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Abstract: Atlantic White Cedar (AWC) swamps are a globally threatened type of wetland ecosystem
and are a new form of ghost forest in the mid-Atlantic region of the US. Hydrogeomorphic regimes
foster peat formation, resulting in unique biodiversity and carbon sequestration services. Our
sites include regimes that are exposed to sea-level rise and storm-driven seawater intrusion, yet
other sites are protected by higher elevations. In this study, we evaluated climatic variables to
discern differences in tree ring formation as an indicator of growth among nine stands including
micro-tidal, oligohaline sites as well as other protected areas which served as a control. Standard
dendrochronological techniques were used, and series were divided into two sub-chronologies, 1895
to 1971 (early) and 1972 to 2018 (recent). AWC growth in response to precipitation parameters, e.g.,
Palmer Drought Severity Index (PDSI), were largely non-significant but were somewhat reversed
among sub-chronologies. Early correlations were primarily negatively correlated with PDSI, while
recent correlations were mostly positive, which suggests that even though inundation may reduce
photosynthate availability for growth, precipitation has begun to increase growth by alleviating
osmotic and toxic stresses associated with seawater. Analysis of climatic variables and tree growth at
the reference site found that other anthropogenic stressors associated with ditching exert a greater
influence. Hurricane impacts on tree growth exhibited no lasting negative effects; however, an AWC
ghost forest report from New Jersey connected mortality to a hurricane. Hydrogeomorphic regimes
may delay rather than eliminate risks associated with sea-level rise and storm-driven seawater.

Keywords: dendrochronology; hydrogeomorphic regime; hurricanes; Palmer Drought Severity
Index; sea level rise; salinity; tree rings

1. Introduction

Climate change affects coastal ecosystems through sea-level rise (SLR) [1] and in-
creased storm intensity, among other mechanisms [2], impacting plant communities [3]
and altering ecosystem services [4,5]. In coastal wetlands, climatic variables interact with
local hydrogeomorphic conditions [6] and influence inundation and salinity, which are
critical environmental determinants of wetland functions. The effects may be lethal to
vegetation, and when entire forested ecosystems are affected, the standing deadwood is
termed a ghost forest [3,7]. The phenomenon occurs in drowned river estuaries within two
hydrogeomorphic settings: microtidal hydrologic regimes behind coastal barrier islands,
where water levels are primarily influenced by wind, and macrotidal regimes, where bar-
rier islands are lacking [8]. Due to climate change, hydroperiods and salinity are increasing
in both contexts, thus understanding the role of inundation and salinity in ghost forest for-
mation is necessary for developing predictive models and adaptive management strategies.
Concerns are greater for ecosystems such as Atlantic White Cedar (AWC), Chamaecyparis
thyoides (L.) B.S.P.-dominated swamps.
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Within the Cupressaceae family, the genus Chamaecyparis is restricted to extreme
environments but is globally distributed [9]. AWC was first described as endangered in
1748 [10] and occurs in the United States from Maine to Mississippi in a narrow coastal
band [11]. The swamp exerts hydrologic control through the production of peat, resulting
in acidic and anoxic soil conditions [12] and influencing primary production [13], soil
respiration [14,15], and decomposition [16] functions, causing additional peat formation
and carbon sequestration. The peat maintains soil saturation and acts as a seed refugium
during fire. When fire kills the canopy, dense regeneration of AWC ensues such that a
monoculture develops [17,18], but the ecosystem is otherwise characterized by unique
biodiversity [19]. In the mid-Atlantic region, AWC extent has gradually declined due
to ditching within higher elevation sites such as the Great Dismal Swamp (GDS; mean
elevation 3 m above Mean Sea Level) (Figure 1). A large portion of the swamp forms the
Great Dismal Swamp National Wildlife Refuge (GDSNWR), which serves as a reference
site in this study. Currently, the largest remaining AWC stands occur in Alligator River
National Wildlife Refuge (ARNWR) within Dare County, NC, where the low landscape
position (<1 m above MSL) has protected AWC stands from drainage. However, the low
elevation exposes AWC stands to inundation and seawater associated with climate change
(Figure 1).
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Figure 1. Location of Great Dismal Swamp National Wildlife Refuge (GDSNWR) and Alligator River National Wildlife
Refuge (ARNWR). Alligator River forms the western boundary of the Albemarle-Pamlico Peninsula.

Soil saturation and inundation create anoxic soil layers to which wetland plants are
variously adapted [20–23], and these stresses increase as a result of climate change [24].
Bald Cypress, Taxodium distichum (L.) Rich., and AWC historically were co-dominant species
in our sites [25,26] and are classified as obligate wetland species [11], but the species diverge
in their inundation tolerance. Bald Cypress persists where inundation is deep [27,28] and
of long duration [29]; however, AWC is inundation-intolerant. Peatlands dominated by
AWC are characterized by a micro-topography of hummocks and hollows with AWC
establishing on hummocks. This pattern has been described in New Jersey [30] and in
GDSNWR and ARNWR in Virginia and North Carolina [31]. Avoidance of the water table
can also be achieved by shallow rooting, and Rodgers et al. [32], working within a subset
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of our stands, reported greater root biomass where water tables were higher. In addition,
several authors have reported that young AWC exhibit reduced growth and increased
mortality in response to inundation [33–36].

Seawater has osmotic and direct toxicological effects on non-halophytes [23] and
enters coastal systems via chronic mechanisms such as salt wedges and tides, or more
acutely as with storm-driven inputs where barrier islands otherwise protect estuaries [1,37].
Once seawater enters the sound system, dilution by watershed runoff creates a salinity
gradient that is analogous to other drowned river valley estuaries, and both tidal and
non-tidal wetlands plant communities are structured by the salinity gradient [38,39]. As
sea level rises, the salt wedge progresses and species composition is altered [4,40]. In
forested wetlands, other coniferous tree species exhibit reduced growth in response to
seawater, including Loblolly Pine, Pinus taeda L. [41–43], and Red Spruce, Picea rubens
Sarg. [44]. However, two other coniferous species in the Cupresaceae family appear to
have some tolerance: Eastern Red Cedar, Juniperus virginiana, particularly J. virginiana var.
silicicola ((Small) Silba) [11], although its occurrence in Virginia is not confirmed [45], and
Bald Cypress, which accumulates salt in wood tissue [46] and can persist with salinity up to
3.4 ppt [47]. While no published studies of AWC salt tolerance were found, young AWC in
a greenhouse study were shown to be sensitive to very low salt concentrations [48]. Early
in the twentieth century, channelization of the Saint John River in Delaware decreased the
growth of AWC, perhaps in response to increased salinity; however, growth rates among
surviving trees recovered within 2 years [49]. AWC ghost forest formation was reported
for mature AWC stands following Hurricane Sandy in New Jersey [50].

In addition to coastal peatlands along rivers, AWC swamps also occur in isolated
hydrogeomorphic settings such as the Great Dismal Swamp in Virginia and North Carolina
(Figure 1). These settings are not subject to sea-level rise or storm-driven seawater intrusion;
however, unditched AWC peatlands were not available in the region. GDSNWR contains
254 km of ditches [51], and the lower water table allows for increased growth of conifers
generally [52,53], and for AWC in GDSNWR [13] who found that growth between drained
and undrained sites are similar; however, drained sites support fewer, albeit larger trees. In
addition, while also working in GDSNWR [54], an evaluation of AWC tree ring growth cor-
related to water availability, which was modeled using the Palmer Drought Severity Index
(PDSI), an indicator of monthly water availability as influenced by antecedent precipitation
and temperature [55]. Correlation patterns diverged among drained and undrained stands,
suggesting that PDSI can detect water stress in AWC in the mid-Atlantic region.

Extensive tree mortality in or near ARNWR has been linked to hurricane events [56],
wind-driven water levels and salinity [1], local sea-level rise [3], and ditches [1,57]. AWC
mortality was noted in patches of ARNWR as early as 2005 [58]. AWC tree ring growth
has been found to correlate with PDSI and is influenced by ditches in GDSNWR [54] and
by historic channelization in Delaware [49]. Objectives of this study were to (1) evaluate
climate variables as indicators of AWC growth among 103 trees in 4 stands in the ARNWR,
(2) contrast the ARNWR tree growth response with that of a reference site consisting of
42 trees in 5 stands in the GDSNWR that are not exposed to sea-level rise or storm-driven
seawater, and (3) combine climatic analysis with the hydrogeomorphic setting of ARNWR
in order to anticipate the response of the species to climate change.

2. Materials and Methods
2.1. Study Area

Alligator River National Wildlife Refuge (ARNWR) is located between the Albemarle
Sound and Pamlico Sound about 16 km from the Atlantic Ocean on the Albemarle-Pamlico
Peninsula (Figure 1). The ~61,600 ha refuge was established in 1984 [59]. ARNWR ranges
in elevation above sea level from 3.8 m in the west to 0.3 m in the east [60] and water
inputs in this hydrogeomorphic setting are primarily influenced by wind direction and
wind tides [6]. The dominant habitat type in the refuge is pocosin wetlands and AWC
stands comprise ~2700 ha, which have been considered among the largest continuous
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stands of AWC in the species’ range [19]. The pocosin wetlands that the refuge contains
are characterized by deep mucks and peats, predominantly Pungo Muck soil series [60],
which has organic horizons to a depth of 1.83 m [61]. Site selection included AWC as the
dominant canopy species and Swamp Tupelo, Nyssa biflora Walt., was commonly associated
in the canopy [62]. Sample sites were along Milltail Creek, a water body that flows east to
west across the peninsula (Figure 1).

Great Dismal Swamp National Wildlife Refuge (GDSNWR) is located on the border
of Virginia and North Carolina about 50 km from the Atlantic Ocean and adjacent to the
Suffolk Scarp [19] (Figure 1). The 44,500 ha refuge was established in 1974 [63]. Elevation
varies across the refuge from 4.6 m to 7.6 m above sea level in the west and gradually slopes
(2 m per km) to the east, and water inputs are primarily precipitation and runoff [6,64].
AWC acreage declined following the operation of the Dismal Swamp Canal in 1805, which
began to lower the water tables. Drainage increased following enhanced ditching in the
1950s [65] and ditches total 224 km in length [51]. The last 1200 AWC disappeared after
Hurricane Isabel (2003) and our lab removed stem cuts in concert with salvage logging. Two
peat-burning fires ensued without substantial regeneration, and remnant stands were most
recently surveyed by Duberstein and Krauss [66]. Large stands of Red Maple, Acer rubrum
L., and Nyssa spp. Are dominant in the refuge [67], and Red Maple and Swamp Tupelo
were commonly associated with AWC in our sites in GDSNWR [62]. Soil composition in
the refuge is mostly organic [68], and the soil type in our sites was a Pungo muck, as in
ARNWR. Sample sites were located in the southern portion of the refuge and Corapeake,
Forest Line, Cross Canal, and South were the closest ditches [69] (Figure 1).

2.2. Wood Sample Collection and Preparation

In ARNWR, we collected two cores from 20 trees within each of three stands in 2018
and cores from 54 trees in a nearby stand in 2003 [70]. In GDSNWR reference sites, stem-cut
samples were collected from a total of 42 trees from five stands during 2006–2008 [69]
(Figure 1). All trees were sampled at breast height on north/south and east/west axes.
Core samples were dried and mounted. All samples were sanded with progressively finer
sandpaper [71].

2.3. Cross-Dating and Chronology Development

Tree rings were measured for each core, and for at least 4 radii per stem cut, using a
binocular microscope fitted to a Velmex TA (Velmex Inc., Bloomfield, NY, USA) micrometer
system and measured to the nearest 0.001 mm and recorded using Measure J2X Software
(v5.0) [72]. Patterson and Merry dated rings by visual reinspection of core and use of marker
years and employed COFECHA (v6.06 P) and ARSTAN (v6.05 P) to generate master series
of growth and to perform detrending of master series [69,70]. The remaining site series
(3 sites in ARNWR) were cross-dated in the Dendrochronology Program Library, dplR [73],
in R [74] using R Studio [75]. Detrending was also conducted in dplR using a Friedman
Super Smoother, and master chronologies for ARNWR and GDSNWR of Ring Width
Indexes (RWI) were produced. Reliability of each chronology was verified using Effective
Average Correlation between Series (RBAR.eff), Expressed Population Signal (EPS), Mean
Subsample Signal Strength (SSS), and Signal-to-Noise Ratio (SNR) thresholds [76,77].

2.4. Climatological Data

Palmer Drought Severity Index (PDSI), Palmer Hydrological Drought Index (PHDI),
and average monthly temperature were retrieved from the National Centers for Environ-
mental Information (NCEI) [78] from NOAA North Carolina Division 7 for ARNWR and
Virginia Division 1 for GDSNWR. Hurricane data were obtained from an NOAA database,
“Historical Hurricane Tracks”, which uses data from the NCEI International Best Track
Archive for Climate Stewardship, IBTrACS, and the NOAA National Hurricane Center
Best Track Data, HURDAT2 [79]. An area of interest including ARNWR with a range of
20 nautical miles (37 km) was constructed and named hurricanes passing through between
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1895 and 2018 were sorted for highest intensity. The most intense named hurricanes were
Gloria (1985), Donna (1960), Connie (1955), Ione (1955), and Cleo (1964) [79]. Three addi-
tional hurricanes of regional importance were also identified including Isabel (2003) [51],
Hazel (1954) [37], and Irene (2011) [56] (Table 1).

Table 1. Descriptive information for five major named hurricanes within the AOI, 20 nautical miles (37 km) of ARNWR
during the study period (1895–2018), and an additional three of regional importance [37,51,56]. Maximum Sustained
Windspeed in knots (kt) is reported. Percent Change is the deviation from 10-year running average of RWI prior to the
current year. Lags are in the current year, one, two, and three years post-hurricane, all contrasting the same 10-year period
for each hurricane.

Year Hurricane Name
Max Wind

Speed in AOI
(kt)

10-Year
Running

Average RWI
Percent Change from 10-Year Average

+0 +1 +2 +3

1954 Hazel 80 0.926 28.269 −11.089 22.449 39.807
1955 Connie, Ione 85, 65 0.984 −7.929 26.801 44.776 3.944
1960 Donna 85 0.966 −1.622 13.918 6.107 6.929
1964 Cleo 40 1.010 −10.034 −14.378 0.434 5.218
1985 Gloria 90 1.021 2.273 −14.681 −10.487 −14.670
2003 Isabel 85 0.981 7.507 −5.390 −2.230 −4.045
2011 Irene 65 0.986 3.337 0.366 −5.243 −2.396

2.5. Data Analysis

To better isolate the trends of sea-level rise from the late twentieth century to the
present, chronologies at ARNWR and GDSNWR were divided in half based on average
series age (chronologies ranged from 1895 to 2018, average age was 62 years, and the
midpoint year was 1972). Thus, dataset groupings include an “early period” from 1895 to
1971 and a “recent period” from 1972 to 2018 (Table 2). Reliability of each chronology was
verified by RBAR.eff, EPS, SSS, and SNR thresholds [76,77].

Table 2. Descriptive statistics of ARNWR and GDSNWR chronologies during full, early, and recent periods.

ARNWR GDSNWR

Full Early Recent Full Early Recent

Number of Trees
(number of time series) 103 (420) 102 (416) 103 (419) 42 stem cuts

(≥168 radii)
42 stem cuts
(≥168 radii)

42 stem cuts
(≥168 radii)

Chronology Length
(years)

1895–2018
(123)

1895–1971
(76)

1972–2018
(46)

1919–2003
(84)

1919–1971
(52)

1972–2003
(31)

Mean Age 62.25 28.88 33.69 81.26 49.26 32
Median Age 61 30 32 81 49 32

Signal-to-Noise Ratio
(SNR) 31.147 38.57 28.341 43.888 64.379 28.565

Mean Subsample Signal
Strength (SSS) 0.8175 0.7859 0.9659 0.9943 0.9935 1

Expressed Population
Signal (EPS) 0.969 0.975 0.966 0.978 0.985 0.966

Effective Average
Correlation Between Series

(RBAR.eff)
0.184 0.273 0.126 0.522 0.623 0.405

Correlations of monthly climatological variables and standardized annual growth
were evaluated using a 24-month climate window consisting of January in the previous
year to December of the current year. Climate correlations were performed on both periods
in the ARNWR and in the GDSNWR study sites.
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Most parameters failed normality tests both before and after transformation, so a
Spearman Ranked Correlation test was used for all months in the 24-month window.
Significance thresholds were evaluated using the Benjamini–Hochberg method with a false
discovery rate of 20% [80].

3. Results
3.1. ARNWR and GDSNWR Ring Width Index Results for the Full Chronologies

The ARNWR full (undivided) chronology results were reliable based on EPS (0.969),
SNR (31.147), RBAR.eff (0.184), and Mean SSS (0.8175; Table 2). Chronologies for each
time period at ARNWR were similarly reliable regarding EPS (≥0.966), SNR (≥28.341),
RBAR.eff (≥0.126), and Mean SSS (≥0.7859; Table 2). Mean RWI was 0.993 and ranged
from 0.74 (in 1951) to 1.294 (in 1957) (Figure 2).
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Figure 2. Ring Width Index (RWI) for the full study period, 1895–2018. ARNWR (dashed blue) spans 1895–2018 and
GDSNWR (red) spans 1919–2003. Years 1971/1972 denote division of early and recent periods. The five most intense named
hurricanes in ARNWR (based on wind speed in the area of interest) and three of regional importance from published studies
are labeled. Higher names indicate greater relative intensity.

Major hurricane events in the early period generally increased growth at a lag of 1, 2,
and 3 years but generally decreased growth for the year in which the hurricane occurred,
based on comparison to a 10-year running average of RWI. Hurricane events in the recent
period were generally associated with suppressed growth in 1, 2, and 3-year lags and
increased growth in the year in which they occurred (Table 1).

The GDSNWR full (undivided) chronology results were reliable based on EPS (0.978),
SNR (43.89), RBAR.eff (0.522), and Mean SSS (0.994; Table 2). Chronologies for each time
period at GDSNWR were similarly reliable according to EPS (≥0.978), SNR (≥28.565),
RBAR.eff (≥0.405), and Mean SSS (≥0.993; Table 2). Mean RWI was 0.997 and ranged from
0.595 in 1941 to 1.593 in 1922, which was considerably more variable than RWI in ARNWR
(Figure 2).

3.2. Correlations of AWC Growth and PDSI at ARNWR and GDSNWR for Divided (Early and
Recent) Chronologies

In ARNWR, correlations of growth and PDSI were not statistically significant but
diverged sharply among recent and early periods. PDSI and growth in the previous year
were consistently negative in the early period but became consistently positive in the recent
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period, particularly for the previous 12 months and continued through May of the current
year (Figure 3a).
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Figure 3. Spearman correlations in each month of 24-month window (12 months in current year and 12 in the previous year)
based on standardized tree ring chronology and Palmer Drought Severity Index (PDSI) for ARNWR (a) and GDSNWR (b)
sites. Each site is further divided into time periods including early (pre-1972, teal) and recent (post-1972, red). Significant
correlations are denoted by “*”, and colors correspond with periods.

In GDSNWR, correlations of growth and PDSI tended to be stronger during both
periods (early and recent, maximum = 0.553) (Figure 3b), and correlations were generally
higher than in ARNWR (maximum = 0.338) (Figure 3a). However, PSDI and growth
correlation patterns did not diverge as they did in ARNWR. Patterns of correlations in early
and recent periods were somewhat similar during the current year, and some significant
correlations were detected during the previous year (early = negative; recent = positive)
(Figure 3b). In the early period, the summer months of the previous year (June, July,
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and August) and two months of the current year (July and August) were significantly
positively correlated.

3.3. Temperature Correlation with Growth in ARNWR and GDSNWR

ARNWR average monthly temperature for the early period had the highest correlation
value in March (rs = 0.173) and the lowest correlation value in previous January (rs = −0.198)
(Figure 4a). Correlation values between the previous and current year lacked a clear trend.
The average monthly temperature for the recent period had the highest correlation value
in previous December (rs = 0.197) and the lowest correlation value in Previous March
(rs= −0.262). Correlation values between previous and current years lacked a clear trend.
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GDSNWR average monthly temperature for the late period had the highest correla-
tion value in January (rs = 0.272) and the lowest correlation value in June (rs = −0.384)
(Figure 4b). Correlation values between the previous and current year lacked a clear trend.
Average monthly temperature and growth for the recent period had the highest corre-
lation value in March (rs = 0.248) and the lowest correlation value in previous October
(rs = −0.316), but no clear trend was detected among previous and current years with
regard to temperature.

4. Discussion
4.1. Climate-Growth Relationships among Study Periods and Reference Sites
4.1.1. PDSI and Growth

The high values for EPS, interseries correlation (RBAR.eff), and mean SSS support
evaluation of the four stands at ARNWR as a single chronology (Table 1). In contrast to
the early period in this chronology (1908–1971), the recent period (1972–2013) exhibits a
markedly different response of growth to PDSI. At ARNWR, PDSI and growth exhibited a
non-significant, positive correlation in 12 of 12 months for the prior year and 9 of 12 months
for the current year. We interpret the change as an indication that AWC is more sensitive
to increasing seawater concentrations than to increasing inundation. Seawater intrusion
into ARNWR is limited by the barrier island system and diluted by precipitation within
the 4,755,000-ha Albemarle Sound watershed [37] and by the 141,000-ha Alligator River
watershed [81], Goose Creek-Alligator River (HUC12: 030102050903), but salinity may
have increased as a cumulative effect of SLR and storms during the 123-year tree-ring
chronology. Precipitation (direct and via runoff from the watershed) dilutes salt and other
soil toxins such as hydrogen sulfide [82] and alleviates these stresses on AWC. Stotts
et al. [49] reported that growth was suppressed following the circa-1920 channelization of
the Saint John River in Delaware, and the pattern of correlations of PDSI with growth is
similar to the results reported here.

We found evidence that inundation inhibits AWC growth at ARNWR. In contrast
to the ARNWR PDSI in the recent period, the early period ARNWR PDSI exhibited a
non-significant, negative correlation with growth in 20 of 24 months. Inundation and
soil anoxia associated with the seasonally saturated-flooded hydrologic regime [83] limit
mineralization and reduce nutrient availability [84–86]. Furthermore, roots respire more
when exposed to higher water tables in Loblolly Pine-dominated forest of the mid-Atlantic
region [87], which has also been reported for our AWC stands [88]. AWC roots can
tolerate long-term anoxic soil conditions [32], perhaps due to the species’ ability to create
aerenchyma through ethanol production [89], which would reduce the availability of
photosynthate and result in the lower growth rate we observed.

In the reference site (GDSNWR), the AWC growth rate response to climate variables
diverged from that of ARNWR, perhaps due to differences among hydrogeomorphic
regimes. In the recent period, and to a lesser extent in the early period, growth rates of
AWC in GDSNWR exhibited a stronger, positive correlation with PDSI during the current
growing season (Figure 3b). The higher landscape position (~3 m above MSL), more inland
location, and extensive ditching network in GDSNWR have been shown to lower the
water tables there in comparison to ARNWR, which is generally <1 m above sea level [31]
(Figure 1). GDSNWR growth patterns appear to confirm that reduced water availability
can limit growth both above ground [54] and below ground [32] in GDSNWR, but not in
ARNWR, where peat helps to maintain soil saturation. Root depth distribution represents
a morphological adaptation to water table position [32], which complicates our comparison
of the two sites, as deep rooting in GDSNWR prevents desiccation in late summer but
exposes roots to excess saturation during early growing season months, resulting in root
mortality at GDSNWR, but not at ARNWR. In addition, GDSNWR showed a weaker but
still positive response to PDSI in the recent period, which may have been influenced by
more extensive ditching efforts between 1955 and 1970 [90]. Ditching within GDSNWR
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reduces the risk of anoxic stresses there, but lower elevation precludes drainage by ditching
at ARNWR.

4.1.2. Temperature and Growth

Unlike PDSI, temperature was neither correlated with growth nor evidenced in sea-
sonal trends in ARNWR or GDSNWR. Geographically positioned near the middle of
the range for this species [19], temperature influences at both sites were expected to be
minor [91] compared to sites near the northern limit of the range [92]; however, some
environmental factors and responses merit discussion. During the current growing sea-
son, i.e., during early spring wood formation, growth in ARNWR is positively correlated
with temperature (March of the current year) (Figure 3b), which is likely a response to
extended growing seasons [93]. In addition, nutrient availability tends to be low due to
sequestration within peat, and seasonal organic inputs reach a peak circa August within
AWC swamps [13]. Mineralization of this more labile organic matter input may support
subsequent growth.

4.2. Hurricane Responses for Both Periods in the Study Site

We found no major or lasting influence of hurricanes on AWC growth (Figure 2).
Hurricanes may increase salinity through breaches in the barrier island system and by
intensifying wind tides but can also lower salinity through watershed runoff [94]. Indeed,
the greatest change we detected for the year after major hurricanes was positive (+26.8%,
based on 10-year running average of ring width index) (Figure 2 and Table 1). Ury et al. [56]
used remotely sensed data for ARNWR and found that hurricanes coincided with ghost
forest formation, especially Hurricane Irene in 2011, which followed a drought. However,
our trees showed no directional change in growth for 2011 or for the following 3 years,
compared to a 10-year running average. Indeed, all three of the major hurricanes we
considered occurred during the recent period, and all three coincided with negative trends
in growth. Decreases were fairly minor except for Hurricane Gloria in 1985, after which
growth declined by a total of ~15% within 3 years (Table 1). In the growth suppression
analysis by Stotts et al. [49], hurricane-induced suppression of AWC was modest and
persisted for less than 2 years. In contrast, AWC ghost forests formed following Hurricane
Sandy in New Jersey [50,95], and the protection afforded AWC in the hydrogeomorphic
regime at ARNWR may be limited.

4.3. Self-Maintenance Implications of Water Level and Salinity

For some wetlands, sediment accretion can keep pace with sea-level rise and maintain
pre-disturbance inundation rates. Allochthonous mineral inputs accrete in response to local
conditions in swamps [96] and both macro-tidal marshes [97] and micro-tidal marshes [98]
and may offset relative sea-level rise, which is also locally variable [99]. Autochthonous
organic inputs and peatland formation occur in some settings, and peat accumulation
approached 10 m during the last 10,000–12,000 years in GDSNWR [100]. In the microtidal
hydrogeomorphic setting at ARNWR, mineral sediment deposits are restricted to storm
events [98], and AWC peat accumulation may be limited by seawater intrusion, which
suggests that these stands may experience increased exposure to seawater intrusion as sea
level continues to rise.

Ury [56] reported 11% of ARNWR forests have been converted into ghost forests, but
those losses occurred on the eastern side of the peninsula and may have excluded AWC.
Salinity decreases as one travels north and west on the peninsula and declines still further
within the Alligator River, probably as a result of dilution by runoff from the 1479.50 km2

watershed [101]. AWC stands are therefore protected by the hydrogeomorphic regime
in which the barrier island system restricts tidal exchange in the sounds, the eastern half
of the peninsula buffers storms, and salinity in the Alligator River is diluted by riverine
discharges. However, Manda et al. [1] and Ferrell et al. [57] contend that sea water can
extend from Alligator River to peatlands when wind-driven tides flow through natural
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and artificial ditches, and the change in monthly PDSI correlations with growth that we
detected (Figure 2) supports their claim.

5. Conclusions

Water levels above those needed to saturate soil horizons are stressful to AWC, as
detected in the early period (prior to 1972); however, we demonstrated a shift during the
recent period, which implies a greater sensitivity to salt. In 2045, sea-level rise across North
Carolina is expected to range from 6.1 to 13.7 cm [102], and storm intensity is expected to
increase [2]. Given the projections for sea-level rise and probability of increasing storm
intensity, it seems likely that geographic position and dilution provide little more than a
delay in the loss of these stands and natural resource managers should plan for westward
migration of species where higher elevations occur on Pocosin Lakes National Wildlife
Refuge and Emily and Richardson Preyer Buckridge Coastal Reserve.
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