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Abstract: In the Mediterranean, mixed forests of Aleppo pine and holm oak are widespread. Gener-
ally considered a transition stage in the succession towards climax oak communities, niche segrega-
tion may also contribute to the prevalence of these communities. So far, there is increasing evidence
of hydrological niche segregation, with the two species showing complementary water use and
seasonal growth patterns. However, it remains unknown whether interspecific interactions affect the
response to climate and the mid-term (decadal) growth and water-use efficiency of pines and oaks
in mixed stands. Here, we combined tree-ring chronologies, built on different competition classes
within a mixed stand, with a spatially explicit assessment of individual growth and wood carbon
isotope discrimination (∆13C), as a proxy of intrinsic water-use efficiency, and compared these results
with previously reported water uptake patterns. We found that competition with pines modulated
the climate response of oaks, whereas pine climate response was insensitive to competition. On
the other hand, pine density affected only pine growth, whereas oak competition affected both
species. We conclude that the presence of pines had negligible or even positive effects on the oaks,
but competition with neighbor oaks limited their ability to recover after drought. Conversely, pines
experienced greater drought stress under competition, with both oaks and pines.

Keywords: mixed forests; competition; facilitation; niche segregation; tree-ring width; carbon
isotopes; oxygen isotopes; water uptake; Pinus halepensis Mill.; Quercus ilex L.

1. Introduction

The Mediterranean Basin is considered a biodiversity hotspot [1,2], where the cur-
rent increase in seasonality and intensity of summer drought caused by climate change,
together with fires and insect outbreaks, is challenging the resilience of forests [3]. Land
abandonment and reforestation since the mid-20th century has led to a recovery of forest
surface, but with elevated stand densities, which further increase the negative effects of
stresses and disturbances [4–7]. In coastal areas of the western Mediterranean, mixed
stands of Mediterranean pines and evergreen oaks are particularly common forest types [8].
These mixed forests have been traditionally considered transient states in the progression
towards a climax vegetation dominated by oaks [9]. However, the widespread preva-
lence of these communities suggests that disturbance regimes and, also, niche segregation
may be among the main mechanisms determining the long-term existence of such mixed
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forests [5,10,11]. In fact, where water is the most important limiting factor to tree growth,
resource exploitation and functional resilience of Mediterranean forests might be improved
through the co-existence of species with differential water-use strategies [5,12–14]. On
the other hand, water scarcity may also lead to an increase in competition for water in
mixed-species stands [15], and climate change is likely to disturb the current equilibrium
between co-existing species [16]. Furthermore, the thresholds determining the prevalence
of competition or facilitation effects in response to resource limitations are still a matter of
debate [17–19].

In previous works [11,20], we assessed inter-specific interactions for water uptake and
individual distribution in a representative mixed stand of Aleppo pine (Pinus halepensis
Mill.) and holm oak (Quercus ilex L.). In these works, we evidenced that the two species
showed distinct ecohydrological niches during the dry season, suggesting a limited inter-
specific competition for water. Notably, this segregation was enhanced in those individuals
with greater exposure to the co-existing species. What still remains to be tested is whether
these short-term, seasonal patterns (i) effectively translate into dissimilar long-term growth
trends of each species and (ii) how intra- and inter-specific interactions affect the response
to climate and the carbon and water balance (or water-use efficiency) of the individuals.

Compared to Aleppo pine, the holm oak shows a relatively anisohydric response,
remaining physiologically active throughout the summer but potentially being exposed
to a higher risk of xylem embolism [6,21]. On the contrary, Aleppo pine is known to
display a tight stomatal regulation (isohydric response), which may prevent hydraulic
failure and increases water-use efficiency, but strongly limits carbon gains during summer
drought [22–24]. In this context, we hypothesized that, whereas the presence of pines
would have little effect on the response of oaks during dry summers, the presence of oaks
would increase drought severity for pines, leading to long-term growth constraints. On
the other hand, considering their isohydric response, we hypothesize that, in terms of
water-use efficiency, pines would show a tight response to competition, whereas oaks
would remain virtually insensitive to the presence of pines. To test these hypotheses,
we combined tree-ring approaches, applied to different competition classes within the
studied stand, with a spatially explicit assessment of individual growth and carbon isotope
discrimination (∆13C) of wood, as a proxy for intrinsic water-use efficiency (WUEi).

2. Materials and Methods
2.1. Study Site

The study was carried out in the same site used in previous studies aimed at assessing
pine–oak interactions in water uptake dynamics [11,20]. The plot corresponded to a mixed
stand of holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.) located in
the Montsant mountain range, northeastern Iberian Peninsula (41◦19′47.3′′ N, 0◦50′2.6′′ E,
750 m, see Figure 1). The plot comprised a 24 × 37 m rectangular area with a 15–22% slope
facing west and a 3–7% slope facing south. Within the plot, a total of 33 adult oaks and 78
adult pines were identified, which showed a random spatial distribution (i.e., Poisson) [20].
Trees were geolocated using a high-resolution GPS (GeoExplorer 6000 Series Handheld,
Trimble Navigation Limited, CA, USA). Stand density (DBH > 10 cm) was 370 trees ha−1

(oaks) and 874 trees ha−1 (pines); however, most oak individuals were multi-stemmed,
yielding a stand density of 560 stems ha−1.

The studied stand is representative of the optimal climate conditions for both species
range-wide. Climate is of Mediterranean type with a mild continental influence. Mean
annual precipitation and temperature were 520 mm and 13.5 ◦C, respectively, for the period
of 1970–2019 (Table 1). Summers are moderately dry and warm (91 mm of precipitation
and 21.2 ◦C of mean temperature, July–September), and winters (January–March) are mild,
with long-term mean temperature above 5 ◦C.
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Figure 1. Location of the study site and the meteorological stations used in this study. Map devel-
oped with QGIS 3.18.2-Zürich (https://qgis.org/es/site/, accessed on 20 December 2021). Back-
ground: ESRI Terrain (© OpenStreetMap contributors, https://www.openstreetmap.org/copyright, 
accessed on 15 May 2021) (upper panel); 2012 orthophotography from the public map server IGN-
PNOA WMS (https://pnoa.ign.es, accessed on 15 May 2021; OrtoPNOA 2012 CC-BY 4.0 scne.es) 
(lower panel). 
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dry (2004–2013). Seasons were defined based on the typical phenology of the species [23], as fol-
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Figure 1. Location of the study site and the meteorological stations used in this study. Map developed
with QGIS 3.18.2-Zürich (https://qgis.org/es/site/, accessed on 20 December 2021). Background:
ESRI Terrain (© OpenStreetMap contributors, https://www.openstreetmap.org/copyright, accessed
on 15 May 2021) (upper panel); 2012 orthophotography from the public map server IGN-PNOA WMS
(https://pnoa.ign.es, accessed on 15 May 2021; OrtoPNOA 2012 CC-BY 4.0 scne.es) (lower panel).

Table 1. Annual and seasonal values of mean temperature and precipitation during the long-
term reference period (1970–2019) and the two decades considered in this study: wet (1994–2003)
and dry (2004–2013). Seasons were defined based on the typical phenology of the species [23],
as follows: winter = January–March; spring = April–May; summer = June–August; autumn =
September–October.

Mean Temperature/Precipitation

Period Annual Winter Spring Summer Autumn

Long-term
(1970–2019)

13.5 ◦C/
520 mm

7.4 ◦C/
110 mm

13.8 ◦C/
119 mm

21.5 ◦C/
78 mm

16.7 ◦C/
117 mm

Wet decade
(1994–2003)

14.0 ◦C/
584 mm

8.2 ◦C/
101 mm

14.3 ◦C/
134 mm

21.9 ◦C/
76 mm

16.6 ◦C/
139 mm

Dry decade
(2004–2013)

13.8 ◦C/
479 mm

7.2 ◦C/
111 mm

14.4 ◦C/
123 mm

22.1 ◦C/
62 mm

17.2 ◦C/
102 mm

% change 1 −1%/−18% −12%/+10% +1%/−8% +1%/−17% +4%/−26%
1 Change in temperature/precipitation during the dry decade, relative to the wet decade.

https://qgis.org/es/site/
https://www.openstreetmap.org/copyright
https://pnoa.ign.es
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2.2. Meteorological Data

Meteorological data were obtained from the nearest automatic agro-meteorological
station (Ulldemolins, 41◦19′7.9′′ N, 0◦53′4.2′′ E, 687 m). The station is located 4 km away
from the study site, at a similar altitude, and has provided data since 2008. To build
historical series dating back to the entire study period (1993–2014), we compiled records
of nearby stations available from the Meteorological Service of Catalonia (https://www.
meteo.cat/, accessed on 30 June 2021): Cabacés (41◦14′57.4′′ N, 0◦44′6.6′′ E, 365 m) for
precipitation, and Flix-Vinebre (41◦11′6.0′′ N, 0◦35′37.6′′ E, 53 m) for temperature. These
stations are located 12 km (Cabacés) and 26 km (Flix-Vinebre) away from the study site.
We built simple linear regressions using the common period across meteorological series
(2008–2019) to provide climate estimates at the nearest station (Ulldemolins) prior to 2008,
which were used as most representative of the study site (Appendix A; Table A1).

We considered two consecutive decades representing a relatively wet (1994–2003) and
a relatively dry period (2004–2013), respectively (Table 1). The differences between these
two periods were not restricted to their mean precipitation; they were also consistent in
terms of frequency of dry years, percentile distribution of precipitation, and precipitation
of the driest and wettest year (Appendix A, Table A2). In particular, seven years showed
a total precipitation below the long-term mean during the dry decade (among these, the
driest year in the last 50 years); on the contrary, only three years fell below the long-term
mean during the wet decade (Table A2).

2.3. Individual Basal Area, Local Density, and Water Isotopes Data

To evaluate tree size and competition effects, and to compare tree growth and water-
use efficiency with seasonal water uptake patterns, we used the data obtained in [11]
(publicly available as supplementary information). Briefly, tree size was characterized in
terms of total basal area (i.e., individual BA), which was calculated as the total stem area of
each individual [11]. To account for competition and other density-related effects, a local
density value (or local stand BA) was calculated as the sum of individual BA of trees located
within a 5 m radius around each tree of the stand, considering every species separately [2].
Alternative radii (4 or 6 m) provided similar local density patterns. For the characterization
of water uptake patterns, we used the oxygen isotope composition (δ18O) of xylem water
during a drought–recovery cycle [2], occurring from May to November 2011 (sampling
dates: 26 May, 20 July, 9 September, 19 October, and 18 November). Xylem samples were
collected from sun-exposed branches, and xylem water was extracted through cryogenic
distillation as detailed in [25]. Isotope ratios were determined with a Picarro L2120i
analyzer coupled to a high-precision A0211 vaporizer (Picarro Inc., Santa Clara, CA, USA).
The potential presence of organic contaminants was checked with the software Picarro
Chem-Correct 1.2.0. Most samples showed negligible levels of contamination [11] but, for
the sake of consistency, a post-processing correction [26] was applied to all samples.

2.4. Tree-Ring Analyses

To assess high-frequency (annual) climate responses, and medium-term (decadal)
responses in tree growth and water-use efficiency, tree cores were sampled at breast height
using a 5 mm Pressler borer in spring 2014 from the same individuals monitored in [11],
and diameter at breast height was also determined. Tree rings were visually cross-dated
and measured using high-resolution images produced on a flat-bed scanner coupled with
WinDendro software (Regent Instruments, Quebec, QC, Canada, 2012). Individual tree
age was estimated from the tree-ring count at breast height. Some trees could not be
properly dated and were discarded (four pines and one oak), hence resulting in 74 pines
and 32 oaks for subsequent analyses. For the assessment of growth responses to climate
and competition, we followed two complementary approaches.

First, we built detrended tree-ring chronologies for the two species to identify high-
frequency climate drivers for growth during the studied period (1994–2013). Detrending
was performed using the Friedman supersmoother spline with variable span tweeter

https://www.meteo.cat/
https://www.meteo.cat/
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sensitivity α = 5 [27]. Autoregressive models were applied to remove the first-order
temporal autocorrelation in the detrended series and a biweight robust mean was computed
to provide indexed tree-ring chronologies (TRW). These procedures were conducted using
ARSTAN v. 44 h2 [28]. In order to account for the potential role of competition, we also
grouped individual series into different classes according to their local density for each
species separately. Pines were divided into three classes (high, medium, and low density)
and oaks were divided into two classes only (high and low density) due to their lesser
presence as compared with pines (Table 2). Detrended tree-ring chronologies were also
built for each density class as abovementioned for the complete set of trees available at the
species level.

Table 2. Local density classes (low, medium, high) used to account for competition effects in the
assessment of high-frequency climate responses. Mean local density (i.e., local stand basal area, BA)
used as the grouping criteria for each class is highlighted in bold.

Species Grouped by Density Class n
Local Density within a 5 m Radius (cm2)

Mean (Range)

Pine BA Oak BA

Pine Pine BA low 26 1048 (0–1560) 404 (0–1127)
medium 23 1925 (1583–2310) 570 (0–1156)

high 26 3055 (2397–4467) 492 (0–1042)

Oak BA low 27 1970 (414–3563) 116 (0–259)
medium 23 1818 (388–3640) 449 (312–662)

high 25 2238 (0–4467) 918 (666–1156)

Oak Pine BA low 17 1191 (0–2053) 430 (0–1049)
high 16 2798 (2059–4217) 378 (0–1261)

Oak BA low 17 1953 (0–3315) 132 (0–357)
high 16 1988 (357–4217) 695 (360–1261)

Second, we analyzed absolute tree growth individually in order to perform a more
detailed analysis of tree–tree interactions. By this approach, we evaluated spatial patterns
of inter- and intra-species competition within the stand. For this purpose, we focused
on medium-term tree responses by examining separately each decade (wet and dry). To
account for geometric effects on radial growth, ring width was converted to basal area
increments (BAI, cm2), estimated as the area of a circular ring:

BAIt

(
cm2

)
= π

(
Rt

2 − Rt−1
2
)

(1)

where Rt and Rt−1 stand for the external and internal radius (cm), respectively, measured
from trunk pith.

2.5. Carbon Isotope Analyses

For each individual tree, the rings of each decade (1994–2003 or 2004–2013) were
pooled together and used for carbon isotope analysis. Wood samples were milled to a fine
powder with a mixer mill (Retsch MM301, Haan, Germany). An aliquot of 0.9–1.1 mg of
wood was weighed and encapsulated into tin capsules. Carbon isotope composition (δ13C)
was determined using an Elementar Vario EL Cube or Micro Cube elemental analyzer
(Elementar Analysensysteme GmbH, Hanau, Germany) interfaced to either an Isoprime
VisION IRMS (Elementar UK Ltd., Cheadle, UK) or a PDZ Europa 20–20 isotope ratio mass
spectrometer (Sercon Ltd., Cheshire, UK). To account for changes in δ13C of atmospheric
CO2 (δ13Cair), we calculated carbon isotope discrimination (∆13C) from δ13Cair and wood
δ13C (δ13Cplant) [29]:

∆13C (‰) =
δ13Cair − δ13Cplant

1 + δ13Cplant
(2)
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where δ13Cair was estimated as reported in [30]. The δ13Cair values applied to wood samples
were −7.94‰ for the 1994–2003 period and −8.23‰ for the 2004–2013 period.

2.6. Statistical Analysis

Data were analyzed using analysis of covariance, simple correlations, and quantile re-
gressions. A mixed model analysis of covariance (ANCOVA) was fitted to log-transformed
tree growth (logBAI) and ∆13C aimed at (i) checking for absolute differences between
species, (ii) identifying spatial (an)isotropic effects along the plot, (iii) accounting for on-
togeny (age) effects, and (iv) detecting intra- and interspecific local density (competition)
effects. In particular, the ANCOVAs included the fixed effect of species (oak, pine) and the
following covariates: the linear variation along the X (Easting) and Y (Northing) axes of
the plot, the age of each tree, and the local stand BA around each tree corresponding to
oaks and pines, separately. The ANCOVAs also accounted for heterogeneity of regression
slopes at the species level for each covariate (i.e., the product between the species and
the covariate). In this way, we checked for differential (i.e., species-specific) systematic
variation in the response variables. Additionally, the ANCOVAs allowed for heterogeneity
of residual variances at the species level, which was checked by means of log-likelihood
ratio tests [31]. Finally, simplified ANCOVA models were tested by keeping the significant
or near-significant terms of the full ANCOVAs (as shown in Appendix A, Table A3) and,
eventually, selected using the Akaike Information Criterion (AIC). The models were fitted
using JMP Pro 15.2.0 (SAS Institute Inc., Cary, NC, USA).

Simple correlations were also used to check relationships involving climatic variables
and xylem water δ18O. For spatially explicit correlations (i.e., at the individual level), we
accounted for plot border effects, using weighted correlation coefficients, with a weight
ranging from 0 to 1 relative to the distance to the plot border. Assuming a minimum inter-
tree distance of ca. 0.5 m, all trees located at 4.5 m or more from the border were assigned a
weight of 1, then linearly decreasing for individuals at shorter distances (up to weight = 0 at
distance = 0 m). Correlations without accounting for border effects resulted in comparable
results, but were generally less consistent (not shown). We also used quantile regressions
to assess the type of common variability between growth and ∆13C at the species level.
In this way, we aimed at showing the existence of trade-offs between these variables by
fitting values from an upper quantile to the regression. We provided the significance of the
0.75 quantile, but alternative quantiles (e.g., 0.90) gave similar results. For this analysis, we
used the “quantreg” package [32], within the R software environment v.4.1.0 [33].

3. Results
3.1. Growth Responses to Climate and Competition

To characterize the main climate drivers of tree growth and how their influence is
modulated by competition for each species, we evaluated the relationships between high-
frequency fluctuations in ring-width chronologies (TRW) and climate either at whole-stand
level or for each local density class independently (Figure 2). At stand level, TRW of both
pines and oaks was sensitive to the accumulated precipitation during the hydrological
year (Poct-1 sep), but not specifically to the previous-year autumn recharge period (Psep dec-1).
We also found a weak negative association (i.e., marginally significant, p < 0.10) between
TRW and spring temperatures (Tapr may) in pines. In pines, TRW showed a weak positive
association with winter (Pjan mar) and spring precipitation (Papr may), whereas for oaks only
winter precipitation was marginally associated with TRW.
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Figure 2. Simple (Pearson) correlation coefficients between linearly detrended time series of climate and indexed tree-ring
chronologies (TRW) for the period 1994-2013. The relationships were evaluated for the whole stand (All) and for each
local-density class, based on pine or oak local basal area (BA), as defined in Table 2. L, M, and H, low, medium, and high
local density classes; Psep dec-1, precipitation during previous-year autumn recharge; Pjan mar, Papr may, Pjun aug, Psep oct, and
Pyear, winter, spring, summer, autumn, and total precipitation in current calendar year, respectively; Poct-1 sep, precipitation
during the hydrological year; Tjan mar, Tapr may, Tjun aug, Tsep oct, and Tyear, spring, summer, autumn, and annual mean
temperature in current calendar year. Correlations with p < 0.05 and p < 0.10 are highlighted in bold and italics, respectively.

By considering local density classes, we found consistent differences in climate re-
sponses depending on either pine or oak local density (BA) for both species. In pines, the
local BA of pines did not affect the nature and magnitude of tree growth dependencies
on climate, which were similar across density classes. However, higher local BA of oaks
resulted in increased pine TRW sensitivity to climate and higher seasonality of climate
responses, with a larger reliance on spring precipitation (Papr may). In oaks, both pine and
oak local densities had an effect on TRW. Under low pine BA, oaks were more responsive
to winter precipitation (Pjan mar), being insensitive to temperature; conversely, oaks be-
came highly responsive to spring precipitation and spring–summer temperature (Papr jun,
Tapr may, Tjun aug) under high pine BA. In addition, oaks showed a larger dependence of
secondary growth on climate with increasing local oak density: under low oak BA, oaks
were mainly responsive to spring precipitation (Papr may). On the contrary, correlations
with winter and summer precipitation (Pjan mar, Pjun aug) were similar under high oak BA,
and spring became critical in terms of temperature (Tapr may). We also found a marginal
negative correlation between pine TRW and autumn precipitation (Psep oct), but only when
considering each competition class separately.

3.2. Individual Growth and ∆13C during Wet and Dry Decades

Medium-term responses in BAI and ∆13C were assessed for a wet (1994–2003) and
a dry decade (2004–2013) separately. The ANCOVAs showed significant differences in
BAI between species for both periods, with pines having higher growth than oaks overall
(ca. 150%), but less growth was observed during the dry period, regardless of the species
(around 19%; Figure 3a, Table 3). A higher ∆13C in oaks than in pines was also observed,
particularly during the wet period (Figure 3b, Table 3). Contrary to expectations, ∆13C in
pines increased significantly in the dry period as compared to the wet period (17.8 ± 0.05‰
vs. 17.1 ± 0.06‰, respectively; mean ± SE).
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Figure 3. Boxplot for (A) individual basal area increment (BAI) and (B) carbon isotope discrimination
(∆13C) of oaks and pines during a wet (1994–2003, green boxes) and a dry decade (2004–2013, orange
boxes). Boxes stand for the 25% (Q1), 50% (median) and 75% (Q3) percentiles, and whiskers indicate
the highest and lowest value within ±1.5 fold of the inter-quantile range (Q3–Q1). Outliers beyond
these limits are shown as individual dots.

Table 3. Analyses of covariance (ANCOVAs, simplified model) for log-transformed individual basal area increment
(log(BAI)) and carbon isotope discrimination (∆13C) during a wet (1994–2003) and a dry decade (2004-2013). Pine and
oak BA, local density of pines and oaks, respectively; Res., residual variance; X and Y, Easting and Northing coordinates,
respectively. AIC, Akaike Information Criterion for the full (AICfull) and simplified models (AICsim) is also shown. Factors
with p < 0.05 and p < 0.10 are highlighted in bold and italics, respectively.

log(BAI) (1994–2003) log(BAI) (2004–2013) ∆13C (1994–2003) ∆13C (2004–2013)

df. F p > F F p > F F p > F F p > F

Species 1 14.6 <0.001 9.8 0.002 51.2 <0.001 10.4 0.003
X 1 - - 6.0 0.016 3.1 0.087 3.4 0.073
Y 1 - - 1.4 0.235 4.2 0.048 3.4 0.075

Age 1 1.8 0.183 1.9 0.170 - - - -
Pine BA 1 0.3 0.611 0.5 0.460 - - - -
Oak BA 1 - - 3.1 0.082 2.7 0.108 3.3 0.076

Species × X 1 - - 0.9 0.342 6.1 0.018 3.0 0.090
Species × Y 1 - - 4.1 0.046 1.7 0.202 1.0 0.331

Species × Age 1 0.1 0.815 0.9 0.353 - - - -
Species × Pine BA 1 4.5 0.036 6.5 0.012 - - - -
Species × Oak BA 1 - - 0.0 0.844 0.1 0.787 2.31 0.137

AICsim 197.6 - 171.4 166.9
AICfull 205.8 212.4 179.6 181.0

Mean ± SE Res. ± SE Mean ± SE Res. ± SE Mean ± SE Res. ± SE Mean ± SE Res. ± SE
Pines 32 ± 1.1 1.6 ± 1.1 26 ± 1.1 1.8 ± 1.1 17.07 ± 0.05 0.21 ± 0.03 17.80 ± 0.05 0.20 ± 0.03
Oaks 20 ± 1.1 1.2 ± 1.1 17 ± 1.1 1.1 ± 1.0 18.17 ± 0.14 0.42 ± 0.11 18.28 ± 0.14 0.40 ± 0.11

There was significant spatial variation of BAI in the stand (i.e., trees grew more along
the X axis), and individual BAI variability was higher in pines than in oaks, with a ca. 4-fold
higher variability not explained by the ANCOVA terms (or residual variance) in the former
(Table 3). We also found significant inter- and intra-specific competition effects: both oaks
and pines were marginally (negatively) affected by increasing local density of oaks (oak BA)
during the dry period (Table 3). Additionally, pines (but not oaks) were negatively affected
by the increasing presence of neighboring pines regardless of the period (as suggested by
significant species × pine BA interactions; Table 3). There were no significant age effects
on BAI (Table 3). Significant spatial patterns in ∆13C were also found along the main plot
directions (e.g., trees exhibited less ∆13C along the X axis but higher ∆13C along the Y axis),
and oaks showed a ca. 2-fold higher ∆13C residual variance than pines (Table 3). Similar to
BAI, local density of oaks caused a marginal decrease in ∆13C in both species, but neither
age nor pine local density significantly affected the ∆13C values (Table 3).
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3.3. Association between Mid-Term Responses and Seasonal Water Uptake Patterns

Seasonal water uptake patterns (based on water stable isotopes) could be linked to
medium-term tree responses in terms of ∆13C and, at least for oaks, BAI (Figure 4). In
pines (Figure 4a), ∆13C of the wet period was negatively associated with δ18O of xylem
water in October and November, corresponding to late drought and recovery during
2011, respectively. Additionally, ∆13C of the dry period was negatively associated with
δ18O in September (early drought), showing weaker negative correlations with δ18O in
October and November (late drought and recovery). No significant correlations were found
between BAI of pines and δ18O of xylem water. In oaks (Figure 4b), ∆13C of both wet and
dry decades was strongly negatively correlated with δ18O of xylem water in November
(drought recovery) and, to a lesser degree, September (early drought). ∆13C of the wet
decade also showed a weak negative association with δ18O in October (late drought).
Unlike for pines, BAI of oaks showed significant negative associations with δ18O of xylem
water, with the strongest correlation found between BAI of the dry decade and δ18O in
November (recovery).
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Figure 4. Weighted simple (Pearson) correlation coefficients between either ∆13C or log-transformed BAI (corresponding to
a wet (1994-2003) or a dry decade (2004-2013)) and seasonal values of δ18O of xylem water measured during a drought
and recovery cycle in 2011. (A) Pines; (B) oaks. Correlations with p < 0.05 and p < 0.10 are highlighted in bold and italics,
respectively. As a reference for water status, accumulated precipitation during the 30 days (Pmm-30d) preceding each xylem
water sampling (dates: 26 May, 20 July, 9 September, 19 October, and 18 November 2011) is shown in the bottom panels.

3.4. Interaction between Growth, ∆13C, and Water Uptake

Across individuals, we found that pines having high ∆13C (i.e., low WUEi) had lower
BAI and there were no trees concurrently displaying high ∆13C and high BAI, whereas for
oaks no significant trade-offs were observed (Figure 5). These results suggest that high
WUEi was the obvious alternative to sustain a high growth for pines, especially during the
wet period (1994–2003, Figure 5a), when the tightest association was found between BAI
and ∆13C. Notably, the negative association between ∆13C and BAI was largely independent
from the observed associations between ∆13C and δ18O, as evidenced by the color ramp
in Figure 5, which shows δ18O values corresponding to November (values best linked to
mid-term ∆13C variability).
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4. Discussion
4.1. Climate Responses in Mixed Forests Are Modulated by Competition

Overall, radial growth of pines and oaks was driven by similar climate factors. In
both cases, accumulated precipitation over the hydrological year (and, particularly, over
winter–spring) positively influenced ring width, which was also (negatively) affected by
spring temperature. The reliance of radial growth on winter precipitation has been widely
described for holm oak, an archetypical example of a deep-rooted species which primarily
relies on autumn–winter soil water recharge [11,34–36]. Conversely, this dependence is
in principle less obvious for Aleppo pine, a more opportunistic, thermophillous species,
than holm oak [37,38]. Different studies have concluded that summer dormancy may be
mandatory or, at least, more restrictive in Aleppo pine, which forces this species to follow a
bimodal growth pattern during spring and autumn [23,24]. In turn, this makes this species
sensitive to winter rains during the first peak of secondary growth, particularly under
relatively mild temperatures [24,39]. Indeed, a meta-analysis over the distribution range of
Aleppo pine showed that this species is particularly sensitive to winter–spring precipitation,
although this response shifts towards spring in more continental sites [40]. The continental
nature of the site might explain the (unexpected) negative association between autumn
precipitation and pine TRW, through an indirect effect of the negative association between
autumn precipitation and temperature in October (r = −0.41, p = 0.081). During this month,
average minimum temperatures (3.3 ◦C, range 1.6–4.8 ◦C, period 1994–2013) coincide with
the minimum threshold for growth (see, e.g., [23]), making temperature more limiting than
precipitation for the autumn growth peak of pine. Beyond these general, stand-level trends,
we found that competition (as inferred from local density of each species) modulated
the climatic response of oaks and, to a lesser extent, of pines. Oaks showed a time-lag
in their growth responses under high density of pines, forcing them to become more
sensitive to spring–summer precipitation and temperature. Conversely, the competition
with other oaks increased their reliance on winter precipitation, and shifted the critical
period for temperature from summer to spring. This could be partly a consequence of
the faster reaction of Aleppo pine to precipitation pulses [23,24,37], which might reduce
water availability for oaks during early spring. Another effect of the co-existence with
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pines is the reduction in light availability for oaks, since Aleppo pine usually grows taller
than holm oak [10,19]. Although holm oak is a shade-tolerant species, this may cause
a phenological delay and reduce their photosynthetic activity (and xylogenesis) during
early spring [19]. Contrary to holm oak, Aleppo pine showed a moderate response to
intra-specific competition, but increased its sensitivity to climate (particularly, to spring
conditions) in the presence of oak neighbors. The lack of clear changes in climatic responses
of pines under intra-specific competition agrees with a previous study showing different
growth and physiological performance in dense versus open pine forests, but similar
seasonal responses to climate [4]. Furthermore, this would agree with the proposed
bimodal growth pattern in the pines, which would split the growing season into two
main periods that respond to climate, reducing the temporal window of their climate
responses compared with oaks [23,24,40]. On the other hand, the higher sensitivity of
pines to precipitation and temperature under competition with oaks would agree with a
higher drought stress of pines in mixed (as compared to monospecific) stands, as recently
proposed [19].

4.2. Pines Modulate the Climatic Response of Oaks, but Oaks Rule in Long-Term Growth

The aforementioned changing response to climate drivers in the oaks under pine
competition was not reflected in either accumulated growth (mean decadal BAI) or water-
use efficiency (decadal ∆13C). Local density of pines had a negative effect only on pine BAI,
particularly during the dry decade, whereas oak density negatively affected the BAI of both
species during the dry decade. This would agree with the proposed increase in drought
stress of water-saving, isohydric pines in the vicinity of more anisohydric oaks [5,19]. ∆13C
was also not significantly affected by the local density of pines, but oak local density caused
a reduction in ∆13C in both species. Again, this suggests an increase in the drought stress of
pines in the presence of oaks, due to the greater ability of the latter to withdraw water from
the soil. The lack of clear effects of pine density on ∆13C agrees with experimental studies
on the effect of thinning in pure stands of Aleppo pine, which showed inconsistent effects
on ∆13C in thinned stands, but a clear response in growth [41]. In this regard, our results
mainly agree with our first hypothesis, as pine growth was more affected by oaks than vice
versa, but do not support our second hypothesis, given the lack of a clear response in pine
∆13C.

We found higher and more variable growth rates in the pines, in agreement with
previous results [23,35,38]. Pines also showed generally lower ∆13C than oaks, as expected
for a more isohydric species [5,35,38]. However, Aleppo pine showed less individual
variability in ∆13C than the holm oak, and higher ∆13C during the dry decade, contrary to
what would be expected if changes in ∆13C were dominated by stomatal conductance. One
potential explanation for this is that the radial growth of Aleppo pine is strongly restricted
during very dry years, which may result in the dominance of the few favorable years of the
decade in the isotopic signal. Additionally, growth during the dry years would take place
only during the most favorable season, as highlighted by intra-annual studies [23,42–44],
further diluting the drought signal in the ∆13C. However, this alone may not explain the
observed increase in ∆13C during the dry decade. In this context, some studies have shown
an increase in ∆13C after stress episodes causing pine decline [45–47], which could be
attributed to a recovery at the leaf level due to hydraulic adjustments through defoliation
and/or reduced needle growth, causing a decrease in leaf/sapwood area ratio [48–50].
Furthermore, experimental drought studies on Aleppo pine have shown that long-lasting
droughts cause larger limitation to needle growth than to stem and root growth [50]. This
alternative explanation, associated with losses in leaf area, seems particularly suitable for
our case study, considering that 2004–2013 was a decade of persistent droughts, already
causing visible symptoms of decay and tree mortality in our study site (seven of the
originally marked pines died by 2014; [11]). Conversely, we did not observe clear evidence
of decay in the oaks, contrary to what was reported in a nearby pure oak stand after the
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2011 drought event [6]. Again, this would agree with the proposed positive effect of pines
on the water status of oaks [19].

4.3. Trade-Offs and Synergies between Growth, Water-Use Efficiency, and Water Uptake

Overall, we found a negative association between BAI and ∆13C in pines, which could
be interpreted as the result of higher WUEi (i.e., lower ∆13C) being determined by higher
net assimilation, and thus linked with higher growth (first scenario in Figure 6). Under
strong water availability gradients, most conifers (and Aleppo pine in particular) show a
tight stomatal regulation, which usually results in a negative association between ∆13C and
growth [4,35,51–53]. However, it has been observed that when light interception is the main
limiting factor linked with competition, a negative association between ∆13C and growth
may emerge [54]. Hence, a gradient of dominance–suppression may explain the observed
trend within pines. On the other hand, a global positive association between genetic
variation in WUEi and growth has been reported for conifers [55]. Therefore, this trend
could be partly due to genetic variation among individuals within the study plot, with the
fast-growing individuals showing a less conservative water use, and higher ∆13C. However,
the latter might be highly speculative since Aleppo pine is one case for which intraspecific
variation tends to show a trade-off between WUEi and growth [52,56]. Notably, this
association was stronger during the wet decade, and restricted to the upper quantile of BAI
and ∆13C, further supporting that it was independent from drought stress. In this regard,
when comparing water uptake patterns with ∆13C, we found that individuals having access
to deeper water sources (i.e., lower δ18O) also showed higher ∆13C, hence lower WUEi, but
this was not reflected in BAI. In this case, this would fit with the second scenario shown
in Figure 6, where WUEi and growth are dominated by stomatal conductance. Hence,
we likely found two overlapping, independent sources of variation for ∆13C among pine
individuals, which would explain these apparently contradictory results.
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and carbon isotope discrimination (∆13C), as dominated by changes in either net assimilation (A) or
stomatal conductance (gs).

In the case of oaks, BAI and ∆13C were not correlated, but both showed a similar neg-
ative response to conspecific local density, aligned with the previously reported variation
in water uptake, suggesting different levels of stress among individuals [11]. Notably, the
strongest association between xylem water δ18O and both ∆13C and BAI was found consid-
ering the δ18O values obtained during drought recovery. As suggested by [11], hydraulic
limitations after a long-lasting drought may limit the ability of oaks to uptake water from
recent rain events. This would also agree with [24], which reported a faster reaction to
autumn rains in the growth of pines than in the oaks. Unlike pines, leaf shedding is not
among the mechanisms of holm oak to cope with drought, and this may cause substantial
hydraulic damage to the stems under severe drought [21]. Furthermore, persistent drought
has been shown to reduce vessel size in holm oak, reducing its vulnerability to cavitation,
but restricting stem hydraulic conductivity [57]. In this regard, in oaks, the observed
connection between short-term drought response (δ18O) and long-term effects (BAI, ∆13C)
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would be mainly driven by hydraulic limitations. Our findings confirm that intra-specific
competition negatively affects the water status of oaks, but this is alleviated by the presence
of pines, probably through a reduction in evaporative demand for the oaks growing under
the canopy of pines [19].

5. Conclusions

Our results show that competition with pines modulates the (high-frequency) climate
responses of oaks, whereas climate responses of pines are virtually insensitive to competi-
tion. Conversely, competition with pines does negatively affect pine growth in the mid-term
(decadal), but has negligible effects on oaks. In turn, competition with oaks causes growth
restrictions in both species, though mediated through different mechanisms. Pines under
high oak competition would experience a more limited water availability in spring-summer,
whereas oaks would show a slower recovery after drought. Hence, our results mainly
agree with our first hypothesis, showing that the presence of pines had negligible effects on
the oaks, while competition with oaks affected both species. On the contrary, our second
hypothesis was not supported by the results, since ∆13C of pines was less sensitive to
competition than oaks. Nevertheless, the competition with oaks increased WUEi in both
species, further supporting our interpretation that growth response to competition was
mainly driven by water availability. These results highlight the relevance of considering
the role of mixed forests for forest resilience and future management in a climate change
context, in which the Mediterranean might face an increase in drought frequency and water
losses due to higher evapotranspiration as mean temperature increases.
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Appendix A

Table A1. Model parameters and determination coefficients (r2) for the estimation of historical climate
values at Ulldemolins from long-term series of alternative meteorological stations. Tmax and Tmin,
mean monthly maximum and minimum temperature, respectively; P, total monthly precipitation.

Station/Variable Common Period n Intercept Slope r2

Flix-Vinebre/Tmax 2008–2019 141 3.622 0.940 0.941
Flix-Vinebre/Tmin 2008–2019 141 −6.119 0.844 0.915

Cabacés/P 2008–2019 141 5.122 0.952 0.847

https://www.mdpi.com/article/10.3390/f12081093/s1
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Table A2. Additional indicators of the differences in precipitation between the two periods. P25, P50,
and P75 stand for the 25%, 50%, and 75% percentiles, respectively; P < mean, percentage of years
with precipitation below the long-term mean (520 mm); Pmin and Pmax, minimum and maximum
annual precipitation.

Period P25 P50 P75 P < mean Pmin Pmax

Long-term
(1970–2019) 421 mm 502 mm 593 mm 56% 306 mm 798 mm

Wet decade
(1994–2003) 498 mm 598 mm 676 mm 30% 409 mm 744 mm

Dry decade
(2004–2013) 426 mm 472 mm 532 mm 70% 306 mm 644 mm

Table A3. Analyses of covariance (ANCOVAs, full models) for log-transformed individual basal area increment (log(BAI))
and carbon isotope discrimination (∆13C) during a wet (1994–2003) and a dry decade (2004–2013). Pine and oak BA, local
density of pines and oaks, respectively; X and Y, Easting and Northing coordinates, respectively. Factors with p < 0.05 and
p < 0.10 are highlighted in bold and italics, respectively.

log(BAI) (1994–2003) log(BAI) (2004–2013) ∆13C (1994–2003) ∆13C (2004–2013)

df. F p > F F p > F F p > F F p > F

Species 1 15.3 <0.001 9.8 0.002 41.2 <0.001 8.2 0.007
X 1 2.5 0.118 6.0 0.016 1.9 0.173 1.9 0.178
Y 1 1.5 0.219 1.4 0.235 2.8 0.106 2.3 0.139

Age 1 3.9 0.051 1.9 0.170 0.0 0.852 0.0 0.934
Pine BA 1 0.0 0.958 0.5 0.460 0.5 0.488 0.9 0.357
Oak BA 1 3.0 0.089 3.1 0.082 3.2 0.083 3.9 0.058

Species × X 1 0.2 0.648 0.9 0.342 4.4 0.043 1.9 0.178
Species × Y 1 2.1 0.147 4.1 0.046 1.9 0.177 1.0 0.321

Species × Age 1 0.4 0.521 0.9 0.353 0.7 0.411 0.4 0.508
Species × Pine BA 1 4.8 0.032 6.5 0.012 0.3 0.611 0.5 0.471
Species × Oak BA 1 0.2 0.697 0.0 0.844 0.1 0.791 2.4 0.130
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