,211.77 10,390.06 15,397.57 14,295.14 12,238.74 22,787.87
As ND ND ND ND ND ND ND ND ND ND
B 22.23 148.20 69.71 115.31 48.15 21.26 85.56 15.76 94.17 88.92
Ba 115.58 292.05 183.96 162.40 114.96 131.66 203.33 92.94 158.19 200.81
Be ND ND ND ND ND ND ND ND ND ND
Ca 3946.68 24,350.40 8771.71 14,685.20 8720.03 2671.08 16,015.29 7234.63 14,357.56 15,801.00
Cd 1.57 1.32 2.25 2.34 1.75 2.01 2.54 1.10 1.82 2.93
Co ND ND ND ND ND ND ND ND ND ND
Cr 11.54 ND 9.22 10.66 8.20 15.19 7.27 3.57 6.91 16.98
Cu 70.21 230.36 156.34 223.88 126.50 117.05 420.09 58.18 236.96 415.85
Fe 5114.25 2110.25 7834.38 8357.62 7647.26 4696.31 7862.51 6923.31 6633.44 11,632.98
K 12,776.78 96,001.30 29,193.39 50,875.25 30,390.46 8301.61 56,352.52 27,200.89 48,529.56 58,896.15
Li 9.35 105.45 31.74 38.03 24.42 32.26 29.15 31.66 33.24 6.32

Mg 1312.76 8714.68 3034.71 5224.66 3127.17 819.25 5332.31 2612.19 4816.56 5531.51
Mn 287.62 1031.42 574.89 928.14 402.66 318.79 730.33 281.38 646.38 694.20
Mo ND ND ND ND ND ND ND ND ND ND
Na 2368.42 3636.02 2200.23 2121.57 1723.90 1513.92 2734.95 2220.94 2229.47 2313.20
Ni 22.60 19.82 64.48 59.41 34.14 40.22 40.92 15.78 23.19 30.74
P 5892.63 8477.57 5159.20 10,391.33 4566.17 2625.44 6984.77 2055.79 6442.35 6885.04

Pb ND ND ND ND ND ND ND ND ND ND
Sb ND ND ND ND ND ND ND ND ND ND
Se ND ND ND ND ND ND ND ND ND ND
Si 287.89 3864.95 234.59 6050.14 338.16 174.93 7548.83 18.01 50.05 1501.70
Sn 2.76 16.96 2.26 20.47 ND 8.12 3.97 ND ND 2.57
Sr 102.81 452.39 240.41 350.54 178.83 104.16 280.28 97.79 346.09 326.90
Tl ND ND ND ND ND ND ND ND ND ND
V 28.07 6.39 29.08 28.22 27.10 35.02 26.73 21.97 18.87 37.25

Zn 245.44 2557.69 535.13 614.66 340.92 241.61 1058.91 181.06 571.45 696.06

ND = not detected.

3.9. Calorific Value

The average calorific value for the sawdust samples was 17.6 MJ/kg (±0.15), and for
the shavings samples 17.9 MJ/kg (±0.15).

3.10. Community Energy Potential

According to the diagnosis of the availability of the timber residue in the indigenous
community, approximately 108.86 tons per year of sawdust and 260.06 tons per year of
shavings are generated. Thus, the energy potential for this indigenous community is as
follows: for sawdust it is 1.94 PJ/yr, and for shavings it is 4.65 PJ/yr.

3.11. Multi-Criteria Analysis

This analysis considered energy, physical-proximal, and chemical composition param-
eters, which lead to quantifiable indicators, which can be seen in Table 4.
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Table 4. Parameters and indicators used in the multi-criteria analysis.

Parameter Indicator

Energetic Calorific value (MJ/Kg)

Physical-proximal
Moisture (%)

Ash (%)
Volatile matter (%)
Fixed carbon (%)

Chemical composition
Lignin (%)

Cellulose (%)
Hemicellulose (%)

Extractives (%)

The weighting with maximum and minimum values that define the best and worst
scenario, the maximum value data are obtained from the scientific literature, as shown in
Table 5.

Table 5. Indicator values.

Indicator Maximum Value Minimum Value

Calorific value (MJ/Kg) 20.92 [53] 0
Moisture (%) 56 [54] 0

Ash (%) 18.20 [53] 0
Volatile matter (%) 86.32 [55] 0
Fixed carbon (%) 66.16 [56] 0

Lignin (%) 43.37 [57] 0
Cellulose (%) 53.3 [58] 0

Hemicellulose (%) 87.11 [59] 0
Extractives (%) 56.1 [60] 0

The multi-criteria methodology is not a per se tool, it must always be comparative. In
this study, the following timber residues were analyzed for comparison: (1) pine residue
(Pinus spp.) and (2) oak residue (Quercus spp.). The real evaluation of the indicators for
the two case studies are shown in Table 6. These values (Table 6) are normalized with
the values in Table 5, to establish a scale from 0 to 10. Zero represents the worst possible
scenario, while ten the best. The normalized values are shown in Table 7.

Table 6. Evaluation of the indicators.

Indicator Pinus spp. Waste Quercus spp. Waste

Calorific value (MJ/Kg) 18.0 19.5 [26]
Moisture (%) 16.82 25 [26]

Ash (%) 0.64 0.95 [26]
Volatile matter (%) 78.92 87.33 [26]
Fixed carbon (%) 8.76 8.88 [26]

Lignin (%) 26.7 24.5 [61]
Cellulose (%) 52.6 38.4 [61]

Hemicellulose (%) 13.14 24 [61]
Extractives (%) 19.8 6.94 [62]
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Table 7. Normalized values for the analysis.

Indicator Pinus spp. Waste Quercus spp. Waste

Calorific value (MJ/Kg) 8.60 9.32
Moisture (%) 3.00 4.46

Ash (%) 0.18 0.27
Volatile matter (%) 9.14 10.11
Fixed carbon (%) 1.32 1.34

Lignin (%) 6.15 5.64
Cellulosa (%) 9.86 7.20

Hemicellulose (%) 1.50 2.75
Extractives (%) 3.52 1.2

The multi-criteria analysis and sustainability indicators, which show the results graph-
ically, are shown in Figure 8.
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The different indicators that intervened in the respective analysis are shown in
Figure 8; this allows comparison of the potential of the Pinus spp. timber residue with
that of the Quercus spp. timber residue. In a graphic way, strengths and weaknesses can
be appreciated in different aspects, from an energetic, physical-proximal, and chemical
composition approach.

4. Discussion
4.1. Moisture Content

Data reported in the scientific literature indicate an average moisture content of the
sawdust ranging from 15% to 37% [63,64]. For the shavings samples, the moisture ranged
from 9.54% (±0.78) to 33.55% (±39.26) with an average value of 16.82% (±9.70). These
results obtained are within the range of 10% to 60% of the average moisture content
reported for biomass [54,65,66], which indicates that an artificial drying process would not
be necessary to use it in the elaboration of densified biofuels.

The moisture content reached by the samples in the open air after 4 weeks was 15.30%
(±3.83) for sawdust, which is in the range reported for dry sawdust in the open air (5% to
19%) [67]. For the shavings samples, the result was 16.82% (±3.23), and previous reports
indicate at least 8.4% [68] and 9.2% [69], indicating that the final moisture content in the
samples studied here is ideal for densified biofuel manufacturing, without the need for
additional drying.
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4.2. Granulometry

The granulometric analysis for the sawdust indicates that approximately 70% of
particles were greater than 1.00 mm, therefore, practically all of the sawdust could be used
to make pellets, since the optimal size of biomass for pellets ranges from 1 mm to 5 mm [70].
In the case of shavings, approximately 97% of the particles were recorded to be larger than
1.00 mm, while other studies report that the proportion of pine sawdust for briquettes
varies from 30% to 80% [71], therefore, the shavings could be used for the development
of briquettes, although this will depend on the briquetting process. Another option for
the production of biofuels densified with these two lignocellulosic materials could be to
prepare mixtures of both materials and seek the best properties. There is evidence that
using mixtures of different particle sizes results in desirable properties, most notably in
pellets [72,73].

4.3. Bulk Density

The sawdust bulk density coincides with mean values between 160 kg/m3 to 235 kg/m3

previous reports [53,74]. For the case of shavings, values from 160 kg/m3 to 330 kg/m3

are reported [65]. The bulk density for the shavings samples in this investigation is
within acceptable parameters. The densities reported in pines are between 420 kg/m3 and
670 kg/m3 [23].

4.4. Proximate Analysis

Our proximate analysis results generally coincide with the data reported for pine
woods: 0.28% to 1.25% [54], 0.38% to 1.78% [58], 0.22% to 1.92% [75], 1.07% [76], and 0.27%
to 0.95% [77]. The amount of ash in biomass plays an important role when designing
thermal installations to burn densified biofuels, and also influences the calorific value [78].
According to [79] our study material could be used to produce class A1 pellets, whose
requirement is an ash content of less than 0.7%.

Regarding the content of volatile matter, the result of the analysis of variance indicates
that there are significant statistical differences (p = 0.0000). The volatile matter content for
the sawdust samples was found to range from 78.92% (±1.03) to 86.64% (±1.04), with a
mean value of 84.90% (±3.82), which is similar to those reported for pine sawdust (78.9%
to 89.8%) [77]. The results found for volatile matter generally coincide with previously
reported values for different timber residues (80.84 to 81.27%) [80], 78.60% [81], and 91.26%
to 95.01% for shavings samples, and 65.3% to 90.29% for sawdust samples [58], 78.60% [81].

The fixed carbon values for sawdust ranged from 10.38% (±0.67) to 20.77%, (±0.72)
with an average of 14.65% (±3.94), which coincide with data reported for pine sawdust
samples (9.6 to 20.4%) [77]. The results for the shavings samples ranged from 8.71% (±0.67)
to 32.76% (±0.82) with an average of 15.96% (±9.86). Other investigations report different
values for timber residues: 48.80% to 50.30% [82], 12.20% [83], 16.76% [84], 15.96% [85],
and from 4.49% to 34.35% [58]. In samples of agricultural residues and pine sawdust they
report 15.54% of fine carbon [86].

4.5. Ultimate Analysis

These results are in general agreement with the values reported for different types
of biomass [64]. The percentage of nitrogen and sulfur in the wood is usually low, as
the results show. Carbon and oxygen are the main components of solid biofuels and are
those that participate in the exothermic reaction during combustion, generating CO2 and
H2O [70]. For the biomass samples of sawdust, the carbon content ranged between 47.73%
and 48.29%, while the samples of shavings ranged between 47.73% and 48.96%. The oxygen
content for the sawdust was between 44.79% and 45.49%, while for the shavings it ranged
between 44.50% to 45.81%. Finally, the hydrogen content in sawdust ranged from 5.98%
to 6.13%, and for shavings it was between 5.99% and 6.16%. The results obtained are
consistent with those previously reported by recent studies [77,87,88].
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4.6. Basic Chemical Analysis

Our chemical analysis results are similar to those previously reported for pine saw-
dust [58]. The chemical analysis results for shavings samples are in agreement with
different studies for pine wood residues [89–95]. Lignin is the fundamental structural
element for the generation of energy. In this investigation, we obtained results similar to
the works reported for the species of Pinus genus, which is situated at 25.9% to 26.7% of
lignin [96,97].

4.7. Ash Microanalysis

The ash analysis is useful for the characterization of biomass [78]. Twenty chemical
elements were detected; the majority were Al, K, Fe, Ca, P, Na, and Mg. This result reveals
the majority presence of the most common chemical elements present in wood (potassium,
calcium, and magnesium), the main inorganic substances in wood [98], found up to 80%
in ash [99]. The concentration of K in the wood samples is relatively high, and could
generate problems in the combustion equipment [100,101], but this ash could also be used
as fertilizer [102].

4.8. Calorific Value

The results of calorific value are acceptable for pine wood waste used for briquettes
processing [103]. Other studies report values of 17.0 MJ/kg to 18.3 MJ kg [104], and of
16.91 MJ/kg for Pinus spp. [105].

4.9. Community Energy Potential

Case studies in Mexico report that the energy potential from the use of biomass for
today and the two decades to come is on average 2228 PJ/yr [33]. Another study carried
out in Mexico reports the potential of bioenergy and costs of the use for energy of woody
forest biomass on a regional scale: an available theoretical energy of 45.96 PJ for the
year 2013 [106]. Finally, for a regional case, focusing on three species with the highest
utilization rates (Pinus, Quercus, and Abies), a forecast analysis was carried out for the year
2023, resulting in the calculation of potentially 60.22 PJ. This result meets the goals set by
the National Forestry Commission of Mexico on hectares under sustainable use [29,107].
Mexico is not the only country in Latin America that estimates the energy potential of its
biomass to supply its primary energy needs by generating energy through woody biomass
from forest residues. Countries such as Colombia have an obvious interest in biomass;
which in 2009 contributed 3.4 PJ in electricity generation, 15.7 PJ of energy supply in the
transportation sector, and 193.5 PJ toward the total primary energy supply [108].

4.10. Multi-Criteria Analysis

The calorific value indicator shows that similarity by not presenting a significant
difference. Regarding the moisture content, it can be seen that the Pinus spp. residue
is lower, compared to the Quercus spp. residue, therefore no prior drying is required to
stabilize the samples and produce densified solid biofuels. The ash content of the two
residues previously mentioned is low; which makes them ideal for combustion in different
domestic scenarios, in particular the residue of Pinus spp. The content of volatile matter is
similar in both residues, with a slight difference, which is that the Quercus spp. residue
contains a higher content of volatile material that can be harmful to the environment.
Regarding fixed carbon, there is no significant difference, as the two residues have very
similar values on average: 8.82%. For the lignin content, the indicators involved report
similar values, although a higher percentage of lignin is found in the Pinus spp. residue.
This higher lignin content directly influences the calorific value, which may be higher
in this type of residue compared to Quercus spp. In the case of cellulose, the Pinus spp.
residue contains a larger amount compared to Quercus spp. By contrast, the hemicellulose
content is found in a higher percentage in the Quercus spp. residue. In summary, Pinus spp.
timber waste represents an abundant and competitive raw material compared to Quercus
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spp. timber waste in energy, physical-proximal, and chemical composition aspects, and is
seen as a raw material for the generation of bioenergy with indicators of sustainability. For
this indicator, the Pinus spp. timber residue is the ideal case.

5. Conclusions

The most relevant results obtained in this research show that the indigenous commu-
nity (Pichátaro, Michoacán, Mexico) generates approximately 2268 kg of sawdust and 5418
kg of shavings per week, and the estimated energy potential per year for both sawdust
is 1.94 PJ and for shaving is 4.65 PJ. This wood waste can be a valuable energy source
that can partially or totally meet the energy demand of this community. This biomass,
which is now underutilized, can be used, for example, to generate thermal energy. Of
course, these lignocellulosic residues could also be used in the future for the production of
densified solid biofuels (pellets or briquettes) for the indigenous community, or for other
rural communities, with less emission of pollutants into the environment.
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