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Abstract: Global climate change has created a major threat to biodiversity. However, little is known
about the habitat and distribution characteristics of Cinnamomum camphora (Linn.) Presl., an evergreen
tree growing in tropical and subtropical Asia, as well as the factors influencing its distribution. The
present study employed Maxent and a GARP to establish a potential distribution model for the
target species based on 182 known occurrence sites and 17 environmental variables. The results
indicate that Maxent performed better than GARP. The mean diurnal temperature range, annual
precipitation, mean air temperature of driest quarter and sunshine duration in growing season were
important environmental factors influencing the distribution of C. camphora and contributed 40.9%,
23.0%, 10.5%, and 7.2% to the variation in the model contribution, respectively. Based on the models,
the subtropical and temperate regions of Eastern China, where the species has been recorded, had
a high suitability for this species. Under each climate change scenario, the potential geographical
distribution shifted farther north and toward a higher elevation. The predicted spatial and temporal
distribution patterns of this species can provide guidance for the development strategies for forest
management and species protection.

Keywords: Cinnamomum camphora (Linn.) Presl.; climate change; forest management; GARP; MAX-
ENT; potential suitable habitat; species distribution modeling

1. Introduction

Climate has been considered as a major factor influencing the distribution of many
species on a large scale [1,2]. Global climate change has changed the distribution and
frequency of many species over the past several decades, and in the meantime, led to the
extinction or local extirpation of many species [1,3,4]. The potential threats that may alter
the frequency and distribution of some species could be addressed through predictions
about the impact of climate changes on the spatial distribution of the habitat for specific
species at a landscape scale [5]. Thus, obtaining high quality distribution data is crucial
to setting priorities and implementing efficient protective measures. Meanwhile, the
Wallacean shortfall, namely, the insufficiency of biogeographical information, usually
obstructs many types of conservation efforts [6–8].

Ecological niche modelling (ENMs) affords an important method that can be used to fil
this gap as well as to facilitate research related to ecology, conservation, and evolution [4,9–11].
Multiple ENMs, including CLIMEX, Maxent, ecological niche factor analysis, genetic
algorithm for rule-set prediction (GARP), and a bioclimatic prediction system, have been
applied to predict the distribution area, ecological response, and ecological requirement for
numerous species [12–17]. As a general rule, such models varied greatly in the selection
of predictors (physiological restrictions on the mechanistic method/climatic empirical
method) as well as species records (presence alone or presence/absence data) [15,18–21].
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Previous studies indicated that Maxent and GARP had a better predictive accuracy than
other ENMs (see Elith et al. [22] and Hernandez et al. [23] for more details). In addition,
those two models also use the combination of known occurrence data and the pseudo-
absence data which were resampled using the set of pixels indicating where the species
under discussion is believed to not occur [15,22].

Cinnamomum camphora (Linn.) Presl. (Lauraceae) is an evergreen tree growing in tropi-
cal and subtropical Asia, mainly in Japan, Korea, and Vietnam [24]. The species provides
the major source of camphor, which people commonly use as a stimulant, antispasmodic,
antiseptic, and rubefacient in clinical practice [25]. Camphora can also be used in the
manufacturing of celluloid. The light brown wood of C. camphora has an elegant grain
and can be easily polished for the use in furniture, cabinets, and the interior decoration of
buildings [24]. Previous studies of this species mainly focused on the anti-inflammatory
and anti-oxidative effects [25], micropropagation [26], and camphor composition [27] of the
products of this species. The only research on the suitable habitat of C. camphora we know
was conducted by Zhang et al. [28], who predicted the suitable habitats of C. camphora
based on 149 valid distribution records and 19 bioclimatic variables. However, variables
that could influence the results of suitable habitats, such as soil pH, soil organic carbon,
relative humidity, and sunshine duration during the growing season, were not included in
their analysis. Furthermore, the model performance might be different between different
ENMs; however, Zhang et al. [28] only used a single model, i.e., Maxent. Exploration into
the relationship between C. camphora and environment variables along with associated
factors influencing its distribution has great significance and would also help land use
planners and managers.

In this study, Maxent and GARP modeling were employed to predict the distribution
of C. camphora, to determine the distribution characteristics of the habitat for this species,
and to identify the relevant factors that influence the appropriateness of its habitat. Our
research goals included: (1) to determine which environmental factors affect the distribution
of C. camphora; (2) to explore how climate change generates certain impacts on characteristics
of the distribution of its habitat. The results will provide a theoretical reference framework
related to the use, management, and cultivation of C. camphora.

2. Materials and Methods
2.1. Occurrence Records Collection

Point location data for this species were acquired from several online herbaria databases,
including Tropicos (http://www.tropicos.org/ (accessed on 14 January 2019)), the Global
Biodiversity Information Facility (http://www.gbif.org (accessed on 23 March 2019), and
the Plant Photo Bank of China (PPBC; http://ppbc.iplant.cn/ (accessed on 14 January
2019)). Among them, the PPBC database stores distribution records based on collections in
the main herbaria in China. To reduce the sampling bias of the database, and to verify the
location data related to the distribution of C. camphora, field investigations were conducted
by visiting 20 locations randomly selected from the database. Thereafter, to reduce over-
fitting to sampling bias in ecological niche models, only one point was projected within
every 10 km × 10 km grid cell [5]. Ultimately, 182 non-repeating geo-referenced occurrence
records were gathered in this work.

2.2. Environmental Variables

We selected 28 environmental variables that probably influenced the distribution of C.
camphora (Table 1). These included 19 climatic variables with a 30 s spatial resolution col-
lected via World Climate Database (www.worldclim.org, accessed on 16 October 2017) [29].
In addition, three topographic variables were selected, namely, slope degree, aspect, and
elevation, which were acquired using the DEM (20 × 20 m2 resolution) via Geospatial Data
Cloud, and three soil variables, namely, soil type, pH, as well as organic carbon content,
provided by the Center for Sustainability and the Global Environment. Additionally, data

http://www.tropicos.org/
http://www.gbif.org
http://ppbc.iplant.cn/
www.worldclim.org
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concerning NDVI, relative humidity, and sunshine duration during growing season were
obtained from the China Meteorological Data Sharing Service System.

Table 1. Environment factors used to predict the potential distribution of Cinnamomum camphora.

Code Environment Variables Unit Contribution (%)

Bio2 Mean diurnal air temperature range ◦C × 10 40.9
Bio12 Annual precipitation mm 23.0
Bio9 Mean air temperature of driest quarter ◦C × 10 10.5

SDGH Sunshine duration in growing season h × 10−3 7.2
NDVI Normalized difference vegetation index 4.4

SD Degree of slope ◦ 4.2
SC Soil type 2.0

Bio1 Annual mean air temperature ◦C × 10 1.7
RH Relative humidity % 1.4

Bio15 Precipitation seasonality 1.2
Bio3 Isothermality ×100 0.9
Ele Elevation m 0.9

SpH Soil pH ×10 0.7
Aspect Aspect ◦ 0.4

Bio8 Mean air temperature of wettest quarter ◦C × 10 0.3
Bio18 Precipitation of warmest quarter mm 0.2
SOC Soil organic carbon g/kg 0.2
Bio4 temperature seasonality(standard deviation * 100)
Bio5 Max temperature of warmest month ◦C × 10
Bio6 Min temperature of coldest month ◦C × 10
Bio7 Temperature annual range(bio5-bio6) ◦C × 10
Bio10 Mean temperature of warmest quarter ◦C × 10
Bio11 Mean temperature of coldest quarter ◦C × 10
Bio13 Precipitation of wettest month mm
Bio14 Precipitation of driest month mm
Bio16 Precipitation of wettest quarter mm
Bio17 Precipitation of driest quarter mm
Bio19 Precipitation of coldest quarter mm

To simulate the future distribution of this species, BCC-CSM1.1 data were acquired
from the RCPs 2.6 and 8.5 for 2050 and 2070 published through the United National
International Panel on Climate Change Assessment Report 5 (AR5). The BCC-CSM1.1
has been recommended to be applied to research about climate changes in China and for
short-term climate forecasts [30]. The RCP 2.6 reveals an optimistic result of potential
radiative forcing until 2100 in contrast to pre-industry +2.6 W/m2 values, while RCP 8.5 is
one more pessimistic scenario that shows the high level of greenhouse gas emissions with
radiative forcing at 8.5 W/m2 till 2100 [30]. Remaining variables were not altered for SDM
analysis under future climate forecast scenarios.

Every bioclimatic layer was converted to a resolution of 1 km. Every environmental
layer was treated with the system containing an identical projection, cell size, and extent
(WGS84 Longitude–Latitude projection) under ArcGIS 10.1 (ESRI, Redlands, CA, USA).
To test for variable multicollinearity, Pearson correlation coefficient was used along with
principal component analysis. Only one parameter was chosen for those having a relatively
high cross-correlation (r2 > 0.90) [31] according to its biological significance for C. camphora.
Finally, the final predicting factors were reduced to 17 by eliminating those that were
closely correlated (Table 1).

2.3. Model Simulation

Desktop GARP version 1.1.3 [32] and Maxent version 3.3.3k [20] were applied for
model construction based on environmental variables and species records. The same
models and procedures were also used by Zhang et al. [5]. These two models were selected
because they are two common niche-based modeling approaches that adopt presence-
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only data. Previous studies demonstrated that they had better performances than other
models [18–21]. Both models use artificial intelligence to evaluate the potential geograph-
ical distribution, and require location information and pseudo-absence (for Maxent) or
background (GARP) data during the construction of models [11,13]. However, they differ
in their operating principle. Maxent, a generalized linear model, generates the model
through seeking the nearest uniform distribution (maximum entropy) subject to the con-
straints of environmental variable input [20]. In contrast, GARP, a kind of machine-learning
method, employs a set of conditional rules that were originally developed iteratively for
the selection, assessment, testing, incorporation, or rejection of rules [21].

Under Maxent, 25% of the occurrence data were employed for evaluating model
capacity, while the remaining 75% was used for training. We tested various regularization
multiplier values, and found that the default (i.e., 1) value performed best; that is, the
default value provided the best representation of the current distribution of C. camphora
without over-fitting the model (see Merow et al. [33] for more details). A total of ten
replicates were generated in each training partition, and the results were averaged. These
models were operated based on default features with a maximum of 500 iterations and a
convergence threshold of 0.00001. Predicted areas containing clamping needing to be wiped
out through a fade were realized by a clamping function. The same subsets employed
for Maxent were used for GARP. The best subset selection procedure was adopted with
1000 maximum iterations, a convergence limit as 0.01, and 20 ran every model. Other
default parameters were maintained for both Maxent and GARP [34]. Both intrinsic testing
features and “best subsets” procedures were activated for selecting the top ten models.
Corresponding criteria of selection were omission errors with a minimum of 20% and
commission errors at a default value of 50%. At the end of the iteration, the GARP and
Maxent models were both mapped to climate change scenario-related datasets. Next, we
classified the frequency distribution produced by Maxent and GARP into five groups using
the natural Jenks distribution available in ArcGIS. Every pixel of the potential distribution
map related to C. camphora was sorted from 0 to 1; the pixels were, subsequently, divided
into four classes of potential habitat as follows: ‘high potential’ (>0.6), ‘moderate potential’
(0.4–0.6), ‘low potential’ (0.2–0.4) and ‘not potential’ (<0.2) habitat. For potential habitat
under climate change scenario, we cross-checked the suitable areas against the current
habitat of C. camphora to determine the regions that became unsuitable (decreased), suitable
(increased), and unchanged; then, we calculated and illustrated the increased, suitable, and
unchanged areas in the map.

2.4. Model Evaluation

The Maxent output patterns could be interpreted using a response curve. The sig-
nificance of every variable to Maxent predictions could be checked by using a Jackknife
test. These models were assessed by a true skill statistic (TSS) [35] as well as an area under
the receiver operating characteristic curve (AUC) [36]. The AUC values fell within the
scope of 0–1. An AUC value of about 0.5 suggested that distribution model may not be
superior to a random model in prediction effects, while a value of about 1 meant that the
observations about species distribution were in good agreement with relevant predictions.
The distribution model with a value above 0.7 showed high acceptance. The TSS statisti-
cally depends on a threshold, within a range of −1 to 1 [37]. A negative TSS value or one
that was close to 0 meant that the distribution model was not superior to a random model.
Comparatively, TSS value of +1 suggested that the observed and forecast distribution were
consistent. The TSS and AUC were measured under ten models using each algorithm. The
results of the GARP and Maxent models were compared in performance by a one-tailed
Wilcoxon signed-rank test.
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3. Results
3.1. Model Accuracy and Comparison

The AUC, Kappa, and TSS values under Maxent and GARP all exceeded 0.89, prov-
ing the fine performance of these two models. As shown by the one-tailed Wilcoxon
signed-rank test results, the AUC, Kappa and TSS scores under the Maxent model seemed
obviously greater compared with those under the GARP model (Table 2), verifying the
superiority of the Maxent model to GARP. In addition, Maxent and GARP had the same
sensitivity (0.94), with a specificity higher for Maxent (0.93) compared with GARP (0.87).

Table 2. Comparison of Area Under the Curve (AUC), Kappa, and True Skill Statistic (TSS) of Maxent
and GARP models.

Model Type AUC Kappa TSS

Maxent 0.990 ± 0.011 0.994 ± 0.034 0.999 ± 0.055
GARP 0.978 ± 0.061 0.979 ± 0.030 0.895 ± 0.047
p-value 0.0163 0.0124 0.0085

3.2. Potential Suitable Distribution of Cinnamomum camphora

The climatic conditions in most regions of Southeastern China, including Eastern
Sichuan, Hubei, Anhui, Zhejiang, Jiangxi, Hunan, Guizhou, Yunnan, Guangxi, and Guang-
dong, were for the distribution of C. camphora (Figure 1). However, the two models
predicted an inconsistent distribution pattern: GARP predicted the habitat would be suit-
able in vast regions across Jiangsu, Anhui, Fujian, and Guangdong, while Maxent predicted
moderate suitability in the same areas. Likewise, GARP forecast the highly suitable dis-
tribution areas were continuous and widespread, while Maxent forecast the areas these
would be scattered and small.
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ent and (B) GARP. Both Maxent and GARP used the same threshold of classification, i.e., ‘high
potential’ (>0.6), ‘moderate potential’ (0.4–0.6), ‘low potential’ (0.2–0.4), and ‘not potential’ (<0.2)
habitat. Maps show only the provinces where C. camphora was predicted to occur.

3.3. Environmental Variables That Determined the Distribution of Cinnamomum camphora

Environmental variables which had maximum contributions to the construction of the
C. camphora distribution model using the Maxent method were mean diurnal temperature
range (40.9% contribution), annual precipitation (Bio 12, 23.0% contribution), mean air
temperature of the driest quarter (Bio 9, 10.5% contribution), and sunshine duration
in the growing season (SDGH, 7.2% contribution). The cumulative contribution of the
above-mentioned four environmental parameters was 81.6%, showing their significant
contribution to the distribution of C. camphora. In accordance with such standard curves
concerning the C. camphora distribution model (Figure 2), the leading parameter thresholds
were obtained (at an occurrence probability >0.3), Bio 2 of 4–10, Bio 9 of 4–20 ◦C, Bio 12 of
900–2500 mm, and SDGH of 100–200 h included.
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Figure 2. Response curves of important environment predictors in the species distribution model for Cinnamomum camphora:
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duration in growing season based on the Maxent algorithm for C. camphora in China.

3.4. Variations of Future Habitat with Appropriate Spatial Extent

Under the RCP 2.6-2050 climate scenario, Maxent predicted that locations with an in-
crease in the spatial extent of suitable habitats for C. camphora would be found in Chongqing,
Hunan, Guizhou, South Hubei, and Central Henan (Figures 3 and 4(A1)), with an increased
area of 1.93 × 105 km2. Additionally, future losses in the spatial extent of an appropriate
habitat totaling ca. 0.54 × 105 km2 were forecast to occur in Central Sichuan. Subject to RCP
2.6–2070 climate scenario, Maxent predicted the total increased area of distribution might
reach 1.22 × 105, while the spatial extent of suitable habitats would continually decline to
ca. 0.86 × 105 km2. Under RCP 2.6-2050 and -2070 climate scenarios, GARP forecast losses
in the spatial extent of a suitable habitat would be ca. 1.21 × 105 km2 and 2.04 × 105 km2,
respectively, across Yunnan and North Jiangsu (Figures 3 and 4(A1,A2)). Meanwhile, the
increased spatial extent of a suitable habitat would be approximately ca. 1.06 × 105 km2

and 0.85 × 105 km2 in RCP 2.6-2050 and -2070 climate scenarios, respectively, across Henan
and Shanxi (Figures 3 and 4(A1,A2)). In general, in the RCP 2.6 climate scenario, Maxent
predicted an increase in the spatial extent of areas of distribution, but GARP predicted
increases in 2050 but reduced distribution areas in 2070. However, Maxent and GARP
models unanimously forecast a northward shift of distribution areas (Figures 3 and 4).
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Figure 3. Potential suitable habitat of Cinnamomum camphora predicted by (A) Maxent and (B) GARP
under future climate change scenarios RCP2.6 and RCP8.5. A1, B1—scenarios for RCP 2.6–2050; A2,
B2—scenarios for RCP 2.6–2070; A3, B3—scenarios for RCP 8.5–2050; A4, B4—scenarios for RCP
8.5–2070. (1), Sichuan; (2), Yunnan; (3), Shanxi; (4), Chongqing; (5), Guizhou; (6), Guangxi; (7), Henan;
(8), Hubei; (9), Hunan; (10), Guangdong; (11), Shandong; (12), Anhui; (13), Jiangxi; (14), Jiangsu; (15),
Zhejiang; (16), Fujian; (17), Hainan; (18), Taiwan. Both Maxent and GARP used the same threshold of
classification, i.e., high potential (>0.6), moderate potential (0.4–0.6), low potential (0.2–0.4), and not
potential (<0.2) habitat. Only the provinces where C. camphora was predicted to occur are shown.
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Figure 4. Comparison between current potential habitat and habitat under climate change scenarios RCP2.6 and RCP8.5
by Maxent (A1–A4) and GARP (B1–B4). A1, B1: scenarios for RCP 2.6–2050; A2, B2: scenarios for RCP 2.6–2070; A3, B3:
scenarios for RCP 8.5–2050; A4, B4: scenarios for RCP 8.5–2070. White areas indicate unsuitable habitats; yellow, red,
and green area indicate unchanged, increased, and decreased suitable habitat, respectively, compared with the current
potentially suitable habitat. (1), Sichuan; (2), Yunnan; (3), Shanxi; (4), Chongqing; (5), Guizhou; (6), Guangxi; (7), Henan; (8),
Hubei; (9), Hunan; (10), Guangdong; (11), Shandong; (12), Anhui; (13), Jiangxi; (14), Jiangsu; (15), Zhejiang; (16), Fujian;
(17), Hainan; (18), Taiwan. Only the provinces where C. camphora was predicted to occur are shown.
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In the RCP 8.5 climate scenario, Maxent and GARP forecast that areas with changes
were in the same provinces as those in the RCP 2.6 climate scenario (Figures 3 and 4) and
the distribution shift was very similar. Maxent forecast that areas of increased suitability
reached ca. 1.79 × 105 km2 and 1.46 × 105 km2 in RCP 8.5-2050 and -2070 climate scenarios,
respectively, and GARP forecast increased areas reached 1.12 × 105 km2 and 1.08 × 105 km2

in RCP8.5-2050 and -2070 climate scenarios, respectively. Maxent forecast reduced areas
reached ca. 0.73 × 105 km2 and 1.93 × 105 km2 in RCP 8.5-2050 and -2070 climate scenarios,
respectively, and GARP forecast reduced areas reached 1.78 × 105 km2 and 3.06 × 105 km2

in RCP8.5-2050 and -2070 climate scenarios, respectively.

4. Discussion
4.1. Model Performance

As demonstrated by previous research results, model performance differs among
various ENMs due to the sampling size, research area, species modelled [15,22]. Due
to the changes in each prediction, it was difficult to identify an “optimal” modelling
method. Elith et al. [22] proved Maxent performed optimally with AUC values close to 1.0.
Comparatively, GARP had a poor performance with low AUC values. However, Peterson
et al. [15] suggested GARP had a stronger predictive ability when compared with Maxent
in forecasting species distribution. In the present study, it was observed that both Maxent
and GARP have high AUC, Kappa, and TSS values. The results from all of those three
evaluation indexes indicated both models had a good predictive power. Furthermore,
although those three indexes of Maxent were statistically significantly higher than GARP,
the size of this difference was relatively small. Therefore, we conclude that the performance
of both models was roughly the same. However, from the geographic perspective, GARP
predicted a large area to highly suitable for C. camphora, which were marginally predicted
by Maxent. Further, the suitable habitat predicted by GARP was continuous and covered a
large area; however, the suitable habitat predicted by Maxent was scattered and covered
a relatively small area. Even if GARP had a rather wide range of prediction and Maxent
underestimated the distribution of C. camphora particularly across Jiangsu, Zhejiang, and
Fujian, these two models both plotted maps conforming to the known distribution of these
species. A similar finding was obtained in the works of Elith et al. [22] and Hernandez
et al. [23]. Our results were similar with a previous study [28]. Such differences may
have occurred because Maxent and GARP have basic differences. GARP tends to result in
models with a large number of commission errors than Maxent, i.e., GARP would predict a
large suitable habitat area [37]. Those high commission errors were derived from sites with
a possibly appropriate habitat where the species was predicted to be present, but where
presence could not be illustrated since the species were not confirmed to exist there [5].
The use of a consistent prediction allows for the identification of inconsistencies between
the modeling methods. Moreover, the differences between Maxent and GARP suggest
that the actual underlying species distribution is not well understood. It will be necessary
to develop further refinements for the establishment of an objective framework, so that
consensual modeling methods can be used [22].

4.2. Environment Factors That Influence the Distribution of C. camphora

A major concern related to evolution and ecology should be factors that affect and
maintain the geographic distribution of a species [38–42]. For 17 environmental vari-
ables employed in the current model, the variables that were able to best explain the
environmental requirements of a species were two temperature-related variables, one
precipitation-related variable, and one light-related variable, namely, the mean diurnal
temperature range (40.9% contribution), annual precipitation (Bio 12, 23.0% contribution),
and mean air temperature of the driest quarter (Bio 9, 10.5% contribution).

The ranges of mean diurnal temperature and mean air temperature of the driest quar-
ter were 4–10 ◦C and 4–20 ◦C, the driest quarter occurred in winter in Eastern China. Such
a small range of diurnal temperature and high mean air temperature of the driest quarter
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was consistent with the distribution of C. camphora that generally recorded the regions with
a warm climate [24]. Previous literature has proven that low temperature negatively affects
the emergence and death of C. camphora seedlings [42,43]. These hydrothermal factors
probably affect C. camphora by affecting its ecological adaptability and distribution.

In addition to temperature, the fitness of a species can also be influenced by annual
precipitation. The optimal annual precipitation suited to C. camphora growth fell in the
range of 900 to 2500 mm. Precipitation, as a major environmental variable, is related
to plant growth, and also to seedling survival and growth. The water balance in plants
will be destroyed by excessive water in the soil; thus, influencing the metabolism and
morphology of plants and limiting plant growth [44–47]. Additionally, annual precipitation
is related to a variety of environmental factors affecting the biochemical and physiological
processes of plants. Previous studies have shown that the contents of protein, soluble
sugar, and MDA increased with an increasing time of drought stress, and POD activities
of C. camphora were enhanced [45]. However, C. camphora cannot survive in semi-desert
and desert environments, which was also described in our models. Therefore, C. camphora
should be planted in an area with suitable soil moisture, so that the growth of C. camphora
will not be influenced by drought stress.

It is important to note that the niche described by ENMs were not the realized niche
but a fundamental niche [15]. A fundamental niche is composed of various conditions
which conform to supporting the long-term existence of a certain species. The realized
niche, which is a fundamental niche subset practically taken by a certain species, is smaller.
Many factors that can influence the dimensions of the realized niche, such as recent
human activities, geographical barriers, and biotic interactions (parasites, predators, or
competitors), are likely to be neglected in the prediction of the potential geographical
distribution. Therefore, besides the environmental variables we used in the present study,
by some other factors, such as the natural history, anthropogenic pressures, the influence of
natural enemies on predation, or possible interspecific competition, could influence habitat
suitability. To this end, the prediction results of GARP and Maxent should be examined
based on the existing knowledge about the natural history habitat pattern of a species.

4.3. Effect of Climate Change on Distribution of C. camphora

The majority of global climate-related models predicted that global warming would
continue at the rate of 0.2 ◦C every decade [38]. Rising temperatures may expedite physio-
logical processes. To be specific, plant photosynthesis will possibly reach an upper limit
as temperature rises, even if the response varies with different species of plants [48,49].
These changes in photosynthetic rates and in other accelerated physiological processes
were caused by increased speeds of chemical reactions. The predicted effects in many cases
showed that elevation and latitude in appropriate habitats for many species are changing
in response to changing climatic conditions on a regional scale. Meanwhile, several species
probably can adapt to the changes in physiological or phenological terms [50]. In terms
of emission scenarios and algorithms, existing models forecast a similar distribution shift
trend in C. camphora with the continuing climate change. Research shows that habitats with
appropriate climatic conditions for C. camphora were predicted to continue to expand in
geographical space, particularly in the northward direction. As stated previously, the range
of mean diurnal temperature and mean air temperature of the driest quarter were two of
the main factors affecting the distribution of C. camphora. The ongoing rise of temperature
would exceed the tolerance in C. camphora. The timing of phenological events such as flow-
ering time also have potential ecological consequences [51–53]. Because of global warming,
new geographic areas will become suitable for C. camphora, particularly in central Henan
and Southern Shanxi. In the existing conditions, it is believed that Northeastern Central
Henan and Southern Shanxi are unsuitable based on current climatic data. The changes in
the projected climate are expected to allow the northward migration of C. camphora into
new regions.
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5. Conclusions

In the present study, Maxent and GARP were used to predict the distribution of
C. camphora in China under present and future climate scenarios. The results revealed that
the areas of suitable distribution predicted by GARP and Maxent were similar. However,
the areas predicted by GARP were wider than the latter except for the overlap areas. Mean
diurnal temperature range, annual precipitation, mean air temperature of the driest quarter,
and sunshine duration in the growing season proved to be most important environmental
variables affecting the distribution of C. camphora. Available predictions about the spatial
and temporal patterns related to C. camphora in the current research will present suggestions
for formulating forest management and protection measures.
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