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Abstract: Non-structural carbohydrates (NSC) affect tree growth and survival when photosynthesis
is impacted by climate change, such as seasonal drought and extreme precipitation. Nevertheless,
it is still unclear whether Eucalyptus suffers growth limitation under natural conditions and if trees
recover under artificial cultivation. In present study, we conducted a field control experiment to
compare the NSC storage in Eucalyptus urophylla × Eucalyptus grandis trees on fertilization and dry-
season irrigation to determine the variations of NSC under drought stress. The results indicated total
soluble sugar (TSS) was the primary existing form of NSC. In spatial patterns, NSC concentration
showed gradient differences from source organ to sink organ, and finally accumulated in root. The
TSS concentration showed a decreased trend with height except leaf, while the trend of starch
concentration was contrast. Surprisingly, fertilization and dry-season irrigation had not changed
the carbon distribution among all tissues but reduced the TSS concentration in most organs. The
fast-growing E. urophylla × E. grandis will consume the assimilates and carbohydrates of storage
organs, but maintains the NSC concentration at a certain threshold. Our results help to comprehend
the NSC allocation and improve the productivity of E. urophylla × E. grandis plantations in seasonal
arid areas.

Keywords: Eucalyptus urophylla × E. grandis; dry-season irrigation; fertilization; non-structural car-
bohydrates

1. Introduction

In the context of global climate change, the precipitation patterns around the world
are changing. According to the research of Spinoni [1], drought events are becoming more
frequent and severe worldwide. Under drought stress, vegetation decreases transpiration
and photosynthesis rate due to less available water, resulting in declines of the physiological
and morphological traits, ultimately decreasing forest productivity [2–4]. In Eucalyptus
plantations, drought stress also reduced physiological traits such as photosynthesis and
transpiration, and morphological traits such as leaf area and growth [5,6]. In addition,
drought reduced nutrients and carbon storage in the soil, and microbial activity [7–9],
which would reduce ecosystem stability and further limit forest productivity. Irrigation can
eliminate the negative effects of drought and increase forest productivity [10]. Although
rainfall in South China is comparatively plenty, tree growth is always limited by drought
under the uneven spatial and temporal distribution of precipitation [11]. According to
the data of Guangzhou Meteorological Observatory from 1969 to 2010, the precipitation
between October and March is less than 20% of the whole year. As one of the three fast-
growing tree species in the world, Eucalyptus plays an important role in the forestry of
China, with a planted area of 4.5 Mhm2 [12]. In recent years, seasonal drought has reduced
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the water consumption and productivity of Eucalyptus in southern China [13]. Therefore, it
is necessary to comprehend the response metabolism of Eucalyptus to drought stress for
managing Eucalyptus plantations under climate change.

Non-structural carbohydrates (NSC), important compounds involved in plant physi-
ological metabolism, greatly affect the growth and even survival of trees under drought
stress. NSC include two components: soluble sugar and starch. Soluble sugars are the
important substances directly involved in physiological metabolism, while starch is mainly
used as energy storage. Soluble sugar and starch are interconvertible, providing energy
and carbon substrates for physiological metabolism [14]. The NSC consumed for growing
mainly come from recent assimilates or the storage organ by redistribution when the assim-
ilates fail to meet growth requirements [15,16]. The growth would be slowed down under
drought [17,18] and activate accumulation of soluble sugar converted by starch to keep
cell turgor and maintain metabolism (e.g., osmoregulation) and repair tissue damage [19].
Although the organs need abundant NSC to maintain metabolism and repair the damage,
carbon depletion is an infrequent phenomenon on account due to the active maintenance
of NSC pool [19] and the NSC transport limitation caused by the damage of hydraulic and
phloem [14], but these would adjust the allocation to resist the stress [20]. Thus, better
understanding of NSC distribution is vital to realize the performance and productivity of
trees under drought stress.

As a vital mechanism of plant adaptation to the changing environment, the distribu-
tion of NSC among organs (leaf, stem, root) is extremely complicated. Research on the NSC
distribution in plantations has mainly focused on seasonal and height change [21–23]. How-
ever, we know little about NSC distribution in Eucalyptus due to the metabolic differences
caused by experiment condition, species and intraspecific variation [24]. In most cases,
leaves are the source organs with high NSC concentrations, while root and stem are the sink
organs with low NSC concentrations [14]. High NSC concentration in leaves is beneficial to
maintain photosynthesis and transport assimilates [25,26]. Carbohydrates stored in stem
and root are important for tree survival. Tree restoration is supported by underground and
aboveground NSC reserves after low levels of stress. While under stress, the restoration de-
pends on the underground NSC reserves [14]. Therefore, carbohydrates are usually stored
in root to improve survival rates and restoration [27,28]. On the whole, the distribution
of NSC from source organ to sink organ follows the principle of proximity [10] and de-
mand priority [29]. However, the NSC allocation mechanism varies (e.g., primary storage
substance, storage organ and carbon redistribution) after the environment changed [24].
Under drought stress, due to carbon assimilation lower than carbon requirements, NSC
would be remobilized and converted to osmotically active compounds for metabolism and
respiration [30]. For the synthesis effects of growth consumption, carbon translocation
interrupted by higher pathway resistance and viscosity of the phloem sap [30,31], trees
showed a response that NSC decreased in roots [30] and accumulated in the aboveground
parts [32,33] under drought. Due to interspecific and intraspecific variations of NSC [34],
the response mechanism of NSC with height has not been clarified, but it might be of
biological significance related to water strategy [35]. Some research has explored the NSC
trend with height, which showed significant differences in various species and growth
stage [26,30,34]. For instance, as a fast-growing tree species, the response of Eucalyptus
with height showed a decreased trend [36], while Pinus tends to increase carbohydrate con-
centration with height [21,37]. Furthermore, the addition of nutrients would cause slight
and moderate drought and boost metabolism [38], which further complicates the carbon
allocation mechanism, and especially under the seasonal drought stress. The increases of
biomass and photosynthesis caused by fertilization would result in larger transpiration
and drought stress, despite the addition of nutrients that would increase the water use
efficiency [38]. Nitrogen addition aggrandized carbon allocation to growth and respiration,
of which the increase aboveground was stronger than that of underground [39]. Notably,
common nitrogen fertilization did not affect foliar NSC concentration [30], while nitrogen
enrichment decreased foliar NSC [39]. Due to the role of potassium in maintaining osmotic
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adjustment [40] and stomal regulation [41], potassium is generally fertilized to increase
water use efficiency and resist drought stress, which decreased the part of carbon allocated
underground [42,43]. Under the combination of potassium fertilization and drought stress,
drought stress would counteract the effects of potassium and increase the belowground
carbon allocation [6,44]. However, the combined effects of irrigation and fertilization on
NSC distribution have been rarely reported. Due to the different response mechanism of
carbohydrates to fertilization and drought stress [44,45], the variations of NSC distribution
are difficult to predict based on past studies. Thus, exploring the whole tree NSC carbon
distribution under fertilization and drought stress can furnish a theoretical basis for carbon
resources management with seasonal drought.

This experiment selected the species E. urophylla × E. grandis, generally planted in
South China, and studied the NSC distribution with height among organs under fertil-
ization and dry-season irrigation. Eucalyptus plantations were variously treated with
fertilization to increase productivity, especially in southern China where the soil fertility is
poor [46]. Fertilization, which accelerates the consumption of groundwater resources [6],
has been shown in many studies to promote the growth of Eucalyptus [47–49]. However,
fertilization has a dual effect on the water status of Eucalyptus. Excessive use of ground-
water exacerbates carbon supply constraints and hydraulic damage in extreme droughts,
which is detrimental to survival of Eucalyptus [14,50,51]. In contrast, potassium and sodium
fertilization increased the water use efficiency, which alleviates water deficit of Eucalyptus
grandis [52,53]. In general, fertilization increased the productivity of Eucalyptus, but also
increased water requirements so as to exacerbate water stress during drought. Management
of Eucalyptus plantations under climate change requires reconsideration of fertilization
regimes and water supply in order to improve tree water status and growth. Thus, the
following hypothesis is proposed in this study: (1) the trend of soluble sugar with height
is increased to overcome hydraulic limitation; (2) NSC are primarily stored in roots to
promote growth and water uptake; (3) dry-season irrigation can alleviate drought stress
and decrease soluble sugar concentration; (4) fertilization can increase NSC concentration
to resist drought stress, especially the soluble sugar concentration in roots. The purpose of
this study is to explore the response of non-structural carbohydrates at organ and height
level of E. urophylla × E. grandis trees under dry-season irrigation with fertilization.

2. Materials and Methods
2.1. Study Site and Plant Material

The study was conducted at Zengcheng Teaching and Research Bases of South China
Agricultural University, Guangzhou (23◦14′48 N, 113◦38′20 E), which belongs to sub-
tropical monsoon climate with an annual average temperature of 21.9 ◦C. Mean annual
precipitation is ca. 2004.5 mm, of which about 80% occurs in the rainy season (April to
September). According to the meteorological data of Guangzhou, the monthly precipita-
tion at Zengcheng district of Guangzhou, was from 0.8 to 304.3 mm in the dry season of
2017–2019. The mean precipitation of the dry season was only 50.2 mm (Figure 1).

An orthogonal water and fertilizer experimental design set up in April 2017 with
high productivity genotypes (Eucalyptus urophylla × E. grandis seedlings). The details were
described in Yu’s study [54]. There were four treatments replicated in five blocks, which
were divided by the horizontal terraced land preparation method. The four treatments
were (1) non-irrigation and non-fertilization (CK), (2) irrigation and non-fertilization (W),
(3) non-irrigation and fertilization (F), (4) irrigation and fertilization (WF). Irrigation was
carried out only in the dry season (October to December). Irrigation was given 8 h/week
at 4 L/h to ensure the soil water concentration at 40 cm depth and 40 cm away from the
tree reached 90% of the field water holding capacity. The fertilizer application amount
referred to Eucalyptus production. The base fertilizer (400 g) was applied to each tree in
March 2017. The fertilizer contained N: 24 g, P: 72 g and K: 24 g. In July 2018, the top
dressing (300 g/plant) was applied to F and WF treatments, containing N: 45 g, P: 21 g
and K: 24 g. The E. urophylla × E. grandis seedlings with a height of 20–35 cm tall were
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carefully planted in April 2017. The planting density was 3 × 2 m (1667 plants/hm2) and
the total area was about 0.57 hm2. In the early stage, young trees invest most assimilates
into growth, which consume a mass of carbohydrates, so they are more likely to exhibit
carbon starvation than mature trees [55]. In addition, trees require a large amount of soluble
sugar to maintain osmotic adjustment under drought stress, which is not conducive to
the growth of Eucalyptus [51]. Thus, studying the influence of dry-season irrigation on
young trees can provide data support to maintain the rapid growth during the early stage
of Eucalyptus plantations under seasonal drought stress.
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Figure 1. Monthly precipitation and mean temperature from April 2017 to May 2019 before standard tree cutting. The
square pattern with the solid line indicates the monthly precipitation and the circle pattern with imaginary line represents
the mean temperature.

To define the soil moisture under fertilization and dry-season irrigation, the soil water
content (SWC) was measured at the end of the month with 3 repeats in each block (total
15 repeats each treatment). In each block, the soil samples from three random points
(40 cm away from the trees and 40 cm depth) were packed into a small aluminum box.
All boxes were weighed and then baked in a 105 ◦C oven to a constant weight, where
SWC (%) = (fresh weight − dry weight)/(dry weight − aluminum box weight) × 100%.
The field moisture capacity was measured once a year with the ring-knife method. The
relative soil water content (SWCr) = SWC/field moisture capacity. The SWCr from May
2017 to May 2019 is shown in Table 1.

Table 1. The relative soil water content (%) from April 2017 to May 2019, before sampling.

Season Treatment May 2017–May 2018 June 2018–May 2019

Dry season

CK 67.48 ± 0.73 77.11 ± 1.84
W 90.56 ± 0.42 89.06 ± 1.29
F 57.40 ± 0.51 68.06 ± 1.68

WF 83.44 ± 0.43 84.06 ± 1.53

Rainy season

CK 85.82 ± 0.47 80.80 ± 1.27
W 85.64 ± 0.47 85.74 ± 1.49
F 81.95 ± 0.55 75.83 ± 1.60

WF 83.62 ± 0.51 83.09 ± 2.03
Mean ± SE are shown. CK, non-irrigation and non-fertilization; W, irrigation and non-fertilization; F, non-
irrigation and fertilization; WF, irrigation and fertilization.
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2.2. Index Measurements
2.2.1. Field Sampling and Initial Sample Processing

Sampling was conducted shortly after ending the dry-season irrigation (May 2019).
At each block, we selected a standard tree to cut down (total 5 trees per treatment). Each
standard tree was in the middle of the treated plot to avoid the forest edge effect. The
aboveground parts were electric-saw-felled and the underground parts were dug out by
hand. After cutting down the tree, we measured its DBH, tree height and canopy length
(Table 2). Considering the metabolism of organs at the same height varying greatly under
different treatments, we referred to Smith’s study [36] and divided the canopy and stem into
five equal parts to collect leaves, branchlet, old branch and disk. The disk was taken from
the middle stem of each segment and carefully whittled into xylem (including metaxylem
and secondary xylem) and vascular cambium with a razor blade. The root was dug out
after cutting down and divided into fine roots (FR) and coarse roots (CR), which were
differentiated by the diameter of 2 mm, and rinsed with water and toothbrush to remove
soil from the surface. Each tissue was randomly sampled over 100 g from the divided
material in the field (dead branch and leaves excluded). Non-structural carbohydrate
samples were immediately dried at 105 ◦C for 3 h, oven-dried to constant weight at 65 ◦C,
and then ground into powder in a mill with a 0.5 mm sieve.

Table 2. The diameter at breast height (DBH), tree height and under-crown height of standard trees
felled in May 2019 with different treatments.

Treatment DBH (cm) Tree Height (m) Under-Crown Height (m)

CK 5.52 ± 0.30 7.58 ± 0.25 3.66 ± 0.28
W 6.52 ± 0.11 9.00 ± 0.15 6.28 ± 1.07
F 10.14 ± 0.10 12.78 ± 0.24 4.92 ± 0.24

WF 10.37 ± 0.06 12.94 ± 0.24 4.96 ± 0.81
Mean ± SE were shown. CK, non-irrigation and non-fertilization; W, irrigation and non-fertilization; F, non-
irrigation and fertilization; WF, irrigation and fertilization.

2.2.2. Chemical Analysis

We measured two basis components of NSC: soluble sugar (the sum of glucose, sucrose
and fructose) and starch. Soluble sugar and starch analysis followed anthrone methods [56],
which are confirmed to be true and highly correlated with other analysis approaches [57].
To measure soluble sugar concentration, a 0.2 g powdered sample was extracted using
80% hot ethanol (80 ◦C) for 30 min and rinsed twice followed by colorimetric analysis with
ethyl anthrone acetate reagent. The resulting soluble sugar extract was read at 620 mm
on a microplate reader. To determine the starch concentration, the remainder of soluble
sugar was solubilized in perchloric acid and then colorimetric analysis conducted with
ethyl anthrone acetate reagent at 620 mm. Soluble sugar and starch concentration were
calibrated by a standard curve for a known concentration made at the same time.

2.3. Statistical Analysis

For multivariate general linear model, we used Duncan’s multiple comparison analysis
and correlation analysis; all measured data were square-root transformation to improve
normality and heteroscedasticity. Data means of various heights were used as input
parameters to conduct PCA.
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Excel 2021 was used for data consolidation; SPSS 22.0 and Origin 2021 software were
used for the multivariate general linear model (MGLM), Duncan’s multiple comparison
analysis, correlation analysis and principal component analysis (PCA) of TSS, starch, NSC
and ratio of TSS to starch. For MGLM and Duncan’s multiple comparison analysis, all mea-
sured data were square-root transformation to improve normality and heteroscedasticity.
The MGLM including three fixed factors (height, dry-season irrigation and fertilization)
along with one covariate (block) was used to explain the variations of NSC concentrations
and tested the effects of height/classification and treatment using a factorial ANOVA with
a nested block structure (block/tree/height). Data means of various heights were used as
input parameters to conduct PCA.

3. Results
3.1. Variation of Aboveground NSC Concentrations under Different Treatments

In the aboveground part of 2-year-old Eucalyptus, the TSS, starch and NSC concen-
trations formed gradient differences from source organ to sink organ (Figures 2 and 3),
ranking as leaf > branchlet > old branch > stem xylem > stem cambium. In addition, the
TSS showed a decreased trend with height in most tissues (except leaves), while the starch
showed a contrary trend in leaves, branchlet and old branch.

Duncan’s multiple comparison analysis revealed that dry-season irrigation and fer-
tilization decreased the TSS concentrations of the aboveground part (Figures 2 and 3),
but barely affected the NSC concentrations (except leaf in 2/5C, stem xylem in 1/5H and
stem cambium in 5/5H). Even though the differences of various treatments in most tissues
of canopy were not significant, W and F decreased the TSS concentrations of branchlet
and old branch, and only the TSS concentration of branchlet in 5/5C was decreased by F
(42%, Figure 2). In addition, compared to CK, WF significantly decreased the foliar TSS
concentration in 2/5C (−23%, Figure 2(a-1)). Variations of different treatments in starch
concentration were much less than that of TSS concentration. Significant decrease of foliar
starch concentration induced by W and F was only observed in 5/5H (−8% and −14%),
while decrease caused by WF was only detected in 4/5H (−18%, Figure 2(a-2)). In addition,
due to the increased starch concentration of branchlet in 5/5H, the starch concentration in
5/5H under WF was significantly lower than that under W (−70%, Figure 2(b-2)). In the
stem, dry-season irrigation and fertilization significantly decreased the TSS concentrations
of stem xylem and stem cambium. In stem cambium, the TSS of stem cambium under
CK was significantly higher (106%, 152%, 120% and 59%) than that under WF in 1/5H,
2/5H, 3/5H and 5/5H (Figure 3(b-1)). In stem xylem, F significantly decreased the TSS
concentration in 1/5H (−54%, Figure 3(a-1)).

On the whole, even though dry-season irrigation and fertilization significantly af-
fected TSS concentration of various tissues, only WF significantly decreased the NSC
concentration of leaf in 2/5C (−19%, Figure 2(a-3)) and stem xylem in 1/5H (−46%,
Figure 3(a-3)). The axial patterns in ratio were consistent with TSS, while the radial pat-
terns were not. In particular, W and F treatments had more influence on stem cambium
than other tissues, and specifically, W only significantly decreased the ratio of branchlet in
5/5H (−37%, Figure 2(b-4)) and F significantly decreased the ratio of stem xylem in 1/5H
(−62%, Figure 3(a-4)). In stem cambium, W and F significantly decreased the ratio in 1/5H
(−42% and −60%). Compared to W, the ratio of cambium in 4/5H under WF significantly
decreased about 48%, while the ratio in 3/5H under WF was significantly lower than that
under CK (−69%, Figure 2(b-4)).
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Figure 2. Changes in TSS, starch, NSC concentration and ratio of TSS to starch in the canopy of E. urophylla × E. grandis
under different treatments. The average value and standard error of each time are shown (n = 5). The (a–c) represent the
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respectively. The letters over the bars represent the results of Duncan’s multiple comparison analysis. Different capital
letters indicate significant differences between different canopy heights (C) under the same treatment (p < 0.05). Different
lower-case letters indicate significant differences between different treatments for the same tissues (p < 0.05).

3.2. Variation of Underground NSC Concentrations under Different Treatment

Underground, TSS concentrations were still obviously higher than starch concentra-
tion and the ratios of FR and CR were distinctly higher than aboveground. In spite of
source organ (leaf) as the primary sink organ, roots had the greatest concentrations of
TSS (2.2%, Figure 4), which were notably higher than that of branchlet, old branch, stem
xylem and stem cambium (0.3–1.5%, Figures 2 and 3). Compared to the aboveground part,
different treatments had a little influence on the concentrations of FR and CR, for which
only the TSS concentration in coarse root under WF was significantly higher (55.5%) than
that under F (Figure 4a).

3.3. Multivariate General Linear Model (MGLM) of the NSC Concentrations in Various Tissues

According to the MGLM, the NSC concentrations of various tissues were mostly
affected by height and block, but not the treatments (Tables 3 and 4). Dry-season irrigation
mainly influenced the TSS and NSC concentrations of stem xylem and cambium, while
fertilization primarily affected NSC concentrations of leaf and stem cambium. The mixed
effects of dry-season irrigation, fertilization and height completely had no significant
influences on the NCS concentrations in all tissues (Table 3). The variation of block
accounted for 5.6%–65.6% of the NSC concentrations in all tissues.
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Figure 3. Changes in TSS, starch, NSC concentration and ratio of TSS to starch in the stem of E. urophylla × E. grandis
under different treatments. The average value and standard error of each time are shown (n = 5). The (a,b) represent
the stem xylem and stem cambium. Numbers 1–4 indicate the concentrations of TSS, starch, NSC and the ratio of TSS to
starch, respectively. The letters over the bars represent the results of Duncan’s multiple comparison analysis. Different
capital letters indicate significant differences between different tree heights under the same treatment (p < 0.05). Different
lower-case letters indicate significant differences between different treatments for the same tissues (p < 0.05).

Table 3. The multivariate general linear model (MGLM) of the aboveground NSC concentrations with treatment, height,
and block.

Tissue Variables

Fixed Factors Covariates

R2
Height Dry-Season

Irrigation (W)
Fertilization

(F) Height ×W Height × F W × F Height
×W × F Block

Leaf

TSS 0.050 * 0.060 0.057 0.319 0.772 0.600 0.859 0.002 ** 0.310
Starch 0.002 ** 0.139 0.002 ** 0.467 0.104 0.942 0.817 0.481 0.356
NSC 0.239 0.025 * 0.007 ** 0.706 0.757 0.686 0.871 0.002 ** 0.299
Ratio 0.001 ** 0.351 0.924 0.093 0.373 0.595 0.833 0.013 * 0.352

Branchlet

TSS 0.000 ** 0.594 0.719 0.663 0.812 0.907 0.228 0.090 0.421
Starch 0.118 0.802 0.170 0.757 0.523 0.100 0.708 0.022 * 0.241
NSC 0.064 0.625 0.571 0.594 0.551 0.271 0.789 0.941 0.191
Ratio 0.000 ** 0.857 0.521 0.960 0.905 0.206 0.434 0.002 ** 0.420

Old branch

TSS 0.000 ** 0.807 0.937 0.465 0.135 0.966 0.982 0.000 ** 0.585
Starch 0.016 * 0.486 0.829 0.967 0.909 0.111 0.790 0.007 ** 0.256
NSC 0.041 * 0.480 0.883 0.833 0.582 0.295 0.913 0.508 0.185
Ratio 0.000 ** 0.759 0.875 0.511 0.297 0.069 0.711 0.000 ** 0.656
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Table 3. Cont.

Tissue Variables

Fixed Factors Covariates

R2
Height Dry-Season

Irrigation (W)
Fertilization

(F) Height ×W Height × F W × F Height
×W × F Block

Stem
xylem

TSS 0.000 ** 0.008 ** 0.179 0.458 0.028 * 0.179 0.344 0.095 0.522
Starch 0.909 0.036 * 0.273 0.751 0.729 0.933 0.844 0.181 0.150
NSC 0.112 0.008 ** 0.942 0.584 0.361 0.472 0.802 0.853 0.238
Ratio 0.000 ** 0.530 0.024 * 0.823 0.030 * 0.297 0.218 0.001 ** 0.432

Stem
cambium

TSS 0.000 ** 0.000 ** 0.000 ** 0.827 0.328 0.825 0.154 0.001 ** 0.517
Starch 0.132 0.173 0.006 ** 0.723 0.954 0.692 0.997 0.004 ** 0.569
NSC 0.002 ** 0.001 ** 0.679 0.975 0.827 0.704 0.648 0.985 0.304
Ratio 0.122 0.004 ** 0.000 ** 0.300 0.381 0.884 0.478 0.000 ** 0.580

The p value is shown. Ratio: ratio of TSS to starch. The TSS, starch, NSC and ratio were square-root transformed to improve normality and
homoscedasticity; * p < 0.05, ** p < 0.01.

Table 4. The multivariate general linear model (MGLM) of the underground NSC concentrations with treatment, classifica-
tion and block.

Tissue Variables

Fixed Factors Covariates

R2Classification
(C)

Dry-Season
Irrigation (W)

Fertilization
(F) C ×W C × F W × F C ×W × F Block

Root

TSS 0.776 0.661 0.531 0.026 * 0.798 0.257 0.382 0.441 0.224
Starch 0.770 0.276 0.181 0.041 * 0.855 0.754 0.466 0.081 0.273
NSC 0.900 0.649 0.682 0.510 0.836 0.428 0.845 0.614 0.056
Ratio 0.880 0.423 0.230 0.023 * 0.771 0.465 0.520 0.162 0.263

The p value is shown. Ratio: ratio of TSS to starch. The TSS, starch, NSC and ratio were square root transformed to improve normality and
homoscedasticity; * p < 0.05.

3.4. Relationship between Nonstructural Carbohydrates and Growth

In general, NSC concentration in most tissues had no correlation with DBH and
height (Figure 5), while the Pearson analysis showed significantly negative correlation
with growth indexes in NSC concentration of both stem cambium and xylem (p < 0.01
and p < 0.05). However, the relationship between them and growth indexes was different.
The TSS of stem cambium was significantly negatively correlated with height and DBH
(Figure 5(d-1)), resulting in the same correlation of the ratio of TSS to starch (Figure 5(d-4)).
The starch of xylem also showed a negative correlation with height and DBH (Figure 5(e-2)).
In particular, xylem only showed negative correlation with height in NSC (Figure 5(e-3)).
Nevertheless, there was no correlation between the ratio of TSS to starch and growth
indexes in xylem.

3.5. Effects of Different Treatments on NSC

Fertilization and dry-season irrigation induced the modification of E. urophylla ×
E. grandis in NSC that reflected in changes of the six tissues (leaf, branchlet, old branch,
stem xylem, stem cambium and root). We used variance analysis and Pearson correlation
analysis to identify parameters that are most sensitive for fertilization and dry-season
irrigation. However, each parameter was not completely independent because the NSC
distribution of plants was different under various environments. Therefore, PCA was
used to comprehensively evaluate the changes of experimental data, which could effec-
tively analyze the variation of different treatments on NSC. The result of PCA shown in
Figure 6a–d represent PC1 (42.4%, 36.9%, 37.1%, 37.4%), PC2 (22.7%, 21.4%, 18.7%, 17.8%)
and PC3 (12.9%, 17.5%, 16.9%, 15.5%) of the total variance in TSS, starch, NSC and ratio,
respectively. In TSS, the sample distribution within PC1/PC2/PC3 three-dimensional
space is not homogeneous. The scatter of various treatments was clearly divided into
four regions (Figure 6a). In Figure 6a, the four elliptical regions overlap each other partly
(1/4–1/3), except that the ellipse of WF is completely separated from F. Compared to TSS,
the four ellipses in starch, NSC and ratio have a higher degree of overlap (Figure 6b–d).
In particular, the WF ellipse in starch completely overlaps with F ellipse, while the WF
ellipse is perpendicular to W ellipse with minimal overlap (Figure 6a–b). It means that
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fertilization and dry-season irrigation have various effects on TSS and starch. Dry-season
irrigation has a great effect on TSS and fertilization has a significant effect on starch.

Figure 4. Changes in TSS, starch, NSC concentration and ratio of TSS to starch in the roots of E.
urophylla × E. grandis under different treatments. The average value and standard error of each time
are shown (n = 5). The letters (a–d) indicate the concentrations of TSS, starch, NSC and the ratio
of TSS to starch, respectively. The letters over the bars represent the results of Duncan’s multiple
comparison analysis. Different capital letters indicate significant differences between fine root (FR)
and coarse root (CR) under the same treatment (p < 0.05). Different lower-case letters indicate
significant differences between different treatments for the same tissues (p < 0.05).
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Figure 5. The correlations of NSC and growth indexes. Relationships of (a) branchlet, (b) old branch, (c) stem xylem,
(d) stem cambium, (e) leaf and (f) root with (1) total soluble sugar (TSS), (2) starch, (3) non-structural carbon (NSC) and
(4) ratio of TSS to starch. All data were square root transformed to improve normality and homoscedasticity before linear
regression analysis and Pearson correlation analyses were used to obtain regressions and correlations (R2 and p values).
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4. Discussion
4.1. Soluble Sugar as the Primarily Existing Form of NSC

The ratio of TSS to starch was greater than one in most tissues, which proved that
soluble sugar is the primary existing form of NSC, consistent with other Eucalyptus
species [36,51,58,59]. However, our study showed lower NSC concentration in stem and
higher TSS concentrations in root, which may be caused by the difference of metabolic
intensity under various growth stages [30,60] and interspecific and intraspecific varia-
tions [22]. TSS concentration varied significantly among tissues indicating that TSS was
not distributed uniformly across all tissues but preferentially stored in specific storage pool.
In contrast, starch concentrations were similar among all organs but maintained at a lower
level, indicating that starch was not accumulated. As an anisohydric strategy species, high
TSS concentration was beneficial to maintain a high metabolic intensity to ensure growth
throughout the year, which was not conductive to store NSC to resist adversity [61].

Fertilization and dry-season irrigation reduced the TSS concentration of most tissues,
while having little effect on starch and NSC. TSS performs immediate functions (e.g.,
osmoregulation) and provides energy for metabolism and repairing tissue damage, while
starch is used as a carbon storage pool with inactive osmosis [62]. When trees suffer drought
stress, a water deficit would lead to overproduction of reactive oxygen species (ROS) in
leaves, causing damage to proteins, lipids and nucleic acids [63]. High TSS concentration
is conductive to enhance osmotic adjustment, protect macromolecules (such as protein)
and provide energy for antioxidant defense system used to scavenge ROS [64,65]. In
addition, high TSS concentration could promote the repair of xylem embolism caused
by drought stress [66]. Affected by the strategies of anisohydric, Eucalyptus relies on
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osmotic adjustment to control the osmotic potential of living cells in leaves and stems
under drought stress. The substances involved in the osmotic regulation of Eucalyptus
are mainly composed of soluble sugar, cyclitols and potassium ions [41,67], among which
the soluble sugar plays an important role [68]. Thus, the decrease in TSS induced by
dry-season irrigation proved the presence of drought stress in Eucalyptus under control and
fertilization treatments. However, the decrease of TSS caused by fertilization is inconsistent
with the observation that fertilization stimulated trees accumulation of soluble sugar under
drought stress [69,70]. These soluble sugars are converted to starch under drought stress
(Figures 2–4), even though fertilization has no effect on the starch concentration of most
organs. In another drought experiment of E. urophylla, Chen [51] found that starch was
converted by over 35% to soluble sugar to maintain osmotic adjustment and repair the
xylem embolism, which is contrary to our results. Fertilization decreasing soluble sugar
concentration in our results may be caused by one or a combination of several elements:
(i) application of potassium enhanced osmotic regulation, causing K+ partly to replace the
role of soluble sugar [53] or (ii) rapid growth characteristics result in the consumption of
large amounts of soluble sugar.

4.2. NSC Concentrations of Tissues under Dry-Season Irrigation and Fertilization

At the tissue level, soluble sugar and starch were not distributed uniformly among
all tissues, forming a gradient difference from source organ to sink organ. NSC were
primarily stored in roots, which were conductive to uptake water and survive in drought
stress [71–73], with small part stocks located in the branches, which can be consumed by
bud break and leaf expansion for growth [74]. The significantly different distribution of
carbohydrates between stem and root means that NSC storage is spatially proximate to
root. It is clear that the coordination between NSC storage and root is an optimized storage
strategy that evolved with underground growth. In contrast, the root system is a virtual
component of the forest ecosystem: water and nutrient uptake, mechanical support and
carbon and nutrients supply to the rhizosphere [75]. On the other hand, roots can act as
soil environmental sensors, sending signals to the canopy [76]. Higher NSC concentrations
are beneficial to keep cell turgor [77] and promote root growth [78] to optimize water
uptake, especially Eucalyptus, a species with great transpiration [79]. However, different
treatments had little influence on root NSC concentrations when drought stress existed in
CK and F treatment (Table 1). In most cases, drought increased root NSC concentration to
obtain water [28,62], but decreased them over time due to carbon consumption larger than
supply [61]. Although there some research observed that root NSC concentrations did not
change under drought stress, the response mechanism has been rarely reported [80].

In present study, we observed that the NSC concentration of roots is about 2–6 times
greater than that of stems, which is different from previous studies [58,59]. During the early
growth stages in Eucalyptus, excessive growth rate of stems consumes a large amount of
NSC, especially 2 years after planting [81]. The negative correlations of growth and the NSC
concentrations in stem xylem and cambium indicate that investment in DBH and height are
the main reason for the lowest NSC concentrations among all tissues. As the growth rate of
stems slow with age, stems accumulate NSC to slightly lower than that of roots [36,59,60].
However, low stem NSC concentration was adverse to the repair of xylem embolism caused
by drought stress, which further enhanced the water deficit in Eucalyptus [66]. Compared to
significant differences in height and DBH, stem xylem and cambium NSC under different
treatments are maintained at similar levels, which further indicates that E. grandis × E.
urophlly as an anisohydric species put all the assimilates increased by fertilization and dry-
season irrigation into growth [36,49]. In particular, fertilization and dry-season irrigation
also had little effect on the soluble sugar and starch concentration of leaves and branches,
while having significant influences on stem cambium. This finding is contrary to the widely
accepted conclusion that soluble sugar concentration increased under drought stress, and
in addition, the presence of drought stress had been proved in our study during the dry
season and under fertilization (Table 1) [36]. The soluble sugar decline in stem cambium
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under dry-season irrigation further indicates that drought stress had affected the metabolic
activity [82]. In the drought experiment of Eucalyptus, the response to drought stress varies
greatly at the organ level, even though the level of whole tree soluble sugar concentration
increased [51,59]. Fertilization decreased TSS concentration contrary to our hypothesis
that fertilization can increase TSS concentration to resist drought stress. Compared to the
starch concentration, fertilization promoted the soluble sugar to convert into starch in stem
cambium, which is contrary to the result of Li [39] and Huang [69]. This might be caused
by the formation of a gradient difference in carbon distribution [14] and consumption
of rapid growth [59]. In particular, the effects of additional irrigation were not obvious
under fertilization, which seems that irrigation had not alleviated the drought stress caused
by fertilization. Those findings are contrary to another hypothesis that fertilization had
positive effects on NSC, which can be affected by dry-season irrigation [30,69]. In fact,
compared to irrigation treatment, the increase of canopy biomass under fertilization diluted
the effects of dry-season irrigation to a great extent.

On the whole, fertilization and dry-season irrigation had little effect on NSC con-
centration except stem cambium. Drought stress induced by fertilization and climate in
our study site decreased physiological traits such as photosynthesis and transpiration,
and morphological traits such as leaf area and growth [38,51]. The reaction of NSC is
detrimental to survival under severe drought. However, we currently lack the data of
prolonged and severe droughts to test whether NSC insensitivity is associated with growth
and survival. If so, fast-growing plantations need to strengthen water management under
mid-drought to reduce the risk of severe droughts.

4.3. TSS Concentrations Decreased with Height

Most tissues indicated a decreasing trend of NSC concentration with height, which
was mainly caused by the change of soluble sugar concentration. However, such change
was not significant, except in stem xylem and cambium. There was also a decreased trend
with height for soluble sugar, whereas starch concentration did not vary with height in most
tissues, which is consistent with Smith’s finding [36] but contrary to our hypothesis. The
decreased trend indicates that carbon demand at the top of trees is larger than supply. Due
to the apical dominance [83], upper parts of trees grow faster than other parts, resulting
in a large amount of NSC consumption. In addition, foliar photosynthesis decreased
with height because of enhancing hydraulic limitations [84]. When newly photosynthetic
assimilates could not meet the demand, the NSC in storage organs would be remobilized
to meet the metabolic requirement [15,17,85]. However, the remobilization could damage
the phloem under drought stress. According to the Mücnch model [86], the allocation of
NSC was driven by hydrostatic pressure gradient from source organ to sink organ. Notably,
water movement from xylem to phloem could be limited by the high xylem tensions in
upper xylem and apoplast, which results in increase of the phloem sap concentration and
limit of assimilate transport [31]. The lower soluble sugar concentrations increase the
osmotic potential, which leads to hydraulic limitation and restriction of water influx from
xylem [87,88], and eventually resulting in phloem damage by long-distance transport and
excessive sap concentration [14,31,51]. In the source organ, sugar is loaded into the phloem
in two ways, either energetically against gradient difference with consuming energy or
moving along the gradient difference passively [27]. The decreased trend of TSS with height
helped E. urophylla × E. grandis transport TSS from below to the above. However, because
of few studies of Eucalyptus, it is unclear that the long-distance transport of sugar from
bottom to top results in extreme phloem damage [31,53]. We were surprised to find that
fertilization and dry-season irrigation had little effect on NSC concentrations in horizontal
and vertical direction, which further proved that the strategy of anisohydric species coping
with drought stress is aggressive. Although it is well known that root growth greatly
responds to drought and fertilization [42,43,78], past research has not adequately studied
the NSC distribution underground. In order to realize NSC distribution of the entire tree
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under different growth patterns, further research will need to identify the NSC distribution
in the underground part of Eucalyptus and its response to fertilization and irrigation.

5. Conclusions

In a subtropical zone in southern China with seasonal drought, our results indicated
soluble sugar was the primary existing form of NSC and mainly stored in roots. Through-
out the tree, E. urophylla × E. grandis formed gradient differences from source organ to
sink organ and from bottom to top in aboveground parts, which were not changed by
fertilization and dry-season irrigation. However, the mechanism of how trees form the
gradient differences need further study. Using the isotope label method can make this
carbon-derived dynamic more apparent. There are still many factors affecting carbohydrate
distribution, which directly correlate to nutrient concentration [88] and cyclitol concentra-
tion [67]. Under drought stress, NSC concentration changes without significant differences
in most tissues of E. urophylla × E. grandis, but the TSS concentrations were reduced by
fertilization and dry-season irrigation. The reaction of NSC is detrimental to survival under
severe drought. Eucalyptus can uptake deep groundwater to alleviate drought stress [6].
There may be a gradient difference of NSC concentration in the underground part as
similar with that of the aboveground part, which needs further investigation. In conclusion,
this research helps us better understand the strategy between carbon storage and growth
under seasonal drought, further realizing the spatial pattern of carbon in a fast-growing
tree species.
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