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Abstract: Eucalyptus globulus is native to southeastern Australia, including the island of Tasmania,
but is one of the most widely grown hardwood forestry species in the world and is naturalized on
several continents. We studied its naturalization in California, where the species has been planted
for over 150 years. We sampled 70 E. globulus trees from 53 locations spanning the entire range
of the species in California to quantify the genetic variation present and test whether particular
genotypes or native origin affect variation in naturalization among locations. Diversity and native
affinities were determined based on six nuclear microsatellite markers and sequences from a highly
variable chloroplast DNA region (JLA+). The likely native origin was determined by DNA-based
comparison with a range-wide native stand collection. Most of California’s E. globulus originated
from eastern Tasmania. Genetic diversity in California is greatly reduced compared with that of the
native Australian population, with a single chloroplast haplotype occurring in 66% of the Californian
samples. Throughout California, the degree of E. globulus naturalization varies widely but was not
associated with genotype or native origin of the trees, arguing that factors such as local climate and
disturbance are more important than pre-introduction evolutionary history.

Keywords: blue gum; chloroplast DNA; genetic diversity; invasive species; microsatellites; molecular
markers; non-native; landrace; eucalypt

1. Introduction

The genus Eucalyptus L’ Hér. (Myrtaceae) consists of over 700 species, the great
majority of which are endemic to the continent of Australia [1–3]. The genus contains
some of the most widely planted forestry species in the world, some of which have been
cultivated for over 150 years [4,5]. These trees have become controversial in some places
where they are grown, simultaneously being recognized as economically important and as
problematic non-native weeds [6,7].

Eucalyptus globulus Labill. (Tasmanian blue gum) is the most grown temperate eu-
calypt, with extensive plantations in countries such as Australia, Chile, China, Ecuador,
Ethiopia, Portugal, Spain and Uruguay [8]. Several studies have attempted to quantify the
risk that E. globulus and other forestry species will become invasive outside their native
ranges [9,10]. While E. globulus has become naturalized and formed landraces in many
regions of the world, its spread from the original planting areas is considered ‘limited’
for plantations in Australia [11], Portugal [12–15] and South Africa [16]. While E. globulus
may spread outside planted areas into adjacent habitat, the vast majority of non-planted
seedlings and saplings (often termed wildlings) occur in close proximity to the source
(<50 m) [15] (reviewed in [7]). Studies have implicated factors such as climate, disturbance
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(particularly fire) and management in determining the likelihood of E. globulus wildling
establishment in Australia and Portugal [7,11–13,15,17–19]. However, there is little under-
standing as to whether genetic factors, including those encompassed by the native origin,
impact the propensity for naturalization. In this context, ‘naturalization’ means that a
species has overcome environmental barriers to survival and regular reproduction has
become established at localities where the species has been introduced. This differs concep-
tually from ‘invasion’, which involves a species spreading away from areas of introduction
and outcompeting native species [20].

Eucalyptus was introduced to California in the 1850s [21]. In 1853, a clipper ship captain
named Robert E. Waterman reportedly commissioned his first mate to bring Eucalyptus
seeds back from Australia [22], which Waterman subsequently used to establish several
eucalypt species, including E. globulus, throughout the Suisun Valley, near San Francisco.
Eucalyptus globulus was planted extensively throughout the state for countering malaria by
drying up wetlands (the species was known as the ‘fever tree’ [23]), but also for windbreaks,
fuel wood and timber [9,21,22,24–27]. Approximately 16,000 ha of E. globulus were planted
in California [27], with planting booms in the late 19th and early 20th centuries [5,21,22].
The remnants of these plantings persist (Figure 1).
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Figure 1. Eucalyptus globulus in California. (a) Tree canopies of old mature trees that show no sign
of reproduction in San Luis Obispo County, (b) abandoned plantation with naturalized saplings in
San Benito County, (c) juvenile wildlings in Santa Barbara County and (d) mature wildlings in Santa
Cruz County.
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The extent of naturalization and spread of E. globulus from planted sources in Cali-
fornia is highly variable [9,28–31]. The California Invasive Plant Council had previously
ranked the invasion potential of E. globulus as ‘moderate’ but subsequently downgraded
the threat to ‘limited’ due to “evaluating E. globulus across the entire state, rather than
focusing on coastal areas where it is most prone to spreading” [30,31]. Naturalization is
clearly evident for some plantations, windbreaks and planted groves, but in other situa-
tions only the original planted trees remain with little or no sapling establishment. Most
predicted current (2010) and future (2050) suitable habitats for E. globulus in California
are in coastal regions [27,31] and, as in other countries [11,17,18,32], climatic factors no
doubt play a significant role in the observed variation in naturalization. Nevertheless,
with notable adaptive variation occurring within the E. globulus native gene pool with, for
example, marked provenance differences in flowering traits [33], drought tolerance [34]
and disease susceptibility [35], there is a need to also test whether genetic factors, particu-
larly those related to the native provenance, influence the propensity for naturalization.
Such ‘pre-introduction evolutionary history’ is being increasingly considered in invasion
biology [36,37] with the interaction between climate and provenance of origin shown to
significantly influence the invasive performance of Pinus taeda [38]. While the introduction
history of E. globulus into California is fairly well-documented (e.g., [9,21,23,24,26]), little is
known about the native source(s) of the Californian landrace of E. globulus, the number
of introductions or the amount of genetic variation present relative to the native source
populations.

The genetic variation in native E. globulus is strongly spatially structured across
its geographic range, as evidenced by quantitative genetic [39], nuclear microsatellite
DNA [40–43] and chloroplast DNA (cpDNA) studies [44,45]. For example, one common
lineage of cpDNA haplotypes is found only in southern Tasmania and many specific
(within lineage) cpDNA haplotypes have extremely localized spatial distributions [44–46].
As in most angiosperms, cpDNA is maternally inherited in E. globulus and does not
recombine [47]. Thus, it is dispersed only by seed (not by pollen), most of which falls
within twice the height of the mother tree [7,11,48,49]. As a consequence, the geographic
structuring of cpDNA diversity in most eucalypt species tends to be more marked than
that of nuclear DNA markers which are subject to genetic recombination and are spread
across the landscape by both pollen and seed [50]. Given the knowledge of the geographic
distribution of cpDNA haplotypes within the native E. globulus gene pool, it is possible to
use cpDNA to determine the likely native origin of germplasm contributing to landraces,
sometimes with quite fine geographic resolution [44–46].

Nuclear microsatellites (nSSRs) also reveal spatial structuring that differentiates native
E. globulus populations (but at a coarser level than cpDNA), allowing mainland and Tasma-
nian populations to be differentiated, as well as western and eastern populations within
Tasmania, Bass Strait Islands and Victoria [40–43]. This differentiation in nuclear microsatel-
lite markers is sufficient to correctly identify the native origin of selected germplasm in
the Australian National E. globulus breeding program [40]. Combined nuclear and cpDNA
variation has been used to determine the genetic diversity and origins of the Portuguese
population of E. globulus [45]. These marker systems are therefore suitable for studying
genetic diversity in the Californian landrace of E. globulus.

In the present study, we combine DNA sequence data from the highly variable JLA+
cpDNA region [44] with nuclear microsatellite marker data to: (i) determine the native
Australian origins of California’s landrace of E. globulus; (ii) compare the amount of
genetic diversity in the Californian landrace to that of native populations in Australia;
and (iii) determine whether variation in naturalization of E. globulus in California can be
explained by particular haplotypes or genotypes.
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2. Materials and Methods
2.1. Collections and Naturalization

In April 2008, leaf tissue from 70 E. globulus trees was collected from 51 locations
throughout California (Figure 2, Table S1). A planting of E. globulus was considered
‘unique’ if it was at least 10 km from another grove or planting or if the age (size) of the trees
indicated a different planting date. Sampling locations were chosen non-randomly to span
the entire range of E. globulus in California, both inland and coastal, from Humboldt County,
California (40.52914◦ N, 124.03646◦ W) to San Diego County, California (32.84748◦ N,
117.27230◦ W). Leaves were collected from one adult and one juvenile tree (if present) at
each location for genetic analyses. Additionally, in some large groves tissue was sampled
from more than one adult. In some cases, adult tissue could not be reached so only juvenile
tissue was collected.
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Figure 2. Collection locations, degree of naturalization and distribution of cpDNA JLA+ haplotypes
in adult samples of Eucalyptus globulus from California (see Table S1 for further details). The JLA+

haplotypes have been grouped into Central (Cc) and Southern (S) types, and codes follow Table A1
and Table S1. The distribution of the S112 haplotype, which has only been found in ornamental
plantings of E. globulus in Australia, is indicated in red. Only locations used in the naturalization
study with JLA+ haplotypes available are plotted (detailed in Table S1).
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2.2. Naturalization Analysis

The level of naturalization was assessed in 39 of the 51 locations sampled. Locations
that were not assessed for naturalization included E. globulus street trees, park trees or
where human management might interfere with our ability to detect or quantify naturaliza-
tion. In plantations where naturalization was scored, non-planted trees were determined
by both age and location. A seedling, sapling or young tree occurring near a plantation,
grove or windbreak was considered an offspring of the originally planted trees (i.e., a
wildling). In most cases, reproduction was easy to determine because saplings occurred
outside regularly planted rows or on plantation margins. Naturalization was quantified
by counting the number of saplings or non-planted trees in a defined area at the edge of
a grove. We counted saplings 10 m into the grove and 30 m outside the grove edge, for
10 m along the grove edge. This resulted in a 400 m2 (40 m × 10 m) sampling area. The
location of quantification was purposely chosen to capture the highest possible density
of juveniles ensuring that our quantification would be an overestimate of overall natu-
ralization. For single trees or windbreaks, we surveyed a 400 m2 area around the tree(s).
Naturalization was coded on a six-point scale where 0 = no evidence of any naturalization,
1 = limited naturalization with fewer than 10 wildlings present, 2 = some naturalization
with 10–20 wildlings present, 3 = moderate naturalization with 20–30 wildlings present,
4 = abundant naturalization with 30–40 wildlings present, and 5 = extensive naturalization
with over 40 wildlings present.

2.3. Chloroplast DNA

Genomic DNA was extracted using Qiagen DNeasy Plant Mini Kit (Qiagen Corp.,
Valencia, CA, USA). The JLA+ region of the chloroplast genome (near the junction of the
large single-copy region and inverted repeat A, including the trnH-psbA intergenic spacer)
was amplified and sequenced in both the forward and reverse direction for 67 Californian
collections, utilizing the same primers as Freeman et al. [44]. Each PCR (25 µL final volume)
consisted of 2.5 µL of 10× Taq buffer (67 mM Tris-HCl, pH 8.8; 16.6 mM (NH4)2SO4;
0.45% Trition X-100; 0.2 mg/mL gelatin), 1 U of Taq (Bioline, Trento, Italy), 200 µM of
each dNTP, 2.5 mM MgCl2, 100 µg/mL BSA (Bovine Serum Albumin), 7.5 pmol of each
primer, 2.5 µL of 50% glycerol (weight to volume) and 20 ng of genomic DNA. PCR
amplification was conducted using a BioRad C1000 Thermal Cycler with the following
program: 95 ◦C for 5 min, followed by thirty cycles of 94 ◦C for 1 min, 61 ◦C for 1 min,
72 ◦C for 1 min and a final extension of 72 ◦C for 5 min. Sequencing was performed on
an AB3730xl automated sequencer. Sequences were aligned manually using Sequencher
4.8 (Gene Codes Corporation, Ann Arbor, MI, USA) and CLC Free Workbench 4.0.2 (CLC
bio, Aarhus, Denmark). Haplotypes were classified by comparing the JLA+ sequences of
the 67 Californian collections with JLA+ sequences from native trees of known location.
The native Australian tree cpDNA haplotypes of E. globulus were defined on the basis
of 133 variable characters scored from 579 trees and incorporated JLA+ sequences from
225 trees genotyped by Freeman et al. [44], 106 by McKinnon et al. [51], 30 by Freeman
et al. [45] as well as 218 other native trees. The characters defining the JLA+ haplotypes
found in the Californian samples and their Genbank accession numbers are listed in
Table A1. The relationships among the Californian haplotypes were determined following
McKinnon et al. [46]. This involved using 121 characters in 616 bp of JLA+ sequence to
generate a distance matrix among haplotypes using PAUP version 4.0a [52]. This matrix was
used to generate an intraspecific haplotype network with the program TCS 1.21 [53]. Several
haplotypes were collapsed in this process due to having only minor character differences.
Rarefied mean haplotype diversity (d) was calculated on the R console [54] using the
‘vegan’ statistical package [55], rarefying the diversity across 15 individuals, which was
the minimum sample size among the native regions (specifically, King Island/Western
Tasmania) included in the JLA+ database at the time of this study.
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2.4. Nuclear DNA

Six nuclear microsatellite loci were amplified from all Californian samples and an
additional 13 control samples from wild populations of known provenance from Australia
(six from across Victoria; two from the Furneaux group of islands in eastern Bass Strait,
two from northeastern Tasmania, one from southeastern Tasmania, one from western
Tasmania and one from King Island in western Bass Strait—see Figure 3). We used two
sets of microsatellite primers developed in E. grandis and E. urophylla, EMBRA19 [56] and
EMBRA30 [57], both of which had been tested previously and optimized for E. globulus
([58] and [59], respectively), and four developed for E. globulus—EMCRC2, EMCRC7,
EMCRC10 and EMCRC11 [60]. Forward primers were tagged with an M13 florescent tag
according to Schuelke [61]. We used the following PCR recipe: 12.5 µL Promega GoTaq
Hotstart Colorless Mastermix, 0.65 µL of 10 pmol/µL 5′ M13-tailed forward primer, 2.5 µL
of 10 pmol/µL reverse primer, 2.5 µL of 10 pmol/µL 5′ M13 HEX or FAM labeled primer,
1 µL of DNA (10–200 ng/µL) and 5.9 µL sterile deionized water for a final volume of
25 µL. PCR amplification was conducted with the following conditions: 94 ◦C for 5 min;
30 cycles of 94 ◦C for 30 s, touchdown annealing starting at either 60, 62 or 64 ◦C (see
references above for specific temperatures) for 45 s and decreasing by 0.5 ◦C each cycle,
72 ◦C for 45 s; followed by 8 cycles of 94 ◦C for 30 s, 53 ◦C for 45 s, 72 ◦C for 45 s; and a final
extension at 72 ◦C for 10 min. We visualized amplified products on 0.8% agarose gels using
1× Sodium Borate buffer with Biotium GelRed™ Nucleic Acid Gel Stain. We estimated
the size of each fragment using an ABI sequencing machine at the UC Berkeley DNA
Sequencing Facility using ROX 500 as a size standard. We scored fragment sizes using
GeneMapper (v 4.0. Applied Biosystems, Waltham, MA, USA). The 13 Australian samples
allowed alignment of the nuclear SSR genotypes from the Californian landrace samples
with microsatellite data from a database of range-wide native collections of E. globulus
trees (n = 590). Based on previous analyses of nine SSR loci [42,62], including the six used
in this study, the native Australian samples were grouped into four major geographic
regions: Victoria (n = 222), Furneaux (50), King Island/western Tasmania (107), and eastern
Tasmania (n = 213) (Figure 3; Table S2).

POPGENE (v. 1.31 [63]) was used to obtain population genetic parameters; total
observed (A) and effective (Ae) numbers of alleles across all loci, the observed (Na) and
effective (Ne) number of alleles per locus, as well as the observed and expected heterozy-
gosity (Ho and He) and the inbreeding coefficient (FIS). GENEPOP (ver 4.7.0; Rousset 2008)
was used to calculate the frequency of null alleles for each locus and population. Using
the region by SSR locus values for Ho, He and FIS, the differences between regions (d.f. = 4;
Californian landrace and four native Australian E. globulus regions) was tested using PROC
GLIMMIX of SAS (Version 9.4), fitting region (d.f. = 4) and SSR locus (d.f. = 5) as fixed
effects. The model assumed a Guassian distribution of errors (d.f. = 20) and used the
chi-squared statistic to test the significance of the region effect. Where the region effect
was significant (p < 0.05), pairwise contrasts between the Californian landrace sample and
each of the native regions were tested using the t-statistic. Allelic richness (AR; a measure
of the number of alleles, independent of variation in sample size) was calculated using
the software package FSTAT [64]) and rarefied across 42 diploid individuals (EMBRA19
was scored in 42 of the Californian samples, representing the smallest sample size of any
locus). These parameters were estimated for the Californian landrace as a whole, each
of the four native regions in southeastern Australia, and across the total native range
sample of E. globulus. Pairwise FST values (and associated levels of significance) between
the Californian landrace and each of the four native regions were obtained using FSTAT.
We conducted an AMOVA analysis using GenAlEx (v 6.4 [65]) to partition the molecular
variance between and within populations (Californian landrace plus native regions) and
using ΦST with 999 permutations of the data.

Based on the allelic profiles from six nuclear SSR loci and the database of 590 native
samples (see above), STRUCTURE (v. 2.3.4 [66]) was used to obtain secondary evidence for
the native region affinities of each of the Californian collections, based on the probabilities
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of their assignment to four pre-defined native regions (Figure 3). We used a burn-in of
200,000 iterations (by which time stationarity had been reached), followed by 200,000
MCMC iterations for twenty independent runs, assuming no prior population groupings
and using the admixture model.
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(shaded in grey in insert map of Australia). The four geographic regions (Victoria, Furneaux, King
Island/western Tasmania and eastern Tasmania) into which the 590 native samples with nuclear
microsatellite data were allocated for the STRUCTURE analysis are shown. The specific locations
of the 13 control samples used to align the microsatellite scores of the Californian landrace samples
with the native range are shown. The map is modified from Jordan et al. [67].

2.5. Naturalization Analyses

We tested for an effect of both cpDNA haplotype and SSR regional assignment on
naturalization with an analysis of variance (ANOVA) using the R base statistics pack-
age [54]. Our analyses focused on the 39 sites in which naturalization was assessed. We
excluded any cpDNA haplotypes that were only represented in a single individual tree
(seven haplotypes in total were removed). We conducted these analyses using cpDNA
haplotypes and SSR assignments from the adult from each site. Three sites were excluded
because adult tissue was not sampled. If there were multiple individuals sampled from
the same site and they were assigned the same haplotype (only one case) or same regional
assignment (only one case), the duplicate was removed in the ANOVA since it likely does
not represent an independent sample. If multiple adults from the same site had different
haplotyes or regional assignments, all unique samples were included and the naturalization
for the site was applied to both. We also divided naturalization into two categories, high
naturalization (all groves with a score 3 and above), and low naturalization (all groves with
a score 2 and below), and used a Fisher’s exact test to test if genotype or SSR assignment
could predict the category degree of naturalization.

3. Results
3.1. Native Origin of Californian E. Globulus

Fifteen JLA+ cpDNA haplotypes were found in the 67 Californian samples sequenced
successfully (defining characters and GenBank accession numbers are given in Table A1).
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Three samples failed to amplify for cpDNA. Haplotypes corresponded to two major JLA+
types found in native E. globulus from Australia [44], the Southern (S) and the Central
(Cc) types (Figure A1). Eleven of the sixty-seven Californian samples had five haplotypes
belonging to the Central type, whereas the other fifty-six samples had ten haplotypes
belonging to the Southern type (Figure A1). The high proportion of Southern haplo-
types indicates that most of California’s trees likely originated from southern Tasmania
(Figures 2 and 4, Table S1). Indeed, of nine haplotypes found in both the Californian lan-
drace and the Australian native populations of E. globulus, five have been found only
in southeastern Tasmania, and two of these have been found only in the vicinity of the
D’Entrecausteaux Channel, south of Hobart (Figure 4). In addition, another of the South-
ern haplotypes found in the Californian landrace (S87) has, to date, only been found in
E. morrisbyi, a Tasmanian endemic confined to southeastern Tasmania.
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found in native populations of E. globulus. However, these haplotypes were most similar 
to the Southern Tasmanian cpDNA type (Figure A1), which is confined naturally to 
eastern Tasmania. Just over half the Californian samples (37 out of 67, or 55%) shared a 
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San Diego in the south to Mendocino in the north (Figure 2). In Australia, haplotype S112 
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Figure 4. Native Australian distribution of six chloroplast haplotypes found in the Californian
landrace of E. globulus of the central (Cc05, Cc06 and Cc56) and southern (S05, S43 and S129) types.
These haplotypes are six of the nine haplotypes which have been found in native samples of E. globulus
from Australia and have a localized distribution within eastern Tasmania. The location of Hobart is
shown (*) on the S129 map.

Five of the fifteen haplotypes (S112, S143–S146) found in California have not yet
been found in native populations of E. globulus. However, these haplotypes were most
similar to the Southern Tasmanian cpDNA type (Figure A1), which is confined naturally
to eastern Tasmania. Just over half the Californian samples (37 out of 67, or 55%) shared
a single cpDNA haplotype, S112. Collections of the S112 haplotype span California from
San Diego in the south to Mendocino in the north (Figure 2). In Australia, haplotype S112
has only been found in ornamental (‘compacta’ form) or other planted E. globulus trees, not
in natural stands. Seven of the 11 (64%) Californian localities with multiple samples were
homogeneous for a single JLA+ cpDNA haplotype, consistent with localized naturalization.
In these cases, the SSR assignment was generally consistent between the adult and seedling
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samples, except in one case (CA13/14, Table S1) which could signal pollen flow from
outside the stand. The four heterogeneous localities involved mixed cpDNA haplotypes
of eastern Tasmanian or Californian origin (S112 or S143) (Figure 2; Table S1) and while
this may signal heterogeneity in the cpDNA haplotype of the adult population, it generally
had little effect on the SSR assignment at the regional level.

An analysis of molecular variance (AMOVA) of the nuclear SSR data showed low but
significant genetic differentiation (ΦST = 0.064, p <0.001) among E. globulus populations
(California, Victoria, Furneaux, King Island/western Tasmania, and eastern Tasmania),
with 94% of the variation occurring within populations. STRUCTURE analysis (Table 1)
and FST comparisons (Table 2) clearly revealed (i) significant differentiation among the
native Australian populations and (ii) that the Californian collections had closest overall
affinities to native samples from eastern Tasmania. At the individual level, forty percent of
the Californian collections were assigned to eastern Tasmania based on nuclear markers
(Table S1). However, samples also showed affinities to Furneaux, King Island/Western
Tasmania and Victoria. For example, of the thirty-seven collections that had the common
S112 chloroplast haplotype, STRUCTURE analysis using the nuclear SSR data revealed
that twenty-three had their highest affinities to eastern Tasmania, seven to Furneaux, four
to Victoria and two to western Tasmania/King Island (Table S1), suggesting an eastern
Tasmanian origin for S112. Despite strong molecular evidence from the shared cpDNA
haplotypes (landrace/native) for a predominantly southeastern Tasmanian origin for the
Californian samples, there was still a statistically significant difference between the SSR
genotypes of the Californian samples and the two races of E. globulus (as defined by
Dutkowski and Potts [39]) that occur in this region of the native distribution (AMOVA—
Southeastern Tasmania n = 50, FST = 0.033, p < 0.001; Southern Tasmania n = 26, FST = 0.048,
p < 0.001).

Table 1. Average probability of assignment of samples from the Californian landrace to the four
major regions in the native range of Eucalyptus globulus, based on six nuclear SSRs, and the number
of samples in each pre-defined group (N). Seventy Californian samples were assigned to four pre-
defined regions of the native distribution in Australia (Figure 3), using STRUCTURE. The assignment
of the 590 native E. globulus samples used to define a priori the regional groups in the STRUCTURE
analysis is also shown (W Tas = western Tasmania).

Inferred Clusters N

Given Population Victoria Furneaux King Is./
W Tas

Eastern
Tasmania

California 0.187 0.240 0.197 0.377 70
Victoria 0.974 0.007 0.010 0.009 222

Furneaux 0.008 0.981 0.007 0.005 50
King Island/W Tas 0.004 0.006 0.974 0.016 107
Eastern Tasmania 0.007 0.009 0.010 0.974 211

Table 2. Pairwise FST values among Californian population and native regions of Eucalyptus glob-
ulus. The analysis was based on six nuclear microsatellite loci and all pairwise comparisons were
significantly different from zero (p < 0.001) based on 999 permutations.

Population/Region Victoria Furneaux King Island/
Western Tasmania

Eastern
Tasmania

California 0.099 0.089 0.116 0.043
Victoria 0.054 0.064 0.045

Furneaux 0.102 0.040
King Island/

Western Tasmania 0.070
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3.2. Genetic Diversity in California

Taken as a whole, the Californian landrace was less genetically diverse than the native
populations of E. globulus in Australia. The mean cpDNA haplotype diversity, d, for the
Californian landrace was 6.20 ± 1.38, which was low compared with the overall haplotype
diversity of native E. globulus (d = 13.28 ± 1.20). It was also low compared with eastern
Tasmanian E. globulus (d = 12.82 ± 1.32, Table 3), the region where most of the Californian
trees are likely to have originated (see below).

Table 3. Genetic diversity statistics for the Californian and Australian native stand samples of Eucalyptus globulus grouped
into four regions. The samples used to represent the four regions of the Australian distribution were collected from across
the native range of E. globulus and comprised 590 samples for SSR data and 465 for the chloroplast JLA+ (see Methods
for details).

Nuclear SSRs cpDNA Haplotypes

Region Na Ne AR Ho He FIS n
1 d

California 10.33 4.54 9.38 ± 3.95 0.58 0.73 0.19 67 6.20 ± 1.38
Eastern Tasmania 17.67 7.09 12.92 ± 3.16 0.71 0.84 0.15 342 12.82 ± 1.32

King Island/
Western Tasmania 13.83 4.51 10.91 ± 3.63 0.62 0.74 0.16 16 6.88 ± 0.33

Furneaux 10.50 5.34 10.04 ± 2.94 0.69 0.82 0.15 20 9.38 ± 0.90
Victoria 17.17 6.54 12.32 ± 3.84 0.68 0.81 0.17 87 10.31 ± 1.46

Mean per native region 14.79 5.87 11.55 0.69 0.80 0.15 116 9.85
SE 1.66 0.58 0.66 0.01 0.02 0.00 77 1.23

Across all native E. globulus 22.83 6.76 13.72 0.68 0.83 0.15 465 13.28
SE 2.21 0.99 1.42 0.05 0.03 1.20

Note: SE, Standard error; Na, mean observed number of alleles per locus; Ne, mean effective number of alleles per locus; AR, mean
allelic richness across all loci (±standard deviation) rarefied across 42 diploid individuals; Ho, observed heterozygosity; He, expected
heterozygosity; FIS, inbreeding coefficient; n1, the number of samples used for JLA+ haplotype analysis; d, mean haplotype diversity
(±standard error) rarefied across 15 individuals.

For the six nuclear SSR loci, diversity within the Californian landrace was low com-
pared with the native Australian samples, both overall and within regions (Table 3). In
the Californian landrace, the six loci had 3–18 alleles per locus (average of 10.33 alleles
per locus). The average effective number of alleles per locus was 4.54. The mean rarefied
allelic richness (±standard deviation) was 9.38 ± 3.95, which was lower than even the least
diverse native region (Table 3) and markedly lower than the eastern Tasmanian region
from where most of California’s E. globulus likely originated (allelic richness = 12.92± 3.16).
The observed heterozygosity across all loci (Ho = 0.58) and the expected heterozygosity
(He = 0.73) in the Californian landrace were low compared with those across the whole
native range (Table 3), although the differences among groups in He were not significant
(Ho, χ2 (4 d.f.) = 9.52, p = 0.049; He, χ2(4) = 8.15, p = 0.086). Ho was significantly lower in the
Californian landrace than in the eastern Tasmanian region (pairwise contrast, t20 = 2.65,
p = 0.015) and the Furneaux region (t20 = 2.22, p= 0.038), but was not significantly lower
than King Island or Victorian regions. He was significantly lower in the Californian lan-
drace than in the eastern Tasmanian region (t20 = 2.20, p = 0.040), but not significantly
lower than Furneaux, western Tasmania or Victoria. There was a slightly greater deficiency
of heterozygotes in California, which could be due to the Wahlund effect or the Califor-
nian landrace being more inbred compared with the Australian native regions (FIS = 0.19
cf. 0.14–0.17), although the differences among groups were not statistically significant
(χ2(4) = 1.03, p = 0.906). While the influence of null alleles in the SSR data was apparent for
some loci in some populations, their occurrence is unlikely to affect comparisons between
the Californian and eastern Tasmanian E. globulus as they were similarly important in
both samples. For example, the estimated null allele frequency in the Californian landrace
averaged across the 6 loci was 0.078 compared with 0.075 in eastern Tasmania and the
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locus with the highest frequency of null alleles [EMCRC10] had the same frequency in both
samples (Table S2).

3.3. Naturalization in California

There was a complete continuum in degree of naturalization among the 39 sites
assessed in California (Figure S1), with 18 having naturalization scores of three or greater
(abundant or extensive naturalization, >20 saplings per 400 m2) and these were widely
distributed in coastal areas (Figure 2, Table S1). In contrast, we observed 21 sites with
low naturalization (score of two or lower). We observed groves with no evidence of
naturalization and groves with varying degrees of naturalization in close proximity. Across
the 39 sites, we found a total of 12 cpDNA haplotypes in adults. Seven of these were
represented only once in the sites assessed so were removed from the ANOVA regarding
naturalization (removed haplotypes: Cc05, Cc06, Cc18, S129, S145, S64, and S87). Included
in these analyses were the five remaining cpDNA haplotypes found in 30 adult individual
trees (S112, n = 18; S43, n = 5; Cc41, n = 3; S05, n = 2; Cc56, n = 2) from 29 unique
sites (sites with only juveniles and sites with unique haplotypes were removed). We
found no effect of cpDNA haplotype on naturalization (ANOVA, p = 0.42, F4, 25 = 1.01).
The most prevalent cpDNA haplotype (S112) was found in groves exhibiting all levels
of naturalization, including zero naturalization (Figure 5 and Figure S1). For the SSR
assignment, there were four assigned regions represented in 38 adult trees sampled at
36 unique sites: eastern Tasmania, n = 25; Furneaux, n = 6; western Tasmania, n = 4; and
Victoria, n = 3. We found no effect of the SSR-assigned region on naturalization (ANOVA,
p = 0.658, F3,34 = 0.54). We also grouped sites into low naturalization (scores 0–2) and high
naturalization (scores 3–5) (Figure 5). We found that no cpDNA haplotype (Fisher’s exact
test p = 0.1392) (Figure 5a) nor any SSR-assigned region (Fisher’s exact test p = 0.9442)
(Figure 5b) was more likely to show high naturalization.
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4. Discussion
4.1. Native Origin of Californian E. globulus

Primary evidence from chloroplast DNA haplotypes, backed by secondary evidence
from the nuclear SSRs, suggests that the Californian landrace of E. globulus is derived pre-
dominately from introductions from eastern Tasmania, particularly southeastern Tasmania.
Of the 10 (out of 15) Californian cpDNA haplotypes that have been recorded previously in
native populations, most (70%) have been found only in southeastern Tasmania, and sev-
eral only in the region bordering the D’Entrecasteaux Channel (30% Channel in Table S1).
The presence of five haplotypes (S112, S143–S146) in the Californian landrace that have
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not been found in native stands in Australia suggests either that genetic changes have
occurred since the initial introduction, or these haplotypes are now exceedingly rare in
the contemporary native range. The predominantly southeastern Tasmanian origin of the
Californian landrace of E. globulus is similar to the native origin reported for the trees in
Portugal [45], Spain [68], China [69] and Chile [70]. However, several chloroplast haplo-
types in California have only been found in more northerly areas of eastern Tasmania,
indicating that seed has probably been introduced to California from a number of native
sources in Tasmania. This is consistent with the multiple imports of seed into California
directly from Australia in the 19th Century documented by Groenendaal [22]. However,
the widespread distribution of trees with the S112 haplotype in the Californian landrace
suggests that a large component of the Californian plantation estate was established from
local seed sources within California. In California, 67% of the trees sampled had the same
chloroplast haplotype, S112, which, while not reported from native stands, is of the ‘S’ JLA+
type found only in southern Tasmania. We sampled the largest and likely oldest trees in
the Suisun Valley where Eucalyptus globulus was introduced early on and they have the
S112 haplotype. Given the widespread distribution of this haplotype it is possible that Wa-
terman’s early seed introduction(s) was a key source of seed for California’s later planting
boom in the late 19th Century [22,23], consistent with the reduced nuclear SSR diversity in
the Californian landrace. S112 is also found in E. globulus trees in other countries, including
Europe (B. Potts unpubl. data), but the possibility of an introduction via a second country
is unlikely given the historic records of the importation of the seed from Australia at the
time (see Introduction).

While S112 has not been found in the native populations of E. globulus in Australia,
it has been found in ornamental plantings of the ‘compacta’ form of E. globulus in south-
eastern Tasmania, in the Hobart and D’Entrecasteaux Channel areas. These ornamentals
are a relatively short, multi-stemmed form of E. globulus (E. globulus var. compacta L.H.
Bailey, see [71]) markedly different from the typical single-stemmed form of E. globulus in
California and Australia. ‘Compacta’ is propagated as an ornamental in both Australia
and California (where it is referred to as ‘Dwarf Blue Gum’), and the Californian form, at
least, is recorded to have originated from a tree discovered in Fremont CA by John Rock
of the California Nursery Company in the late 1800s [72]. The predominance of S112 in
California and its rarity in E. globulus in Australia (found only in ornamental or otherwise
planted trees) provides molecular evidence that supports suggestions in Australian [73]
and Californian [25] horticultural publications that the ‘compacta’ form of E. globulus was
introduced to Australia from California for use as an ornamental.

4.2. Genetic Diversity in California

Genetic diversity of the Californian landrace is lower than that of native populations
in Australia, as would be expected of an introduced species. There is lower diversity
of both cpDNA haplotypes and nuclear SSRs, and lower observed heterozygosity in the
Californian landrace than in the native population in eastern Tasmania. The Californian
landrace has values of these parameters comparable with the isolated King Island native
population, which has among the lowest values reported in native E. globulus [42,62].
The likelihood of widespread distribution of locally sourced seed within California, as
discussed above, clearly opens the possibility for reduced genetic diversity due to founder
effects, plus reduced heterozygosity arising from inbreeding in the open-pollinated seed
distributed from the original plantings. Such inbreeding would be expected due to (i) the
mixed mating system of E. globulus which results in variable levels of selfing, particularly in
seed collected from low in the canopy [74] or low density plantings [75], and (ii) biparental
inbreeding if relatives are planted together [76]. Allelic richness [77] and chloroplast
haplotype diversity [78]) are particularly sensitive to population bottlenecks, suggesting
that founder effects and drift may explain why the Californian E. globulus landrace is
significantly different from the eastern Tasmanian populations from where most of the
germplasm is likely to have originated. The strong possibility of relatedness and drift in
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the Californian landrace as a result of local seed sourcing is exemplified by Santos’ [21]
historic note that two trees in Alameda County, just south of San Francisco, produced
seed for the establishment of 150,000 trees, which in turn provided seed for at least 50,000
more. The low putatively neutral SSR diversity of the Californian landrace accords with
the suggestion by Eldridge et al. [4] that landraces of Eucalyptus are probably less diverse
and more inbred than the native populations from which they were derived.

4.3. Naturalization in California

Our results confirm the observations that some E. globulus groves in California, which
flower and set seed, do not show sapling recruitment, while others show extensive natu-
ralization [28,31]. Indeed, clear cases of naturalization have been reported where groves
have doubled or tripled in size over six decades, relative to the original planting [79].
The goal of this study, however, was not to quantify total naturalization across California,
but rather to explore whether variation in naturalization could be explained by genetic
factors, including those associated with the native origin. We tested the hypothesis that
differences in naturalization are associated with differences in genotype. However, our
results show that this is not the case. We found no evidence to suggest that populations
bearing particular chloroplast haplotypes were more prone to naturalization than others,
and populations bearing the most common haplotype in California showed all possible
levels of naturalization. The propensity for naturalization was also not associated with
differences in nuclear SSR markers, nor the inferred native region of origin.

If variation in naturalization is not based on genotype or source location, the most
likely explanation is variation in environmental conditions or opportunities for establish-
ment. In its native range, E. globulus experiences more rain in winter but, on average,
rainfall occurs nearly year-round [67]. In California, six months or more can go by with
no rainfall. Therefore, establishment and extensive naturalization might only occur in
areas with sufficient year-round water resources. Groves found in the coastal fog belt,
irrigation ditches, and riparian areas show the most extensive naturalization ([27,28,31],
J. Yost unpubl. data). In Portugal, E. globulus recruitment is higher in areas with lower
temperature seasonality and higher rainfall [17,18,32]. From a systematic survey of E. glob-
ulus naturalization along plantation edges in Australia, Larcombe et al. [11] found that
sapling abundance was higher on sites that received regular, relatively high rainfall and
had lower mean annual temperatures (i.e., climate conditions more similar to the native
range). At a local scale, studies in Portugal have shown saplings were more abundant on
moist aspects [14], and spread more along natural drainage lines and in the direction of
the prevailing wind [19]. At this local scale, the likelihood of sapling establishment has
also been shown to depend upon the reproductive output of the E. globulus source popula-
tion [11,15,19], adjacent plant community type [18,49], fire [11,15,17,80,81] and, potentially,
levels of seed predation [80,82].

5. Conclusions

We found no evidence to support the hypothesis that ‘pre-introduction evolutionary
history’ reflecting differences in adaption of the founder planted trees could contribute
to variation in reproduction and sapling establishment of the Californian landrace of
E. globulus. This absence of a genetic signal may be due to the relatively low genetic
diversity and predominance of introductions from a single region within the native range.
Most of California’s E. globulus originated from eastern Tasmania and the trees underwent a
significant bottleneck when introduced to the state. Genetic diversity in California is greatly
reduced compared with that of the native Australian population, with a single chloroplast
haplotype occurring in 66% of the Californian samples. Therefore, the variability in
naturalization observed in E. globulus groves in California is likely to be driven by site-
specific ecological conditions.
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Appendix A

Table A1. JLA+ character variation in cpDNA haplotypes found in California 1. Light shading indicates haplotypes not
found in the native range of Eucalyptus globulus and the dark shading indicates character states not found in the native range.

Character
No. 40 44 45 54 55 73 A 84 91 112 B

Haplotype Poly T Point
Mutation Poly A Poly A Point

Mutation

1st
Multistate

Repeat
Poly A Multistate

Repeat C
2nd

Repeat

Location
(bp) 297–314 324 326–352 386–401 408 519–544 663–673 755–928 1066–1090

Cc05 9T - 12A 11A C Present 10A a Absent
Cc06 9T - 11A 11A C Absent 9A a Absent
Cc18 9T - 12A 12A C Absent 9A a Present
Cc41 9T - 11A 12A C Present 9A a Present
Cc56 9T - 11A 11A C Present 10A a Absent
S05 15T (A at bp 10) T 21A 7A C Absent 10A a and b Absent
S43 14T (A at bp 9) T 19A (T at bp 6) 7A C Absent 10A a and b Absent
S64 14T (A at bp 9) T 18A (T at bp 6) 7A C Absent 11A 3 a and 1 b Absent
S87 14T (A at bp 9) - 20A 7A C Absent 10A a and b Absent
S112 14T (A at bp 9) T 26A (T at bp 6, 7 and 13) 7A T Absent 10A a and b Absent
S129 14T T 19A (T at bp 6) 7A C Absent 10A a and b Absent
S143 14T (A at bp 9) T 19A (T at bp 6) 7A C Absent 10A a and c Absent

S144 14T (A at bp 9
and 11) T 19A 7A C Absent 11A a and b Absent

S145 14T (A at bp 9) C 18A (T at bp 5) 7A C Absent 10A a and b Absent
S146 14T (A at bp 9) - 16A 7A C Absent 10A a and b Absent

A 73: TAACATTTTTCTATCTTAATTATGAG, B 112: CTTCTTATGTTGAAGTAAAGAAAAA, C a: AAAGGGTTGAAAAGAATG-
TATATAAATTC, b: AAAGGGTTGAAAAGAATGTAGATAAATTC, c: AAAGGGTTGAAAAGAATGTAGATAAATTG, 1 GenBank Asses-
sion numbers Cc05—JQ029998, Cc06—JQ029999, Cc18—JQ030009, Cc41—JQ713792, Cc56—AY620896, S05—JQ713796, S112—JQ030108,
S129—JQ030068, S143—JQ713808, S144—JQ713809, S145—JQ713810, S146—JQ713811, S43—AY620869, S64—JQ030107, S87—AY640050.

https://www.mdpi.com/article/10.3390/f12081129/s1
https://www.mdpi.com/article/10.3390/f12081129/s1
https://dx.doi.org/10.25959/sd4n-9v54
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