
Article

Stand Volume Growth Modeling with Mixed-Effects Models
and Quantile Regressions for Major Forest Types in the Eastern
Daxing’an Mountains, Northeast China

Tao Wang, Longfei Xie, Zheng Miao, Faris Rafi Almay Widagdo , Lihu Dong *,† and Fengri Li †

����������
�������

Citation: Wang, T.; Xie, L.; Miao, Z.;

Widagdo, F.R.A.; Dong, L.; Li, F.

Stand Volume Growth Modeling with

Mixed-Effects Models and Quantile

Regressions for Major Forest Types in

the Eastern Daxing’an Mountains,

Northeast China. Forests 2021, 12,

1111. https://doi.org/10.3390/

f12081111

Academic Editor: Matthew B. Russell

Received: 3 June 2021

Accepted: 17 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry,
Northeast Forestry University, Harbin 150040, China; wangtao@nefu.edu.cn (T.W.); xielongfei@nefu.edu.cn (L.X.);
miaozheng@nefu.edu.cn (Z.M.); faris.almai@gmail.com (F.R.A.W.); fengrili@nefu.edu.cn (F.L.)
* Correspondence: lihudong@nefu.edu.cn; Tel.: +86-451-82191751
† These authors contributed equally to this work.

Abstract: The relative growth rate (RGRnv) is the standardized measurement of forest growth,
whereby excluding the size differences between individuals allows their performance to be compared
equally. The RGRnv model was developed using the National Forest Inventory (NFI) data on the
Daxing’an Mountains, in Northeast China, which contain Dahurian larch (Larix gmelinii Rupr.), white
birch (Betula platyphylla Suk.), and mixed coniferous–broadleaf forests. Four predictor variables—i.e.,
quadratic mean diameter (Dq), stand basal area (G), average tree height (Ha), and altitude (A)—and
four different methods—i.e., the nonlinear mixed-effects models (NLME), three nonlinear quantile
regression (NQR3), five nonlinear quantile regression (NQR5), and nine nonlinear quantile regression
(NQR9) models—were used in this study. All the models were validated using the leave-one-out
method. The results showed that (1) the mixed coniferous–broadleaf forest presented the highest
RGRnv; (2) the RGRnv was negatively correlated with the four predictors, and the heteroscedasticity
reduced significantly after the weighting function was integrated into the models; and (3) the quantile
regression models performed better than NLME, and NQR9 outperformed both NQR3 and NQR5.
To make more accurate predictions, parameters of the adjusted mixed-effects and quantile regression
models should be recalculated and localized using sampled RGRnv in each region and then applied
to predict all the other RGRnv of plots. MAPE(%) indicates the mean absolute percentage error. The
values were stable when the sample numbers were greater than or equal to six across the three forest
types, which showed relatively accurate and lowest-cost prediction results.

Keywords: stand volume growth modeling; relative growth rate; mixed-effects models; quantile
regression models

1. Introduction

Forests represent the habitat for most of the earth’s terrestrial biodiversity, occupying
almost 4.06 billion ha or 31% of the earth’s total land area. Deforestation and forest degrada-
tion are two reasons for the decrease in forest area, which has been lost at an alarming rate
of 4.7 million ha per year during 2010–2020 [1]. Consequently, China has gradually banned
the commercial logging of natural forests in the eastern Daxing’an Mountains since 2015 to
recover the natural forests. This ban has been successfully implemented with the current
total volume of 547 million m3 or about 92.01% of the total natural potential of the eastern
Daxing’an forest [2]. However, many natural forests with no production demand need a
new management plan to specifically address more appropriate and effective monitoring
and adjustment methods to ensure their continuity. One of the most effective ways is to
monitor and update real-time forest growth, which significantly impacts forest structure
and composition over time [3]. Unfortunately, to the best of the authors’ knowledge,
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no research has been found regarding the forest growth model in the eastern Daxing’an
Mountains.

Forest growth is defined as the size of a tree or a stand produced within a certain pe-
riod [4]. Forest growth and yield research has provided forest managers with an abundance
of tools for simulating stand dynamics [5]. This research was begun in the 1850s in Central
Europe when the basic yield tables became the primary standard for growth and yield
estimation until the 1950s [6]. The basic yield tables might be helpful in actual application;
however, their low accuracy is gradually becoming unacceptable to both academicians and
practitioners. Hence, the mathematical–statistical analysis and modeling of forest growth
have been increasingly developed to fulfill the demand for more accurate estimation. As
a result, numerous classic functions can be used to better estimate forest growth, such as
those of Chapman–Richards, Kangas, Monomolecular, Weibull, and Korf [7–9].

However, the growth function is not suitable for the uneven forest, because of the
difficulty in determining the age of many natural forests [10]. Moser and Hall [11] proposed
a function of a measurable size characteristics of the stand under investigation to eliminate
the problem of indefinite age. This growth rate equation provides a yield function expressed
with an elapsed time from a given initial condition, indicating that compatible growth
rate and yield functions for the uneven-aged stand can be derived from permanent plot
data. Dale et al. [12] classified growth and yield models into stand model, size class model,
and individual tree model. Peng [13] detailed the differences between these three models:
stand models use stand parameters to simulate the stand growth and yield that are usually
simple and robust; however, they provide little or no detail about individual trees within
a stand; size class models only require overall stand values as input and provide some
information relating to stand structure, but the output is not flexible enough to evaluate a
broad range of stand treatments; and the individual tree models simulate each individual
tree as a basic unit that provides maximum detail and flexibility for evaluating the stand
but requires more detail and an expensive database to be developed and implemented.
Although the stand models cannot provide specific information about the individual tree or
size class, it is generally cheaper and relatively effective for practical applications because
of lesser data and the need for complex variables [14].

There are several different basic concepts of growth, which have not been properly
explained and often appear confusing. Cumulative growth means the total volume attained
by a tree or a stand at any particular time. Generally, cumulative growth time is a fixed
interval, which is not convenient for practical application. Absolute growth rate (AGRnv)
is the mean absolute changes in mass over a given time period, which can be defined as the
value of a particular characteristic at different times (tk and tk−1 divided by ∆t). AGRnv
depends on the current state of the plant size characteristic and is therefore not helpful to
growth analysts when comparing plants of different sizes [15]. In such situations, RGRnv
is often studied in addition to absolute growth. RGRnv is also a function of time and is
defined as the increase in size relative to the growth characteristic [3]. Hunt [7] decomposed
RGRnv into the product of three components: (1) the net assimilation rate (NAR), which
is the absolute growth rate per unit leaf area; (2) the leaf mass ratio (LMR), which is the
proportion of biomass invested in leaves; and (3) the specific leaf area (SLA), which is the
leaf area divided by leaf mass. Given the advantages of RGR in physiology and ecology, it
was used in this study as the dependent variable.

Permanent plot data from different regions are mostly used for forest growth modeling.
However, heteroscedasticity always exists in model residuals; hence, a weighted regression
should be used to neutralize the inconsistency [16,17]. The traditional ordinary least-
squares (OLS) method obeys the assumption of independent observations, providing
the proper parameter estimates for the overall average. However, their variances are
biased when there are significant differences between groups. Since the measured trees
or stands are usually grouped into plots or regions, the nonlinear mixed-effects (NLME)
modeling approach has been used to reduce the bias by considering the differences between
groups [18–21]. The NLME is composed of fixed- and random-effects parameters, in which
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the variance–covariance structure analyzes hierarchically structured data more efficiently
and subsequently increases the prediction accuracy of the models. NQR has been widely
used in the last few years to describe the response variable, given a set of explanatory
variables [22–24]. Compared to the conventional OLS method, quantile regression can
characterize the entire conditional distribution of the outcome variable and is more robust
to the presence of outliers and misspecification of the error distribution [25]. However, in
actual application, both the NLME and NQR should be calibrated for the adjusted random
parameters and the best quantile curve [26–28].

The main research tasks of this study were to (i) choose the best basic model equation
for RGRnv and solve model autocorrelation and heterogeneity using the NLME and NQR
methods; (ii) evaluate different RGRnv models using a leave-one-out cross-validation
approach and compare the RGRnv of three forest types and analyze the trend differences
between mixed and relatively pure stands; and (iii) determine an appropriate sample size
that considers both sample cost and predictive accuracy. The finding will be useful in forest
management planning for the uneven-aged forests in the eastern Daxing’an Mountains. It
will also expand the application of mixed-effects and quantile regression models in stand
growth modeling, which will be useful in effectively estimating the dynamics of future
forest accumulation and providing a theoretical basis for carbon neutrality. Continuously
improving our understanding of RGRnv impacts on the comparison of pure and mixed
forests will support forest managers seeking to develop effective adaptation measures and
determine sustainable forestry production.

2. Materials and Methods
2.1. Study Sites

We selected the eastern Daxing’an Mountains located in Heilongjiang Province, North-
east China (50◦05′–55◦33′ N, and 121◦11′–127◦01′ E). It is the largest and best-preserved
natural forest in China (Figure 1), covering approximately 6.62 million ha (97.46% of the
total forest area), with a total volume of living trees of about 540 million m3 (98.72% of
the total forest volume). The average width is approximately 200 km, stretching 1200 km
from northeast to southwest. The altitude ranges from 300 to 1520 m above the sea level.
This area belongs to the typical cold temperate continental monsoon climate, with mean
annual temperature and total precipitation ranging from −1 to −2.8 ◦C and 430 to 460 mm,
respectively. The soils are mostly cryumbrepts or humic cambisols (or brown coniferous
forest soils in the Chinese taxonomic system) [29,30]. The main dominant tree species are
Dahurian larch (Larix gmelinii Rupr.) and white birch (Betula platyphylla Suk.), accompanied
by Dahurian poplar (Populus davidiana Dode.), Mongolian oak (Quercus mongolica), and
Mongolian pine (Pinus sylvestris var. mongolica). There are three main forest types in the
eastern Daxing’an Mountains: LF, WBF, and CBMF. The areas of the three main forest types
are 2.54 million (37.39% of the total forest area), 2.23 million hectares (32.83% of the total
forest area), and 0.69 million hectares (10.16% of the total forest area), respectively.

2.2. Modeling Data

NFI data are network representatives designed to continuously monitor the macro-
changes of forest resources at the national and provincial levels at 5 years. The main
objectives of the NFI are to identify the forest extent, such as volume, growth, consumption,
function, and dynamics during each interval. In eastern Daxing’an Mountains, the NFI
sampling design is an 8 km × 8 km grid, and a permanent sampling plot is located at
every grid.

Measurements that were used in this study came from 384 permanent NFI plots.
These plots were located in 12 forest bureaus (or 12 regions), which covered most of the
eastern Daxing’an Mountain area. The data were collected in three periods of 2000–2005,
2005–2010, and 2010–2015, respectively, with a total of 1152 samples investigated. The
data represented three main natural forest types in the eastern Daxing’an Mountains,
comprising LF, WBF, and CBMF (dominated by the intermixture of Dahurian larch and
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white birch). The rectangular plots had a size of 10 × 60 m, which was equal to 0.06 ha.
No logging or human intervention was detected within the sample plots. All trees with
diameter at breast height greater than 5 cm were measured, and information including the
species name, DBH, tree status, and number of trees per sample plot was collected. For
each plot, the heights of 3–5 standard trees (determined by the Dq) for the dominant species
in a plot were measured using a Blume–Leiss hypsometer to calculate the mean height of
these trees as Ha. The stand basal area was calculated with Equation (1). Individual tree
volume was calculated with the one-way volume table for each forest bureau based on
the diameter at breast height, and the system error is within ±1% [31]. The stand volume
was calculated with Equation (2). The Pressler growth rate formula, Equation (3), was
used to calculate the RGRnv, in which the periodic average growth rate was substituted
for the instantaneous growth rate [32]. The abbreviations for the main variables and terms
involved in the article are shown in Table 1. The descriptive statistics of the stand variables
are provided in Table 2.

Figure 1. The geographical position of the study area and the forest bureaus (regions) in eastern
Daxing’an Mountains, Northeast China.
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RGRnv =
Vit −Vit−n

Vit + Vit−n

× 200
n

(3)

where Vit−n and Vit represent the initial and final stand volume of ith plot, respectively,
which are equivalent to the accumulation of the live stand volume, ingrowth volume, and
harvest volume; k represents the numbers of plot; n represents the investigation interval in
Equation (3).
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Table 1. Descriptions of the main variables and terms for the three forest types in the eastern
Daxing’an Mountains, Northeast China.

Abbreviation Description

Stand variables
A (m) Altitude of plot

Dd (cm) Mean diameter of dominant species
Dq (cm) Quadratic mean diameter of the dominant species

G (m2·ha−1) Stand basal area
Ha (m) Mean height of dominant species

N (trees·ha−1) Number of trees per hectare
RGRnv Relative growth rate

S (◦) Slope of the plot
V (m3·ha−1) Volume of the plot

Proper noun
BASIC Basic nonlinear model
CBMF Mixed coniferous–broadleaf forests
FIXED Fixed-effects model

LF Dahurian larch (Larix gmelinii Rupr.) forest
NFI The National Forest Inventory data

NLME/MIXED Nonlinear mixed-effects model
NQR(3, 5, 9) Nonlinear quantile regression model(3, 5, 9 quantile points)

WBF White birch (Betula platyphylla Suk.)
Statistics index

AIC Akaike information criterion
MAE Mean absolute error

MAPE(%) Mean absolute percent error
MPE(%) Mean percent error

R2
a Adjusted coefficient of determination

RMSE Root mean square error

Table 2. Descriptive statistics of variables of the three forest types in the eastern Daxing’an Mountains, Northeast China.

Forest Type Variable Sample Sizes Mean Min. Max. S.D.

LF
(N = 151)

A (m) 453 634.83 220 1190 206.75
Dd (cm) 453 14.51 6.91 40.23 5.33
Dq (cm) 453 12.84 5.21 29.71 3.36

G(m2·ha−1) 453 13.16 1.51 35.09 7.48
Ha (m) 453 13.25 4.13 24.71 3.67

N(trees·ha−1) 453 1094 117 3950 695
S (◦) 453 6.15 0.00 28.00 5.07

V (m3·ha−1) 453 86.74 7.21 288.82 53.21
RGRnv (%·year−1) 453 2.68 0.13 11.25 1.86

WBF
(N = 101)

A (m) 303 628.13 241 1150 184.21
Dd (cm) 303 11.54 6.19 22.12 2.56
Dq (cm) 303 11.21 5.12 21.52 2.63

G (m2·ha−1) 303 12.45 1.63 26.36 5.19
Ha (m) 303 12.19 5.41 20.61 2.64

N (trees·ha−1) 303 1332 167 3350 664
S (◦) 303 6.94 0.00 26.00 4.71

V (m3·ha−1) 303 74.89 7.81 170.01 34.51
RGRnv (%·year−1) 303 3.13 0.41 9.59 1.65

CBMF
(N = 132)

A (m) 396 601.83 235 1050 189.01
Dd (cm) 396 13.51 6.22 46.51 4.61
Dq (cm) 396 12.19 5.12 21.61 2.48

G (m2·ha−1) 396 15.44 2.09 31.94 6.47
Ha (m) 396 13.14 3.13 23.31 3.37

N (trees·ha−1) 396 1334 100 3233 649
S (◦) 396 6.73 0.00 27.00 4.74

V (m3·ha−1) 396 97.51 1.71 229.41 45.95
RGRnv (%·year−1) 396 3.36 0.03 16.44 2.69

N: number of plots; mean: mean value; min.: minimum value; max.: maximum value; S.D.: standard deviation.
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2.3. Methods
2.3.1. Basic Model

Several basic models (liner model, reciprocal model, power model, exponential model,
and sigmoid model) were used to describe the relationship between relative growth rate
and dependent variables. The equations are listed below:

RGRnv = α + βX (4)

RGRnv =
1

α + βX
(5)

RGRnv = αXβ (6)

RGRnv = αexp(βX) (7)

RGRnv =
1

1 + exp− (α + βX)
(8)

α and β are the models’ parameters and X is the independent variable vector. Seven
variables were used in the model: (1) altitude (A); (2) dominant species mean diameter
(Dd); (3) quadratic mean diameter of dominant species (Dq); (4) stand basal area (G); (5)
average tree height (Ha); (6) the number of trees per hectare (N); and (7) slope of the plot (S).
All models with insignificant variables (p-value > 0.05) were eliminated. The relationship
between variables and growth rate are provided in Figure 2. The model fitting performance
was evaluated by three evaluation statistics: adjusted coefficient of determination (Ra

2),
root mean square error (RMSE), and Akaike information criterion (AIC). The equation
with the largest Ra

2 and the smallest RMSE and AIC was chosen as the best basic model.

Ra
2 = 1−

(
n− 1
n− p

)
∑n

i=1(yi − ŷi)
2

∑n
i=1

(
yi −

−
y i

)2 (9)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/(n− p) (10)

AIC = −2LL + 2p (11)

where n is the plots size, p is the number of the model parameters, LL is the log-likelihood

value of the equations, and yi, ŷi, and
−
y i are the observed, predicted, and mean observed

volume growth rate, respectively.
The heteroscedasticity is commonly found in growth models. It is well known that

the error variance of the ith observation is functionally related to one or more predictors,
which can be modeled with a power function, such as σ2

i = (Xk
i ) [33]. The power coefficient

k can be obtained by iteratively using the residual variance model e2
i = (Xk

i ), in which
ei is the model residual of the unweighted basic model. In this study, we chose 1/ŷi

k as
the weight function. The Breusch–Pagan test was used to measure the heteroscedasticity
corrected model. It uses a variance function and a χ2-test to test the null hypothesis that
heteroscedasticity is not present (i.e., homoscedastic) against the alternative hypothesis
that heteroscedasticity is present [34]. To ensure that there is no “multicollinearity” in the
model, a correlation test method was used.
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Figure 2. Relationship between the RGRnv and independent variables for LF, WBF, and CBMF.

2.3.2. Nonlinear Mixed-Effects Models

The population average model is commonly used in forestry modeling. However, it
cannot exhibit the trends of the specific subjects within the data. A nonlinear mixed-effects
model was built to solve this problem, specifically for dealing with the intrinsic variation
and the nested structure of the sample data [20,35]. In this study, the best-performing basic
model was used to formulate a generalized one-level NLME growth model by introducing
region-level (forest bureau) random effects into the model. All possible combinations
of the fixed-effects and random-effects parameters were fitted to the data. The model
with the smallest AIC and the largest log-likelihood (LL) was selected for further analyses.
A likelihood-ratio test (LRT) was performed to avoid over-parameterization [36]. The
one-level NLME growth model can be written as follows:

yi = f (b, ui, xi) + εi (12)

where yi =
[
RGRnvi1, RGRnvi2, . . . RGRnvini

]T , xi =
[
xi1, xi2, . . . xini

]T , and

εi =
[
εi1, εi2, . . . εini

]T , respectively, represent the vectors of the observation value of
RGRnv, variables, and the random errors; ni is the number of RGRnv measurements for
region i; b and ui are vectors of fixed- and random-effects parameters, respectively; ui and
εi are assumed to follow the multivariate normal distributions with mean 0 and variance D
and R, respectively. D is the variance–covariance matrix of random-effects parameters used
in the generalized positive-definite matrix throughout this article, and R is the within-group
variance–covariance matrix. The mathematical form is as follows:

D =

 σ2
1 · · · σnσ1
...

. . .
...

σ1σn · · · σ2
n

 (13)

R = σ2G0.5
i ΓiG0.5

i (14)
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where σ1
2 is the variance of the first parameter; σn

2 is the variance of the nth parameter;
σ1σn and σnσ1 are the mutual covariances of the first parameter and the nth parameter,
respectively; σ2 is the variance of model residual; Gi accounts for within-group variance
heteroscedasticity and its diagonal elements are provided by variance function; and Γi
accounts for within-group autocorrelations of the residual errors and considered as an iden-
tity matrix as there is no time autocorrelation. The heteroscedasticity of the mixed model
can be solved by weighted function based on the power variance function, Equation (15).

var
(
eij
)
= γRĜRnv

2δ
ij (15)

where eij and RĜRnvij are, respectively, the residual and estimated RGRnv calculated with
fixed-effects for the jth sample plot within the ith sample region, and γ and δ are the
estimated parameters for the best basic model. The NLME package in R software was
used to obtain the fixed- and random-effects parameters of the nonlinear mixed model of
RGRnv [37].

To calculate the prediction of RGRnv for a new plot, at least one plot of RGRnv within
each region should be available. The random parameters ui for the plot i can be computed
using the first-order of Taylor series expansion [38]:

ûi = D̂ZT
i (ZiD̂ZT

i + R̂i)
−1(

yi − b̂xi
)

(16)

where ûi is the estimate of the random parameters for region i; D̂ is the estimate of D;
Zi is the designed matrices for random effects, Zi=

∂ f (b, ui ,xi)
∂ui

∣∣∣
b̂, ûi

; ZT
i is the transpose of

Zi; R̂i is the estimate of Ri; yi and xi are the same as defined in Equation (12); and b̂ is
estimates of parameter variable. The validation statistic was similar as the basic model,
Equations (7)–(9).

2.3.3. Nonlinear Quantile Regressions

The quantile regression model was first introduced by Koenker and Bassett [22] and is
also known as a location model. It can characterize the entire conditional distribution of a
dependent variable, providing a robust measure of location that reduces the sensitivity of
the estimated coefficient to the outlier observations. Quantile regression may bring more
efficient estimates than ordinary least-squares regression, specifically when the error term
is not normal [39]. NQR was used to predict RGRnv with the τth quantile expressed as:

ŷiτ = f (bτ , xi) (17)

ŷiτ = f (bτ , xi) is the estimated RGRnv under the τth quantile, and τ is the quantile point
(ranging from 0 to 1). In contrast to the mean regression technique, which employs the
least-squares procedure, the parameters of NQR are obtained by minimizing the following
equation [18]:

S = ∑
y(xij)≥ŷτ(xij)

τ
[
y
(
xij
)
− ŷτ

(
xij
)]

+ ∑
y(xij)<ŷτ(xij)

(1− τ)
[
ŷτ

(
xij
)
− y
(
xij
)]

(18)

where S is the sum of the weighted residuals of the τth quantile; y
(
xij
)

is the observed
RGRnv. under the τth quantile; and ŷτ

(
xij
)

is the predicted RGRnv under the τth quantile.
The quantreg package in R software was used for fitting the NQR growth rate model [40].

The quantile model can be calibrated with different curves of several quantile points
(τ). Three different numbers of quantile points were constructed for the NQR models—i.e.,
NQR3 (τ = 0.1, 0.5, 0.9), NQR5 (τ = 0.1, 0.3, 0.5, 0.7, 0.9) and NQR9 (τ = 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

When the prior information (a few sampling plot measurements for each region) is
utilized in the RGRnv NQR model, the two closest quantile regression curves encompassing
the majority of these data points need to be correctly identified [23,41]. One or more RGRnv
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of sample plots were measured in each region as calibration samples to compute the mean
difference between the observed and the predicted values of all sample plots for each
quantile regression. Two consecutive quantile regressions (i.e., mth and m + 1th) were then
chosen for interpolation of the RGRnv curve:

ŷki = α + (1− α)ŷm+1 (19)

where ŷi is the adjusted quantile regression predicted value of RGRnv and the interpolation
ratio is α = ŷm+1−ym

ŷm+1−ŷm
, which was obtained by minimization:

Q = ∑
[
(yki − ŷki)

2
]
. (20)

If the mean difference was positive for all the quantile regression curves, then the
majority of RGRnv were over the highest (qth) quantile regression curve, and ŷm and
ŷm+1 in Equation (19) were defined as ŷq−1 and ŷq, respectively. In contrast, if the mean
difference was negative for all quantile regression curves, the ŷm and ŷm+1 were defined as
ŷ1 and ŷ2, respectively.

2.3.4. Model Evaluation of Validation and Prediction

Six methods evaluated in this study were: (1) basic model; (2) fixed-effects model;
(3) mixed-effects model; (4) NQR3; (5) NQR5; and (6) NQR9. The models were validated
using the leave-one-out cross-validation method, which is widely used and considered to
be a useful method to test the model’s predictive performance [35]. Three statistics—MAE
is mean absolute error, MPE(%) is mean percent error, and MAPE(%) is mean absolute
percent error—were calculated with the model bias generated from validation for assessing
and comparing the predictive performance of the models.

MAE =
n

∑
i=1

∣∣∣∣yi − ŷi
n

∣∣∣∣ (21)

MPE(%) =
∑n

i=1(yi − ŷi,−i)/yi

n
× 100 (22)

MAPE(%) =
∑n

i=1|yi − ŷi,−i|/yi

n
× 100 (23)

where yi is the observed RGRnv, ŷi,−1 is the predicted RGRnv obtained by the leave-one-out
cross-validation method, and n is the size of all plots.

To make more accurate predictions, parameters of the adjusted mixed-effects and
quantile regression models should be recalculated and localized using the sampled RGRnv
in each region and then applied to predict all the other RGRnv of plots. One to 15 sample
plots were used in this study for each region. Each sample scenario was repeated 500 times
to ensure the stability of the results. The evaluation statistics computed for the validation
data set are as Equations (21)–(23). We used the paired t-test to compare and analyze
the validated results of different sampling numbers and to find the best sample number,
considering both accuracy and cost.

Several methods have been suggested for evaluating model predictions, aimed in
general at quantifying the relative contribution of different error sources to the unexplained
variance [42–44]. The most popular method was using graphic plots of observed and
predicted data (OP scatter plot). It should be emphasized that the OP scatter plot must
set observed values in the y-axis vs. predicted values in the x-axis. The opposite setting
will result in incorrect conclusions about the performance of the model. Piñeiro et al. [45]
suggested that the coefficient of determination of the regression of OP values (R2) is an
effective parameter that provides important information about model performance to
indicate how much of the linear variation of observed values is explained by the variation
of predicted values. It was calculated by Equation (24), where yi was the observed RGRnv
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and ˆ̂
iy was the predicted RGRnv. Another suggestion was to test the hypothesis of slope = 1

and intercept = 0 to assess statistically the significance of regression parameters of fitting
relationship between the observed and predicted data.

R2 = 1− ∑n
i=1
(
yi − ˆ̂

iy
)2

∑n
i=1

(
yi −

−
y i

)2 . (24)

3. Results
3.1. Best Basic Model

The fitting results of the basic models are provided in the Appendix A (Tables A1–A3).
The best basic RGRnv model form was the exponential function model for all the three
forest types. The Ra

2 and RMSE for the best basic model is 0.6841 and 0.0111 (LF), 0.6991
and 0.0087 (WBF), and 0.8031 and 0.0122 (CBMF), respectively (Table 3). The parameter
estimates and standard errors are shown in the Appendix A (Tables A4–A6). The relation-
ship between the variables and the RGRnv is presented in Figure 2. The heteroscedasticity
of the model significantly stabilized (p > 0.05) after the model was weighted (Figure 3). The
variables correlation test (Figure 4) showed that there was no obvious strong correlation
(−0.6 < coefficient values < 0.6) between the model independent variables [46]. The specific
form of the model is as follows:

RGRnv = a1 exp
(

β1Dq + β2G + β3Ha + β4 A
)

(25)

Table 3. Model fitting of the best basic and mixed-effects model for the three forest types.

Forest Types Model
Fitting Statistics

R2
a RMSE AIC

LF
Basic 0.6841 0.0111 −2781.33

Mixed 0.7706 0.0095 −2930.69

WBF
Basic 0.6990 0.0086 −1760.76

Mixed 0.7978 0.0071 −1862.14

CBMF
Basic 0.8031 0.0122 −2372.05

Mixed 0.8546 0.0104 −2474.67

3.2. Mixed-Effects Models

The parameter estimations of the mixed-effects models are presented in the Appendix A
(Tables A4–A6). Different random parameter combinations were sequentially added to the
basic model. The best mixed-effects models for the three forest types were finally deter-
mined after considering the model convergence and the comparison of fitting indicators.
The model forms for LF, WBF and CBMF are as follows (u1–u4 are random parameters):

RGRnv = a1 exp((β1 + u1)Dq + β2G + β3Ha + (β4 + u4)A) (26)

RGRnv = a1 exp
(

β1Dq + (β2 + u2
)
G + (β3 + u3)Ha + β4A) (27)

RGRnv = a1 exp
(

β1Dq + (β2 + u2
)
G + (β3 + u3)Ha + β4A

)
(28)

The model fitting accuracy significantly improved after the addition of random effects
to the basic model, in which their Ra

2 and RMSE were 0.7706 and 0.0095 (LF), 0.7978 and
0.0071 (WBF), and 0.8546 and 0.0104 (CBMF), respectively (Table 3). As in the previous
subsection, the heteroscedasticity of the mixed-effects models also significantly stabilized
(p > 0.05) after it was weighted (Figure 3).



Forests 2021, 12, 1111 11 of 24

Figure 3. Standardized residual plots for the basic and mixed-effects models of the three forest types ((A): LF, (B): WBF and
(C): CBMF); BASIC-UN, BASIC-WE, MIXED-UN, and MIXED-WE represent the unweighted basic model, the weighted
basic model, the unweighted mixed-effects model, and the weighted mixed-effects model, respectively.

Figure 4. Variables correlation test diagram of the three forest types.

3.3. Nonlinear Quantile Regression Models

The parameter estimates and standard errors of the NQR models across different
quantile points are shown in Appendix A (Tables A4–A6). Quantile regression properly
represented the characteristics of invariant to monotonic transformations; hence, the het-
eroscedasticity or outliers had only an insignificantly minor effect on the NQR estimations.
Table 4 shows no difference in MAE values between NQR3, NQR5, and NQR9. NQR9 had
smaller MPE(%) and MAPE(%) than NQR3 and NQR5, indicating that it provided slightly
better predictions than the other two methods.
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Table 4. Model validation statistics of the six different methods for LF, WBF, and CBMF.

Forest Types Model
Validation for Model Statistics

MAE MPE(%) MAPE(%)

LF

Basic 0.0091 −33.0941 56.7638
Fixed 0.0094 −36.9125 59.9228
Mixed 0.0079 −27.3283 46.0380
NQR3 0.0078 −19.9447 43.4524
NQR5 0.0078 −18.0479 42.3543
NQR9 0.0078 −15.4803 41.5027

WBF

Basic 0.0073 −15.3719 33.8379
Fixed 0.0081 −16.0116 33.9058
Mixed 0.0058 −11.8536 26.7588
NQR3 0.0058 −9.3290 24.8674
NQR5 0.0058 −9.5704 24.9588
NQR9 0.0058 −9.3227 24.5826

CBMF

Basic 0.0094 −16.0511 41.4629
Fixed 0.0099 −17.0285 41.8236
Mixed 0.0088 −16.5065 38.2697
NQR3 0.0087 −12.5448 36.1170
NQR5 0.0087 −11.8615 36.1139
NQR9 0.0085 −10.7174 34.0156

3.4. Comparison of RGRnv between Three Forest Types

Four variables were included in the basic model (Equation (25)), which were Dq, G,
Ha, and A. To compare RGRnv between the three forest types, the relationship between the
predicted RGRnv and G at different variable levels was visualized, since G had a superior
performance in the basic model compared to the other variables. The common data interval
range of the remaining variables in each stand was determined according to the maximum
and minimum value, then the average value was calculated and divided into three levels.
The results are shown in Figure 5.

Figure 5. The relationship between RGRnv and G at three different levels of Dq (A), Ha (B), and A (C); the mean values
of Dq, Ha, and A are 11.1 cm, 12.2 m, and 625.9 m for LF; 12.8 cm, 13.1 m, and 635.3 m for WBF; and 12.2 cm, 13.1 m, and
601.9 m for CBMF.
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For LF, the RGRnv across three levels of Dq differed more than Ha and A. This result
indicated that the effect of the individual’s radial size on the growth rate was higher than
that of the longitudinal size and site in LF. The opposite result was found in WBF, where
the RGRnv differences among the average Ha values were greater than other variables.
For CBMF, the differences among both Dq and Ha were greater than A. The RGRnv rank
among the three stand types varied across diameter levels (Figure 5A), when the Dq were 5
and 13 cm, the RGRnv was ranked as CBMF > LF > WBF. The order changed when Dq was
21 cm: WBF > CBMF > LF. For both Ha and A, CBMF consistently had the highest RGRnv
across all the three levels.

3.5. Comparing Modeling Approaches

Table 4 presents the model validation results using the leave-one-out validation
method. The results showed that the basic model provided a slightly higher accuracy than
the fixed-effects model. In addition, the MPE(%) and MAPE(%) values of the mixed-effects
and quantile model were significantly lower compared to the basic model, in which the
quantile model resulted a way much better prediction than the mixed-effects model. For
the quantile model, NQR9 was better than NQR5 and NQR3 in both LF and CBMF. There
was only a slight prediction difference between the NQR3, NQR5, and NQR9 in WBF.
Figure 6 shows the scatter plots between the observed and predicted RGRnv of the basic,
fixed-effects, mixed-effects, and quantile models. NQR9 had the biggest R2, indicating
that it performed best among all the methods. Both null hypotheses were not rejected;
thus, disagreement between model predictions and observed data was due entirely to the
unexplained variance.

3.6. Comparison of Sample Size for Calibration

Figure 7 presents the MAPE(%) variation across various sample numbers for the
four models (NQR9, NQR5, NQR3, and the mixed-effects model). Zero sample number
means that MAPE(%) was calculated using the mixed-effects model with fixed parameters
only, and for the quantile regression, τ = 0.5 refers to the median effect. The MAPE(%)
values decreased as the sample numbers increased across all forest types, in which the
three quantile regressions (i.e., NQR3, NQR5, and NQR9) had lower MAPE(%) values
than the mixed-effects model. The difference between NQR9, NQR5, and NQR3 was not
obvious, where NQR9 consistently outperformed NQR3 and NQR5 by producing the
lowest MAPE(%) values across all sample numbers. The above conclusion was confirmed
statistically by a series of test of contrasts: sample of one plot per region vs. two or more
plots; two plots vs. three or more plots, etc. Results indicated that sampling six plots per
region yielded non-significant differences among the evaluation statistics as compared to
sampling seven or more plots (Table 5). Hence, more stable MAPE(%) performances were
seen when the sample numbers were greater than or equal to six.

For the mixed-effects models, the result of sampling indicated that when the sample
size was more than six (Appendix A: Table A7), the following occurred: (1) MAE decreased
by about 9.9%, 25.1%, and 2.1% for LF, WBF, and CBMF, respectively; (2) MPE(%) decreased
by about 15.6%, 17.3%, and 6.3% for LF, WBF, and CBMF, respectively; (3) MAPE(%)
decreased by about 14.2%, 15.6%, and 4.8% for LF, WBF, and CBMF, respectively. The
results were varied across the three forest types for the three quantile regression models, in
which: (1) the MAE of the NQR3, NQR5, and NQR9 decreased by about 24.7%, 25.3%, and
25.6% for LF; 26.2%, 26.3%, and 26.5% for WBF; and 24.2%, 24.7%, and 24.8% for CBMF,
respectively; (2) the MPE(%) of the NQR3, NQR5, and NQR9 decreased by about 27.5%,
28.0%, and 30.0% for LF; 10.2%, 13.1%, and 15.3% for WBF; and 34.9%, 37.5%, and 40.2%
for CBMF, respectively; (3) the MAPE(%) of the NQR3, NQR5, and NQR9 decreased by
about 21.2%, 21.3%, and 21.3% for LF; 20.4%, 20.8%, and 20.9% for WBF; and 21.0%, 21.2%,
and 22.4% for CBMF, respectively.
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Figure 6. Plot for the observed and predicted RGRnv of the BASIC, FIXED, MIXED, NQR3, NQR5,
and NQR9 models.

Table 5. Testing of contrasts of sample plots with the result of NQR9 for LF, WBF, and CBMF. A bold,
underlined number denotes a significant difference (p < 0.05) in the test of contrasts.

Contrasts
p-Level

LF WBF CBMF

1 plot vs. 2 and more plots <0.0001 <0.0001 <0.0001
2 plot vs. 3 and more plots <0.0001 <0.0001 <0.0001
3 plot vs. 4 and more plots <0.0001 <0.0001 <0.0001
4 plot vs. 5 and more plots 0.0013 0.0023 0.0006
5 plot vs. 6 and more plots 0.0135 0.0089 0.0013
6 plot vs. 7 and more plots 0.1887 0.3057 0.0841
7 plot vs. 8 and more plots 0.1919 0.3223 0.1261
8 plot vs. 9 and more plots 0.2952 0.3554 0.2578
9 plot vs. 10 and more plots 0.3524 0.4666 0.388

10 plot vs. 11 and more plots 0.5746 0.4981 0.4548
11 plot vs. 12 and more plots 0.6406 0.5721 0.5855
12 plot vs. 13 and more plots 0.7813 0.7841 0.6901
13 plot vs. 14 and more plots 0.8862 0.8491 0.7067
14 plot vs. 15 and more plots 0.9321 0.8843 0.7498
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Figure 7. The relationship between MAPE(%) and sampling numbers (plots/region) across the four models and three
forest types.

4. Discussion

In this study, Equation (25) was the best basic RGRnv model constructed using four
primary predictors: Dq, G, Ha, and A. The data were obtained from the NFI’s permanent
sample plots across the three forest types in eastern Daxing’an Mountains. The exponential
form was found to be the best basic RGRnv model. Several previous studies have proven
that the exponential form can visualize the important biological characteristics of various
animal and plant growth. Jobidon [47] studied the competition effects in the boreal mixed
wood forest across Quebec and Canada; he concluded that the exponential form should be
considered to analyze the stand growth, specifically if young trees exist. Scolforo et al. [48]
also preferred to utilize the exponential form to model the relative diameter growth rate
of the six tree species in Brazil, which included stand density as the primary predictors.
The exponential model was proposed in this study since it was able to clearly describe
the growth rate of the cold temperate forests and avoid negative growth rate estimation.
Most of the native tree species had small DBH, while only a few individual trees had large
DBH. Hence, these larger trees have smaller predicted growth rate values compared to
other trees. The larger trees may highly influence the model; however, the exponential
formulation does not allow the predicted growth rate to be negative.

The RGRnv was the dependent variable of the model in this paper and was calculated
with Pressler’s formula using the average growth rate to replace the consecutive annual
growth rate. RGRnv is a standard variable to determine the productive capacity of a tree
and can be used to compare the trees that differ in initial size, age, and environmental
conditions [49,50]. All four parameter estimates were negative, indicating that the RGRnv
decreased with the increment of various variables. This trend was consistent with the
actual survey results (Figure 2).

Dq was used for the average tree diameter in the research of tree growth, having a
better performance than the arithmetic mean diameter [51,52]. Curtis et al. [53] explained
the difference between the average and the arithmetic mean diameter in detail and their
respective applicable scenarios. Reineke’s [54] SDI (stand density index) was used for
the various relative density measures and stand management diagrams derived from the
Reineke relationship, which was based on Dq. Ha was also an important variable for
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describing stand structure, specifically for the vertical direction. G was the density index,
combining the tree diameter and the number of trees within a stand. Site effect variables
that contained altitude, slope, and aspect have been recommended in growth, forest species
composition, and productivity research [55–57]. Unfortunately, in this study, although the
altitude showed significant contributions to the RGRnv model, the slope and aspect of the
plot were not significant in the model. The RGRnv declined with altitude, which could be
the result of a short growing season and reduction in mean summer temperatures [58,59].
Ma and Lei [60] showed that Ha can replace dominant height when there is no information
available. However, Inoue [61] found that stand volume and bole surface area were not
independent of stand age or site quality. Hence, when the stand age is unknown, Ha can
be the average feedback of stand vertical structure rather than the stand site condition.

The growth of the trees has played an important role in recycling the forest. Plantation
forests emerged mainly in Germany and Austria, while the concept of natural forests origi-
nated in France and Switzerland [62]. Although some research on heterogeneous forests
was conducted in 1940s, presently, natural forests are still lacking a forest management
philosophy. Dahurian larch is a very intolerant and cold-resistant species that can grow
in dry, infertile, and swamped soil, or on permanently frozen ground; however, it is best
grown in drained, moist, and sandy soil [63]. Jia and Zhou [64] summarized the growth
characteristics of natural and planted Dahurian larch in Northeast China. They emphasized
that the growth rates are considered essential indexes in assessing forest recovery processes
and carbon sequestration potentials, which can supply post-fire or sustainable manage-
ment strategies. White birch is an excellent, fast-growing pioneer species and suitable for
well-drained soil; it can grow in heavy clay and nutritionally poor soils [65]. In recent years,
research on the mixed forest has developed rapidly, including stand stability [66], stand
resource utilization [67], stand diversity [68], and stand dynamic change [69]. It has shown
that the mixed forest has obvious advantages over the pure forest. The CBMF studied
in this paper mainly involved the mixed forest of LF and WBF. Figure 5 shows that the
RGRnv of CBMF was higher than LF and WBF across different levels, which proved that
CBMF had more potential growth superiority compared with LF and WBF. CBMF also
has the highest productivity or stand stability, which was corroborated by the well-known
competitive yield criterion [70].

In forestry applications, two or more measurements are often taken from each sam-
pling unit. These repeated measurements are not statistically independent; hence, the
ordinary least-squares techniques may underestimate the variance of parameters. In this
paper, the nonlinear mixed model and quantile model were used to deal with the longitudi-
nal data. According to Table 3, the prediction accuracy of all NLME models was improved
and presented a more stable estimate (indicating the reduction of spatial heterogeneity
in the model residuals). WBF had the most significant improvement, which was then
followed by LF and CBMF. Figure 6 shows that the relationship between the observed
value and the predicted value of the mixed model was more concentrated compared with
the basic model. The random effect was integrated to Dq and A for the LF mixed model,
while G and Ha were used for WBF and CBMF, corroborating the results of Condés and
García-Robredo [71]. Zhao et al. [72] reported that modeling the autocorrelation structure
alone cannot completely match the possible common effects, and they suggested introduc-
ing random period effects for describing the autocorrelation. Unfortunately, their research
relied only on one to three observations; hence, it is unreliable to employ period as an
autocorrelation structure.

Cade and Noon [73] mentioned that the quantile regression estimates multiple rates
of change (slopes) from the minimum to maximum response, providing a more complete
trend of the variables relationships. Table 4 shows that the result of the quantile regression
model was better than the basic and NLME models. MPE(%) and MAPE(%) indicated
that more improvement in model accuracy existed for the quantile regression than for the
NLME models. NQR9 was a better quantile regression than the others (NQR3 and NQR5),
although the difference was negligible. Bohora and Cao [26] showed that NQR3 was better
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than NQR5 and NQR9, while Zang et al. [24] argued that NQR9 was the best and used it to
model the height–diameter relationship. This kind of contradictory result may be caused
by the size and the distribution of the data. The higher quantiles require a much greater
proportional increase in data volume to maintain a constant risk ratio, and the excessive
numbers of the quantile may cause over-fitting. Therefore, we recommend choosing NQR3
or NQR5 when the data distribution range is narrow or when the size of the data is limited.
In this study, the quantile model had a better result than the NLME, which was indicated
by smaller MAE, MPE(%), and MAPE(%). The reason might be the obvious differences in
growth rate trends between different regions.

Random sampling was used to calibrate the mixed-effects and quantile models. The
results showed that the model performance improved with an increase in the sampling
number. The quantile model performed better than the mixed model across all sample
numbers, and NQR9 was best among them. Six (or more) sample plots per region were
adequate for delivering high-accuracy predictions (Figure 7, Table 5). In the mixed-effects
or the quantile regression model, the subject-specific random effect or entire conditional
distribution of the response makes up the shortcomings of instability and uncertainty of
the population-averaged response. The sampling process is a hypothetical simulation of
the survey in reality. It can provide prior information to adjust the random parameters or
interpolation ratio of the local best quantile curve and effectively improve the accuracy
of estimation. It has generally been taken for granted that the inclusion of additional
stand variables into the base models automatically results in better predictions (helping
to justify the increased costs associated with measuring the additional variables). As
Huang et al. [74] stated, the subject-specific model allows the plot level variations related to
many known and unknown factors such as topography, soil type, nutrient status, genetics,
climate, silvicultural regime, environment, intra- and inter-specific competitions, etc., to
be accounted for without requiring that they be identified or measured. This is a noted
advantage of the NLME and NQR techniques. In this study, each region contained an
average of 32 plots. Assuming the data from the last period are known, the next period
RGRnv of all plots can be estimated when only six plots from each region are surveyed.
This can save about 80% of costs.

5. Conclusions

Plantation forests have developed rapidly in modern forestry because of their simple
structure, short management cycle, and high timber output. However, there is still a lack
of a theoretical basis for natural pure forests and mixed forests. Hence, in this study three
forest types from Daxing’an Mountains were studied to determine the growth differences
between the natural pure forest and mixed forest and establish the RGRnv model. RGRnv
was recalculated with the Pressler growth rate formula. The liner model, reciprocal model,
power model, exponential model, and sigmoid model were used to develop the basic
model, and of these, the exponential model performed the best. The best RGRnv basic
model was established using Dq, G, Ha, and A surveyed from three periods, using NFI
data from 12 forest bureaus in the eastern Daxing’an Mountains, Northeast China, for a
total of 1152 samples. A correlation index plot showed that there was no obvious strong
relationship between the independent variables. The exponential model was proposed
in this study since it was able to clearly describe the growth rate of the cold temperate
forests and avoid negative growth rate estimation. All four parameter estimates were
negative, indicating that RGRnv decreased with an increment in various variables. This
trend was consistent with the actual survey results. The result showed that the trend of
RGRnv differed among the three forest types, in which CBMF had higher RGRnv than both
LF and WBF, indicating the superiority of mixed forest.

In this paper, four different methods, i.e., NLME, NQR3, NQR5, and NQR9, were
used to deal with the longitudinal data. All models were validated using the leave-
one-out method and random sampling technique. Both quantile regression and NLME
methods showed better performance than the basic model. After the addition of random
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effects, the R2
a improved: 0.6841 to 0.7706 (LF), 0.6990 to 0.7978 (WBF), and 0.8031 to

0.8546 (CBMF). NQR9 outperformed all methods evaluated in this study and provided
the best MAE, MPE(%), and MAPE(%) values. Model weighting effectively removed
the heteroscedasticity effect of the basic and mixed models. Performance of the methods
improved as the sample size increased. Six (or more) sample plots was the most appropriate
number and is recommended for model calibration when both prediction accuracy and
sampling cost are considered.
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Appendix A

Table A1. Goodness-of-fit statistics of the basic RGRnv equations for larch forest (LF).

Model No. R2
a RMSE AIC

RGRnv = α1 + β1G (LF1) 0.3615 0.0159 −2463.59
RGRnv = a1 + β1G + β2Ha (LF2) 0.4865 0.0142 −2561.26

RGRnv = a1 + β1G + β2Ha + β3 A (LF3) 0.5754 0.0130 −2646.38
RGRnv = a1 + β1G + β2Ha + β3 A + β4Dq (LF4) 0.5881 0.0128 −2659.14

RGRnv = 1
(a1+β1G)

(LF5) 0.4388 0.0149 −2523.46

RGRnv = 1
(a1+β1G+β2Dq)

(LF6) 0.5359 0.0135 −2607.54

RGRnv = 1
(a1+β1G+β2Dq+β3 A)

(LF7) 0.5868 0.0125 −2656.59

RGRnv = 1
(a1+β1G+β2Dq+β3 A+β4 Ha)

(LF8) 0.6349 0.0120 −2710.75

RGRnv = a1Gβ1 (LF9) 0.3224 0.0164 −2436.65
RGRnv = a1Gβ1 Aβ2 (LF10) 0.4823 0.0143 −2556.58

RGRnv = a1Gβ1 Aβ2 Dq
β3 (LF11) 0.5561 0.0132 −2624.24

RGRnv = a1Gβ1 Aβ2 Dq
β3 Ha

β4 (LF12) 0.6391 0.0119 −2716.01
RGRnv = a1 exp(β1G) (LF13) 0.4136 0.0152 −2502.16

RGRnv = a1 exp(β1G + β2Ha) (LF14) 0.5361 0.0135 −2606.31
RGRnv = a1 exp(β1G + β2Ha + β3 A) (LF15) 0.6508 0.0117 −2732.91

RGRnv = a1exp
(

β1Dq + β2G + β3Ha + β4A
)

(LF16) 0.6841 0.0111 −2781.33
RGRnv = 1

(1+exp−(α1+β1G)
(LF17) 0.4136 0.0152 −2502.16

RGRnv = 1
(1+exp−(α1+β1G+β2Dq)

(LF18) 0.5359 0.0135 −2606.12

RGRnv = 1
(1+exp−(α1+β1G+β2Dq+β3 A)

(LF19) 0.6518 0.0117 −2734.20

RGRnv = 1
(1+exp−(α1+β1G+β2Dq+β3 A+β4Dq Ha)

(LF20) 0.6806 0.0111 −2781.16
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Table A2. Goodness-of-fit statistics of the basic RGRnv equations for white birch forest (WBF).

Model No. R2
a RMSE AIC

RGRnv = α1 + β1Ha (WBF1) 0.4130 0.0130 −1566.49
RGRnv = a1 + β1Ha + β2G (WBF2) 0.5985 0.0108 −1680.55

RGRnv = a1 + β1Ha + β2G + β3 A (WBF3) 0.6457 0.0101 −1717.52
RGRnv = a1 + β1Ha + β2G + β3 A + β4Dq (WBF4) 0.6552 0.0100 −1724.75

RGRnv = 1
(a1+β1 Ha)

(WBF5) 0.4078 0.0131 −1563.80

RGRnv = 1
(a1+β1 Ha+β2G)

(WBF6) 0.6091 0.0108 −1680.55

RGRnv = 1
(a1+β1 Ha+β2G+β3 A)

(WBF7) 0.6545 0.0100 −1723.07

RGRnv = 1
(a1+β1 Ha+β2G+β3 A+β4Dq)

(WBF8) 0.6837 0.0096 −1747.88

RGRnv = a1Ha
β1 (WBF9) 0.3925 0.0133 −1556.07

RGRnv = a1Ha
β1 Gβ2 (WBF10) 0.6014 0.0107 −1681.77

RGRnv = a1Ha
β1 Gβ2 Aβ3 (WBF11) 0.6511 0.0100 −1720.08

RGRnv = a1Ha
β1 Gβ2 Aβ3 Dq

β4 (WBF12) 0.6803 0.0096 −1744.61
RGRnv = a1 exp(β1Ha) (WBF13) 0.4195 0.0130 −1569.84

RGRnv = a1 exp(β1Ha + β2G) (WBF14) 0.6392 0.0102 −1711.96
RGRnv = a1 exp(β1Ha + β2G + β3 A) (WBF15) 0.6937 0.0094 −1759.60

RGRnv = a1exp
(
β1Ha+β2G+β3A+β4Dq

)
(WBF16) 0.6991 0.0087 −1761.76

RGRnv = 1
(1+exp−(α1+β1 Ha)

(WBF17) 0.4195 0.0130 −1559.84

RGRnv = 1
(1+exp−(α1+β1 Ha+β2G)

(WBF18) 0.6390 0.0102 −1711.76

RGRnv = 1
(1+exp−(α1+β1 Ha+β2G+β3 A)

(WBF19) 0.6937 0.0094 −1749.55

RGRnv = 1
(1+exp−(α1+β1 Ha+β2G+β3 A+β4Dq)

(WBF20) 0.6972 0.0092 −1750.99

Table A3. Goodness-of-fit statistics of the basic RGRnv equations for mixed coniferous–broadleaf forest (CBMF).

Model No. R2
a RMSE AIC

RGRnv = α1 + β1G (CBMF1) 0.4688 0.0204 −1947.69
RGRnv = a1 + β1G + β2Ha (CBMF2) 0.5947 0.0178 −2060.61

RGRnv = a1 + β1G + β2Ha + β3Dq (CBMF3) 0.6237 0.0171 −2091.23
RGRnv = a1 + β1G + β2Ha + β3Dq + β4 A (CBMF4) 0.6401 0.0167 −2109.18

RGRnv = 1
(a1+β1G)

(CBMF5) 0.6677 0.0161 −2146.56

RGRnv = 1
(a1+β1G+β2Dq)

(CBMF6) 0.7267 0.0145 −2229.45

RGRnv = 1
(a1+β1G+β2Dq+β3 Ha)

(CBMF7) 0.7258 0.0144 −2233.95

RGRnv = 1
(a1+β1G+β2Dq+β3 Ha+β4 A)

(CBMF8) 0.7324 0.0143 −2234.75

RGRnv = a1Gβ1 (CBMF9) 0.6264 0.0171 −2096.27
RGRnv = a1Gβ1 GDq

β2 (CBMF10) 0.7182 0.0147 −2216.07
RGRnv = a1Gβ1 Dq

β2 Ha
β3 (CBMF11) 0.7224 0.0146 −2220.62

RGRnv = a1Gβ1 Dq
β2 Ha

β3 Aβ4 (CBMF12) 0.7285 0.0145 −2228.41
RGRnv = a1 exp(β1G) (CBMF13) 0.6427 0.0167 −2115.32

RGRnv = a1 exp
(

β1G + β2Dq
)

(CBMF14) 0.7892 0.0127 −2345.04
RGRnv = a1 exp

(
β1G + β2Dq + β3Ha

)
(CBMF15) 0.7924 0.0126 −2349.91

RGRnv = a1exp
(
β1Dq+β2G+β3Ha+β4A

)
(CBMF16) 0.8031 0.0122 −2372.05

RGRnv = 1
(1+exp−(α1+β1G)

(CBMF17) 0.6427 0.0167 −2115.32

RGRnv = 1
(1+exp−(α1+β1G+β2Dq)

(CBMF18) 0.7859 0.0128 −2338.02

RGRnv = 1
(1+exp−(α1+β1G+β2Dq+β3 Ha)

(CBMF19) 0.7893 0.0127 −2343.27

RGRnv = 1
(1+exp−(α1+β1G+β2Dq+β3Dq+β4 A)

(CBMF20) 0.8008 0.0123 −2366.66
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Table A4. Parameter estimates (standard error) of the basic, mixed, and NQR models at different quantiles (τ) for LF.

Type α1 β1 β2 β3 β4 ϕ σ2 σµ2
1 σµ1µ4 σµ2

4

BASIC
0.3123 −0.0633 −0.0469 −0.0262 −0.0013

(−0.0303) (−0.0093) (−0.0029) (−0.0085) (−0.0001)

MIXED
0.2255 −0.0614 −0.0511 −0.0227 −0.0008

0.6879 0.0095 0.0004251 −0.0000034 0.0000001(−0.0228) (−0.0114) (−0.0029) (−0.0074) (−0.0002)
NQR (τ)

τ = 0.1
0.4292 −0.1012 −0.0501 −0.0538 −0.0017

(−0.0888) (−0.0269) (−0.0093) (−0.0093) (−0.0002)

τ = 0.2
0.3323 −0.0887 −0.0548 −0.0292 −0.0015

(−0.0857) (−0.0226) (−0.0106) (−0.0168) (−0.0002)

τ = 0.3
0.3339 −0.0701 −0.0512 −0.0321 −0.0015

(−0.0583) (−0.0195) (−0.0056) (−0.0117) (−0.0002)

τ = 0.4
0.2898 −0.0597 −0.0485 −0.0306 −0.0014

(−0.0427) (−0.0141) (−0.0036) (−0.0091) (−0.0002)

τ = 0.5
0.2851 −0.0616 −0.0439 −0.0294 −0.0012

(−0.0539) (−0.0136) (−0.0038) (−0.0135) (−0.0002)

τ = 0.6
0.3619 −0.0601 −0.0448 −0.0373 −0.0013

(−0.0711) (−0.0176) (−0.0043) (−0.0166) (−0.0002)

τ = 0.7
0.3291 −0.0498 −0.0476 −0.0337 −0.0012

(−0.0347) (−0.0125) (−0.0036) (−0.0115) (−0.0001)

τ = 0.8
0.3387 −0.0518 −0.0486 −0.0269 −0.0011

(−0.0368) (−0.0124) (−0.0037) (−0.0099) (−0.0001)

τ = 0.9
0.3306 −0.0531 −0.0461 −0.0219 −0.0011

(−0.0365) (−0.0116) (−0.0044) (−0.0103) (−0.0001)

α1 and β1–β4 are the parameters; ϕ is the weight coefficient; σ2 is the error variance; σµ2
1, σµ1µ4, and σµ2

4 are the random-effects variance.

Table A5. Parameter estimates (standard error) of the basic, mixed, and NQR models at different quantiles (τ) for WBF.

Type α1 β1 β2 β3 β4 ϕ σ2 σµ2
2 σµ2µ3 σµ2

3

BASIC
0.2572 −0.0421 −0.0566 −0.0539 −0.0008

(−0.0232) (−0.0113) (−0.0044) (−0.0129) (−0.0001)

MIXED
0.1863 −0.0286 −0.0427 −0.0637 −0.0004

0.3971 0.0288 0.0001009 0.0000211 0.0000044(−0.0158) (−0.0087) (−0.0051) (−0.0103) (−0.0001)
NQR (τ)

τ = 0.1
0.2922 −0.0595 −0.0661 −0.0524 −0.0011

(−0.0393) (−0.0189) (−0.0056) (−0.0182) (−0.0002)

τ = 0.2
0.2926 −0.0559 −0.0675 −0.0487 −0.0011

(−0.0348) (−0.0135) (−0.0073) (−0.0181) (−0.0001)

τ = 0.3
0.2644 −0.0558 −0.0565 −0.0396 −0.0011

(−0.0301) (−0.0135) (−0.0073) (−0.0165) (−0.0002)

τ = 0.4
0.2403 −0.0431 −0.0503 −0.0499 −0.0008

(−0.0253) (−0.0127) (−0.0054) (−0.0161) (−0.0002)

τ = 0.5
0.2258 −0.0427 −0.0468 −0.0485 −0.0007

(−0.0196) (−0.0093) (−0.0049) (−0.0138) (−0.0001)

τ = 0.6
0.2087 −0.0417 −0.0412 −0.0472 −0.0006

(−0.0191) (−0.0101) (−0.0051) (−0.0145) (−0.0001)

τ = 0.7
0.1964 −0.0396 −0.0386 −0.0524 −0.0004

(−0.0188) (−0.0125) (−0.0044) (−0.0148) (−0.0001)

τ = 0.8
0.1863 −0.0386 −0.0388 −0.0434 −0.0004

(−0.0183) (−0.0093) (−0.0041) (−0.0099) (−0.0001)

τ = 0.9
0.1723 −0.0191 −0.0355 −0.0545 −0.0002

(−0.0203) (−0.0126) (−0.0063) (−0.0148) (−0.0001)

α1 and β1 –β4 are the parameters; ϕ is the weight coefficient; σ2 is the error variance; σµ2
2, σµ2µ3, and σµ2

3 are the random-effects variance.
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Table A6. Parameter estimates (standard error) of the basic, mixed, and NQR models at different quantiles (τ) for CBMF.

Type α1 β1 β2 β3 β4 ϕ σ2 σµ2
2 σµ2µ3 σµ2

3

BASIC
0.3583 −0.0665 −0.0713 −0.0307 −0.0004

(−0.0315) (−0.0108) (−0.0034) (−0.0079) (−0.0001)

MIXED
0.3423 −0.0599 −0.0699 −0.0379 −0.0003

0.4139 0.0454 0.0001454 −0.000148 0.0002356(−0.0314) (−0.0126) (−0.0031) (−0.0105) (−0.0001)
NQR (τ)

τ = 0.1
0.4315 −0.0977 −0.1071 −0.0171 −0.0005

(−0.0682) (−0.0181) (−0.0061) (−0.0136) (−0.0002)

τ = 0.2
0.3875 −0.0786 −0.0995 −0.0245 −0.0005

(−0.0445) (−0.0172) (−0.0049) (−0.0124) (−0.0001)

τ = 0.3
0.4121 −0.0881 −0.0917 −0.0221 −0.0004

(−0.0578) (−0.0205) (−0.0059) (−0.0146) (−0.0001)

τ = 0.4
0.3991 −0.0779 −0.0815 −0.0309 −0.0004

(−0.0557) (−0.0222) (−0.0056) (−0.0149) (−0.0001)

τ = 0.5
0.3637 −0.0735 −0.0752 −0.0325 −0.0002

(−0.0601) (−0.0221) (−0.0054) (−0.0133) (−0.0001)

τ = 0.6
0.4078 −0.0864 −0.0677 −0.0269 −0.0003

(−0.0551) (−0.0231) (−0.0043) (−0.0142) (−0.0002)

τ = 0.7
0.3804 −0.0654 −0.0667 −0.0318 −0.0003

(−0.0461) (−0.0143) (−0.0045) (−0.0103) (−0.0002)

τ = 0.8
0.3211 −0.0616 −0.0632 −0.0282 −0.0001

(−0.0406) (−0.0135) (−0.0044) (−0.0103) (−0.0002)

τ = 0.9
0.3249 −0.0536 −0.0533 −0.0358 −0.0001

(−0.0336) (−0.0109) (−0.0053) (−0.0098) (−0.0001)

α1 and β1 –β4 are the parameters; ϕ is the weight coefficient; σ2 is the error variance; σµ2
2, σµ2µ3, and σµ2

3 are the random-effects variance.

Table A7. Evaluation statistics of the mixed-effects, NQR9, NQR5, and NQR3 regression models for the RGRnv across
0–15 random sampling strategies for LF, WBF, and CBMF.

Forest
Types No.

Mixed-Effects Model Quantile Regressions

MAE MPE(%) MAPE(%)
NQR3 NQR5 NQR9

MAE MPE(%) MAPE(%) MAE MPE(%) MAPE(%) MAE MPE(%) MAPE(%)

LF

0 0.0094 −36.9125 59.9228 0.0112 −25.6537 57.6168 0.0112 −25.6537 57.6168 0.0112 −25.6537 57.6168
1 0.0092 −35.0882 57.0222 0.0102 −23.1801 53.9684 0.0102 −23.0029 54.4392 0.0102 −21.3411 54.4773
2 0.0089 −33.6834 55.0964 0.0093 −21.3940 50.0733 0.0094 −21.3312 50.6602 0.0095 −20.8871 50.7364
3 0.0088 −32.6992 53.7973 0.0089 −19.8560 48.1307 0.0090 −19.3699 48.4740 0.0091 −19.2069 48.5691
4 0.0087 −32.0942 52.9311 0.0086 −19.0507 46.7497 0.0087 −18.5482 46.9349 0.0088 −18.4060 46.8485
5 0.0086 −31.5044 52.1909 0.0085 −18.9099 46.5426 0.0086 −18.9257 46.5609 0.0087 −18.5629 46.5213
6 0.0085 −31.3800 51.8081 0.0084 −18.7343 45.5991 0.0084 −18.5953 45.5759 0.0085 −18.2034 45.5349
7 0.0085 −31.2225 51.3926 0.0083 −18.6099 45.1878 0.0084 −18.5828 45.1668 0.0084 −18.1197 45.2368
8 0.0084 −30.8587 50.9888 0.0083 −18.5222 45.3318 0.0083 −18.4644 45.2100 0.0084 −18.2449 45.2031
9 0.0084 −30.6425 50.6861 0.0082 −18.4162 45.1974 0.0082 −18.3668 44.9890 0.0083 −18.0950 44.9338
10 0.0083 −30.4870 50.4070 0.0082 −18.3860 44.7090 0.0082 −18.2455 44.4927 0.0083 −17.9947 44.4612
11 0.0083 −30.2799 50.1434 0.0081 −18.2987 44.9043 0.0081 −18.2049 44.5486 0.0082 −17.8539 44.3794
12 0.0083 −30.1750 49.9544 0.0081 −18.1371 44.2929 0.0081 −18.1515 43.8514 0.0081 −17.7964 43.7892
13 0.0082 −30.1035 49.7903 0.0081 −18.0047 44.5163 0.0081 −18.0935 44.0766 0.0081 −17.6938 43.9770
14 0.0082 −30.0061 49.6277 0.0080 −17.9590 44.2186 0.0081 −17.8636 43.8225 0.0081 −17.2201 43.5640
15 0.0082 −29.8349 49.4418 0.0080 −17.8150 44.4187 0.0080 −17.8305 43.9136 0.0081 −17.1473 43.8014

WBF

0 0.0081 −16.0116 33.9058 0.0083 −10.1259 32.5944 0.0083 −10.1259 32.5944 0.0083 −10.1259 32.5944
1 0.0068 −15.1753 32.1591 0.0075 −9.8484 31.3958 0.0074 −9.1475 31.0462 0.0073 −8.8845 30.7585
2 0.0065 −14.4595 30.9573 0.0068 −9.3938 28.6671 0.0068 −9.0574 28.5462 0.0068 −8.7785 28.5620
3 0.0064 −14.0856 30.1750 0.0065 −9.3772 27.6315 0.0065 −9.0538 27.4928 0.0065 −8.7668 27.4322
4 0.0063 −13.6750 29.5574 0.0063 −9.3579 26.7985 0.0064 −8.9732 26.6848 0.0064 −8.7476 26.6763
5 0.0062 −13.3485 29.0973 0.0062 −9.3120 26.4319 0.0062 −8.9397 26.3125 0.0062 −8.6088 26.2987
6 0.0061 −13.3363 28.8430 0.0062 −9.2382 26.0990 0.0062 −8.9298 25.9902 0.0062 −8.5617 25.9461
7 0.0061 −13.2705 28.5947 0.0061 −9.2315 26.0262 0.0061 −8.9008 25.8891 0.0061 −8.5493 25.8899
8 0.0060 −13.1355 28.3663 0.0060 −9.1147 25.7149 0.0060 −8.8824 25.5625 0.0060 −8.5395 25.4924
9 0.0060 −13.0127 28.1826 0.0060 −9.1132 25.5984 0.0060 −8.8614 25.4468 0.0060 −8.4948 25.3683
10 0.0060 −12.9095 28.0223 0.0060 −9.0895 25.6189 0.0060 −8.8460 25.4608 0.0060 −8.4761 25.3827
11 0.0060 −12.7791 27.8835 0.0060 −9.0611 25.5669 0.0060 −8.8406 25.4485 0.0060 −8.4588 25.3479
12 0.0059 −12.7373 27.7696 0.0060 −9.0572 25.3927 0.0060 −8.7736 25.2541 0.0060 −8.4351 25.1286
13 0.0059 −12.7120 27.6860 0.0059 −9.0507 25.3368 0.0059 −8.7294 25.2001 0.0059 −8.4043 25.0749
14 0.0059 −12.6541 27.5985 0.0059 −8.9114 25.3915 0.0059 −8.6952 25.2275 0.0059 −8.1699 25.1581
15 0.0059 −12.6423 27.5453 0.0059 −8.7134 25.3010 0.0059 −8.4774 25.1499 0.0059 −8.0292 25.0301

CBMF

0 0.0094 −17.0285 41.8236 0.0121 −18.8908 47.6165 0.0121 −18.8908 47.6165 0.0121 −18.8908 47.6165
1 0.0094 −16.6819 41.0896 0.0111 −16.8975 46.6869 0.0113 −16.0324 45.8008 0.0110 −15.3399 45.1809
2 0.0094 −16.5163 40.8233 0.0103 −14.7625 42.7200 0.0103 −13.9688 42.2406 0.0102 −13.0765 42.0803
3 0.0093 −16.3289 40.5667 0.0098 −12.7228 40.1898 0.0098 −12.1729 39.9488 0.0097 −11.5197 39.2931
4 0.0093 −16.1697 40.3458 0.0095 −12.5271 38.9978 0.0095 −11.9421 38.9054 0.0095 −11.4677 38.4273
5 0.0093 −16.0472 40.1281 0.0094 −12.3865 38.1309 0.0093 −11.9178 38.0562 0.0093 −11.2806 37.5286
6 0.0092 −16.0138 39.9718 0.0092 −12.3859 38.0031 0.0092 −11.8611 37.9008 0.0092 −11.1493 37.3678
7 0.0092 −15.9454 39.8207 0.0092 −12.0111 37.6402 0.0091 −11.8215 37.5639 0.0091 −11.1464 36.9129
8 0.0092 −15.9009 39.6807 0.0091 −11.9927 37.1601 0.0090 −11.7391 37.1283 0.0090 −11.0699 36.5526
9 0.0092 −15.8881 39.5712 0.0090 −11.9833 37.0465 0.0089 −11.7125 36.9527 0.0089 −10.9890 36.2308
10 0.0091 −15.8145 39.4354 0.0090 −11.9679 36.6926 0.0089 −11.6821 36.7850 0.0089 −10.9275 35.9083
11 0.0091 −15.7910 39.3161 0.0090 −11.9468 36.6981 0.0089 −11.6397 36.8179 0.0088 −10.9121 35.8685
12 0.0091 −15.7838 39.2381 0.0089 −11.7095 36.6012 0.0088 −11.5973 36.7002 0.0088 −10.8714 35.8706
13 0.0091 −15.7971 39.1669 0.0089 −11.7082 36.4370 0.0088 −11.5893 36.4772 0.0088 −10.8011 35.5762
14 0.0091 −15.8015 39.0914 0.0089 −11.6988 36.3510 0.0088 −11.4643 36.3973 0.0088 −10.7366 35.5009
15 0.0091 −15.8164 39.0307 0.0088 −11.6912 36.2842 0.0088 −11.4411 36.3316 0.0087 −10.6363 35.4682



Forests 2021, 12, 1111 22 of 24

References
1. FAO. Global Forest Resources Assessment. In Main Report; FAO: Rome, Italy, 2020.
2. National Forestry and Grassland Administration (NFGA). China Forest Resources Report: 2014–2018; China Forestry Publishing

House: Beijing, China, 2019; p. 108. (In Chinese)
3. Pommerening, A.; Muszta, A. Methods of modelling relative growth rate. For. Ecosyst. 2015, 2, 5. [CrossRef]
4. Jørgensen, S.E.; Patten, B.C.; Straškraba, M. Ecosystems emerging: Toward an ecology of complex systems in a complex future.

Ecol. Model. 1992, 62, 1–27. [CrossRef]
5. Ritchie, M.W.; Hann, D.W. Implications of disaggregation in forest growth and yield modeling. For. Sci. 1997, 43, 223–233.
6. Soares, P.; Tomé, M.; Skovsgaard, J.P.; Vanclay, J.K. Evaluating a growth model for forest management using continuous forest

inventory data. For. Ecol. Manag. 1995, 71, 251–265. [CrossRef]
7. Hunt, R. Plant Growth Curves. In The Functional Approach to Plant Growth Analysis; Cambridge University Press: Cambridge, UK,

1982; p. 248.
8. Zeide, B. Analysis of Growth Equations. For. Sci. 1993, 39, 594–616. [CrossRef]
9. Zhang, L.J. Cross-validation of Non-linear Growth Functions for Modelling Tree Height–Diameter Relationships. Ann. Bot. 1997,

79, 251–257. [CrossRef]
10. Vanclay, J.k. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests; CAB International: Wallingford, UK, 1994.
11. Moser, J.W.; Hall, O.F. Deriving growth and yield functions for uneven-aged forest stands. For. Sci. 1969, 15, 183–188.
12. Dale, V.H.; Doyle, T.W.; Shugart, H.H. A comparison of tree growth models. Ecol. Model. 1985, 29, 145–169. [CrossRef]
13. Peng, C. Growth and yield models for uneven-aged stands: Past, present and future. For. Ecol. Manag. 2000, 132, 259–279.

[CrossRef]
14. Laubhann, D.; Sterba, H.; Reinds, G.J.; De Vries, W. The impact of atmospheric deposition and climate on forest growth in

European monitoring plots: An individual tree growth model. For. Ecol. Manag. 2009, 258, 1751–1761. [CrossRef]
15. Causton, D.R.; Venus, J.C. The Biometry of Plant Growth; Edward Arnold: London, UK, 1981; p. 17.
16. Muller, H.-G.; Stadtmuller, U. Estimation of Heteroscedasticity in Regression Analysis. Ann. Stat. 1987, 15, 610–625. [CrossRef]
17. Dong, L.; Zhang, L.; Li, F.R. Additive Biomass Equations Based on Different Dendrometric Variables for Two Dominant Species

(Larix gmelini Rupr. and Betula platyphylla Suk.) in Natural Forests in the Eastern Daxing’an Mountains, Northeast China. Forests
2018, 9, 261. [CrossRef]

18. Zhang, X.-Q.; Lei, Y.-C.; Liu, X.-Z. Modeling stand mortality using Poisson mixture models with mixed-effects. iForests 2015, 8,
333–338. [CrossRef]

19. Timilsina, N.; Staudhammer, C.L. Individual Tree-Based Diameter Growth Model of Slash Pine in Florida Using Nonlinear Mixed
Modeling. For. Sci. 2013, 59, 27–37. [CrossRef]

20. Fu, L.; Zhang, H.; Sharma, R.P.; Pang, L.; Wang, G. A generalized nonlinear mixed-effects height to crown base model for
Mongolian oak in northeast China. For. Ecol. Manag. 2017, 384, 34–43. [CrossRef]

21. Sharma, R.P.; Breidenbach, J. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using
Norwegian national forest inventory data. For. Sci. Technol. 2014, 11, 44–53. [CrossRef]

22. Koenker, R.; Bassett, G.J. Regression quantiles. Econometrica 1978, 46, 33–50. [CrossRef]
23. Cao, Q.V.; Wang, J. Evaluation of Methods for Calibrating a Tree Taper Equation. For. Sci. 2015, 61, 213–219. [CrossRef]
24. Zang, H.; Lei, X.; Zeng, W. Height-diameter equations for larch plantations in northern and northeastern China: A comparison of

the mixed-effects, quantile regression and generalized additive models. For. Int. J. For. Res. 2016, 89, 434–445. [CrossRef]
25. Galarza, C.E.; Castro, L.M.; Louzada, F.; Lachos, V.H. Quantile regression for nonlinear mixed effects models: A likelihood based

perspective. Stat. Pap. 2018, 61, 1281–1307. [CrossRef]
26. Bohora, S.B.; Cao, Q.V. Prediction of tree diameter growth using quantile regression and mixed-effects models. For. Ecol. Manag.

2014, 319, 62–66. [CrossRef]
27. Zhang, B.; Sajjad, S.; Chen, K.; Zhou, L.; Zhang, Y.; Yong, K.K.; Sun, Y. Predicting Tree Height-Diameter Relationship from

Relative Competition Levels Using Quantile Regression Models for Chinese Fir (Cunninghamia lanceolata) in Fujian Province,
China. Forests 2020, 11, 183. [CrossRef]

28. Özçelik, R.; Cao, Q.V.; Trincado, G.; Göçerd, N. Predicting tree height from tree diameter and dominant height using mixed-effects
and quantile regression models for two species in Turkey. For. Ecol. Manag. 2018, 419, 240–248. [CrossRef]

29. Ditzler, C.; Scheffe, K.; Monger, H.C. Soil Survey Manual: Soil Science Division Staff ; Goverment Printing Office: Washington, DC,
USA, 2017.

30. Huang, J.; Ebach, M.C.; Triantafilis, J. Cladistic analysis of Chinese Soil Taxonomy. Geoderma Reg. 2017, 10, 11–20. [CrossRef]
31. Liu, J.Q.; Meng, S.W.; Zhou, H.; Zhou, G.; Li, Y.Y. Tree Volume Tables of China; China Forestry Publishing House: Beijing, China,

2017. (In Chinese)
32. Pressler, M. Das Gesetz der Stammbildung (The Law of Stem Formation); Verlag Arnold: Leipzig, Germany, 1865.
33. Parresol, B.R. Modeling multiplicative error variance: An example predicting tree diameter from stump dimensions in bald-

cypress. For. Sci. 1993, 39, 670–679.
34. Halunga, A.G.; Orme, C.D.; Yamagata, T. A heteroskedasticity robust Breusch–Pagan test for contemporaneous correlation in

dynamic panel data models. J. Econom. 2017, 198, 209–230. [CrossRef]
35. Lindstrom, M.J.; Bates, D.M. Nonlinear Mixed Effects Models for Repeated Measures Data. Biometrics 1990, 46, 673. [CrossRef]

http://doi.org/10.1186/s40663-015-0029-4
http://doi.org/10.1016/0304-3800(92)90080-X
http://doi.org/10.1016/0378-1127(94)06105-R
http://doi.org/10.1093/forestscience/39.3.594
http://doi.org/10.1006/anbo.1996.0334
http://doi.org/10.1016/0304-3800(85)90051-1
http://doi.org/10.1016/S0378-1127(99)00229-7
http://doi.org/10.1016/j.foreco.2008.09.050
http://doi.org/10.1214/aos/1176350364
http://doi.org/10.3390/f9050261
http://doi.org/10.3832/ifor1022-008
http://doi.org/10.5849/forsci.10-028
http://doi.org/10.1016/j.foreco.2016.09.012
http://doi.org/10.1080/21580103.2014.957354
http://doi.org/10.2307/1913643
http://doi.org/10.5849/forsci.14-008
http://doi.org/10.1093/forestry/cpw022
http://doi.org/10.1007/s00362-018-0988-y
http://doi.org/10.1016/j.foreco.2014.02.006
http://doi.org/10.3390/f11020183
http://doi.org/10.1016/j.foreco.2018.03.051
http://doi.org/10.1016/j.geodrs.2017.03.001
http://doi.org/10.1016/j.jeconom.2016.12.005
http://doi.org/10.2307/2532087


Forests 2021, 12, 1111 23 of 24

36. Fang, Z.; Bailey, R.L. Nonlinear mixed-effect modeling for Slash pine dominant height growth following intensive silvicultural
treatments. For. Sci. 2001, 47, 287–300.

37. Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Heisterkamp, S.; Willigen, B.V.; Ranke, J. Nlme: Linear and Nonlinear Mixed Effects
Models. Available online: https://cran.r-project.org/package=nlme (accessed on 8 March 2021).

38. Meng, S.X.; Huang, S. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function. For.
Sci. 2009, 55, 239–248.

39. Buchinsky, M. Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research. J. Hum. Resour.
1998, 33, 88. [CrossRef]

40. Koenker, R.; Portnoy, S.; Ng, P.T.; Melly, B.; Zeileis, A.; Grosjean, P.; Moler, C.; Saad, Y.; Chernozhukov, V.; Fernandez, I.; et al.
quantreg: Quantile Regression. Available online: https://CRAN.R-project.org/package=quantreg (accessed on 20 March 2021).

41. Miao, Z.; Widagdo, F.R.A.; Dong, L.H.; Li, F.R. Prediction of branch growth using quantile regression and mixed-effects models:
An example with planted Larix olgensis Henry trees in Northeast China. For. Ecol Manag. 2021, 496, 119407. [CrossRef]

42. Kearns, M.; Ron, D. Algorithmic Stability and Sanity-Check Bounds for Leave-One-Out Cross-Validation. Neural Comput. 1999,
11, 1427–1453. [CrossRef]

43. Wallach, D.; Goffinet, B. Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecol. Model.
1989, 44, 299–306. [CrossRef]

44. Smith, E.P.; Rose, K.A. Model goodness-of-fit analysis using regression and related techniques. Ecol. Model. 1995, 77, 49–64.
[CrossRef]

45. Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. Faculty Opinions recommendation of How to evaluate models: Observed
vs. predicted or predicted vs. observed? Ecoll Model. 2017, 216, 316–322. [CrossRef]

46. Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing: Pacific Grove, CA, USA, 1996.
47. Jobidon, R. Density-dependent effects of northern hardwood competition on selected environmental resources and young white

spruce (Picea glauca) plantation growth, mineral nutrition, and stand structural development—A 5-year study. For. Ecol. Manag.
2000, 130, 77–97. [CrossRef]

48. Scolforo, H.F.; Scolforo, J.R.S.; Thiersch, C.R.; Thiersch, M.F.; McTague, J.P.; Burkhart, H.; Filho, A.C.F.; de Mello, J.M.; Roise, J. A
new model of tropical tree diameter growth rate and its application to identify fast-growing native tree species. For. Ecol. Manag.
2017, 400, 578–586. [CrossRef]

49. Larocque, G.R.; Marshall, P.L. Evaluating the impact of competition using relative growth rate in red pine (Pinus resinosa Ait.)
stands. For. Ecol. Manag. 1993, 58, 65–83. [CrossRef]

50. Houghton, J.; Thompson, K.; Rees, M. Does seed mass drive the differences inrelative growth rate between growth forms? Proc.
Royal. Soc. 2013, 280, 20130921.

51. Mctague, J.P.; Stansfielf, W.F. Stand and tree dynamics of uneven-aged ponderosa pine. For. Sci. 1994, 40, 289–302.
52. Zhang, L.J.; Peng, C.; Dang, Q. Individual-tree basal area growth models for jack pine and black spruce in northern Ontario. For.

Chron. 2004, 80, 366–374. [CrossRef]
53. Curtis, R.O.; Marshall, D.D. Why quadratic mean diameter? West. J. Appl. For. 2000, 15, 137–139. [CrossRef]
54. Reineke, L.H. Perfecting a stand-density index for even-aged forests. Span. J. Agric. Res. 1993, 46, 627–637.
55. Stage, A.R. An expression for the effect of aspect, slope, and habitat type on tree growth. For. Sci. 1976, 22, 457–460.
56. Stage, A.R.; Salas, C. Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For. Sci.

2007, 53, 486–492.
57. Lessard, V.C.; McRoberts, R.E.; Holdaway, M.R. Diameter growth models using Minnesota forest inventory and analysis data.

For. Sci. 2001, 47, 301–310.
58. Wardle, J.A. The New Zealand Beeches; New Zealand Forest Service: Christchurch, New Zealand, 1984.
59. Coomes, D.A.; Allen, R.B. Effects of size, competition and altitude on tree growth. J. Ecol. 2007, 95, 1084–1097. [CrossRef]
60. Ma, W.; Lei, X. Nonlinear simultaneous equations for individual-tree diameter growth and mortality model of natural Mon-golian

oak forests in northeast China. Forests 2015, 6, 2261–2280. [CrossRef]
61. Inoue, A. Allometric model of the maximum size–density relationship between stem surface area and stand density. J. For. Res.

2009, 14, 268–275. [CrossRef]
62. Mather, A.S.; Fairbairn, J. From Floods to Reforestation: The Forest Transition in Switzerland. Environ. Hist. 2000, 6, 399–421.

[CrossRef]
63. Chinese Academy of Sciences. Flora Reipublicae Popularis Sinicae, Tomus 7; Science Press: Beijing, China, 1978; p. 187. (In Chinese)
64. Jia, B.; Zhou, G. Growth characteristics of natural and planted Dahurian larch in northeast China. Earth Syst. Sci. Data 2018, 10,

893–898. [CrossRef]
65. Chinese Academy of Sciences. Flora Reipublicae Popularis Sinicae, Tomus 21; Science Press: Beijing, China, 1979; p. 112. (In Chinese)
66. Knoke, T.; Stimm, B.; Ammer, C.; Moog, M. Mixed forests reconsidered: A forest economics contribution on an ecological concept.

For. Ecol. Manag. 2005, 213, 102–116. [CrossRef]
67. Kimmins, J.P.; Mailly, D.; Seely, B. Modelling forest ecosystem net primary production: The hybrid simulation approach used in

forecast. Ecol. Model. 1999, 122, 195–224. [CrossRef]
68. Scherer-Lorenzen, M.; Körner, C.; Schulze, E.-D. The Functional Significance of Forest Diversity: A Synthesis. In Forest Diversity

and Function; Springer: Berlin, Germany, 2005.

https://cran.r-project.org/package=nlme
http://doi.org/10.2307/146316
https://CRAN.R-project.org/package=quantreg
http://doi.org/10.1016/j.foreco.2021.119407
http://doi.org/10.1162/089976699300016304
http://doi.org/10.1016/0304-3800(89)90035-5
http://doi.org/10.1016/0304-3800(93)E0074-D
http://doi.org/10.1016/j.ecolmodel.2008.05.006
http://doi.org/10.1016/S0378-1127(99)00176-0
http://doi.org/10.1016/j.foreco.2017.06.048
http://doi.org/10.1016/0378-1127(93)90132-7
http://doi.org/10.5558/tfc80366-3
http://doi.org/10.1093/wjaf/15.3.137
http://doi.org/10.1111/j.1365-2745.2007.01280.x
http://doi.org/10.3390/f6062261
http://doi.org/10.1007/s10310-009-0128-6
http://doi.org/10.3197/096734000129342352
http://doi.org/10.5194/essd-10-893-2018
http://doi.org/10.1016/j.foreco.2005.03.043
http://doi.org/10.1016/S0304-3800(99)00138-6


Forests 2021, 12, 1111 24 of 24

69. Forrester, D.I.; Bauhus, J.; Cowie, A.L.; Vanclay, J.K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review.
For. Ecol. Manag. 2006, 233, 211–230. [CrossRef]

70. Vandermeer, J. The Ecology of Intercropping. Trends. Ecol. Evol. 1989, 4, 324–325.
71. Condés, S.; García-Robredo, F. An empirical mixed model to quantify climate influence on the growth of Pinus halepensis Mill.

stands in South-Eastern Spain. For. Ecol. Manag. 2012, 284, 59–68. [CrossRef]
72. Zhao, L.F.; Li, C.M.; Tang, S.Z. Individual-tree diameter growth model for fir plantations based on multi-level linear mixed effects

models across southeast China. J. For. Res. 2013, 18, 305–315. [CrossRef]
73. Cade, B.S.; Noon, B.R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 2003, 1, 412–420. [CrossRef]
74. Huang, S.M.; Wiens, D.P.; Yang, Y.Q.; Meng, S.X.; Vanderschaaf, C.L. Assessing the impacts of species composition, top height

and density on individual tree height prediction of quaking aspen in boreal mixedwoods. For. Ecol. Manag. 2009, 258, 1235–1247.
[CrossRef]

http://doi.org/10.1016/j.foreco.2006.05.012
http://doi.org/10.1016/j.foreco.2012.07.030
http://doi.org/10.1007/s10310-012-0352-3
http://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
http://doi.org/10.1016/j.foreco.2009.06.017

	Introduction 
	Materials and Methods 
	Study Sites 
	Modeling Data 
	Methods 
	Basic Model 
	Nonlinear Mixed-Effects Models 
	Nonlinear Quantile Regressions 
	Model Evaluation of Validation and Prediction 


	Results 
	Best Basic Model 
	Mixed-Effects Models 
	Nonlinear Quantile Regression Models 
	Comparison of RGRnv  between Three Forest Types 
	Comparing Modeling Approaches 
	Comparison of Sample Size for Calibration 

	Discussion 
	Conclusions 
	
	References

