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Abstract: Wildland fires have been a rising problem on the worldwide level, generating ecological 
and economic losses. Specifically, between wildland fire types, uncontrolled fires are critical due to 
the potential damage to the ecosystem and their effects on the soil, and, in the last decade, different 
technologies have been applied to fight them. Selecting a specific technology and Decision Support 
Systems (DSS) is fundamental, since the results and validity of this could drastically oscillate ac-
cording to the different environmental and geographic factors of the terrain to be studied. Given the 
above, a systematic mapping was realized, with the purpose of recognizing the most-used DSS and 
context where they have been applied. One hundred and eighty-three studies were found that used 
different types of DSS to solve problems of detection, prediction, prevention, monitoring, simula-
tion, administration, and access to routes. The concepts key to the type of solution are related to the 
use or development of systems or Information and Communication Technologies (ICT) in the com-
puter science area. Although the use of BA and Big Data has increased in recent years, there are still 
many challenges to face, such as staff training, the friendly environment of DSS, and real-time de-
cision-making. 
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1. Introduction 
Wildland areas tend to be complex environments that cover one-third of the Earth’s 

surface [1]. These locations are affected by various environmental and anthropic factors 
and by fires, which are the most dangerous and destructive due to the speed of their prop-
agation [2]. Approximately 67 million hectares were affected worldwide by wildland fires 
between 2003 and 2012 [3]. At present, despite a century of rapid technological advances, 
losses due to wildland fires continue to increase due to several factors [4]. The most sig-
nificant is climate change, since it is the basis of a world trend in the increase of wildland 
fire activity. Another is the increase in communities on wildlands prone to fires due to 
vulnerable constructions that are poorly prepared for fires. Attempts at fire exclusion in-
stead of land management have brought about ecological changes that are another factor 
to consider. In light of these issues, Finney described the prevention of disasters caused 
by wildland fires and the success in their management more completely as risk reduction 
[4]. 

In addition, the impact caused by a wildland fire can be seen based on the damage 
caused to the ecosystem (flora and fauna) and to all types of organisms existing in the 
affected perimeter, as well as a reduction in the regenerative capacity of the forest itself 
and conservation of the water resource [2]. Destructive and recurring (high-intensity) 
wildland fires are one of the greatest dangers to the viability and sustainable development 
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of wildlands, and they affect the natural and cultural surroundings, the economy, and the 
quality of life of local and regional populations [5]. 

Wildland fires are classified into three categories according to their location and size. 
The first is known as an underground fire, where only the smoke is visible and no type of 
flame can be seen. The second classification is a surface fire, which means that smoke and 
flames are visible. If the second case cannot be controlled, then the third category is 
reached: the crown wildland fire, which is most noteworthy and known for its high flames 
and for engulfing large amounts of forest [6]. On the other hand, in the literature, we can 
also classify the different types of wildland fires as: prescribed or controlled and uncon-
trolled, which tend to grow indefinitely [7]. To act appropriately on a wildland fire and 
reduce the risk, one must be aware of the situation and know as many details as possible 
in order to make decisions. Situational awareness becomes a critical factor in any activity 
where the complexity negatively affects decision-making [8]. 

To support the decision-making, global predictions have been generated in specific 
areas through monitoring. This can be done using different technologies, such as satellite 
images, IoT, sensor networks, and many others [9]. Generating accurate predictions and 
monitoring fires and/or the biophysical variables involved becomes a key factor for scien-
tists and authorities to estimate the economic and environmental consequences of the dis-
aster, in addition to using these events as key data to avoid future fires [10]. However, the 
great heterogeneity of the information and the wide variety of technologies can be coun-
ter-productive, since depending on the land, environmental factors, sensors or satellites, 
the estimations, and results can vary drastically [10]. Hence, it becomes relevant to accu-
rately select the tools and technologies to be applied in the development of the Decision 
Support Systems (DSS) used in management. Not considering the foregoing can generate 
an enormous cost in resources, not only in economic terms but also in the response time 
in combatting wildland fires [11]. The origin of DSS is the integration of two main research 
streams, the theoretical study of organizational decision-making (integrates intelligence, 
design, and choice) and interactive computer systems [12]. Since some years, DSS has in-
corporated other disciplines, such as artificial intelligence, operations research, organiza-
tional studies, and management information systems. On the other hand, these systems 
incorporate activities such as the acquisition of information relevant to the problem that 
needs a decision and action; the analysis of all the data to develop intelligent recommen-
dations; the determination of the appropriate actions to achieve the objectives and solve 
problems; and the creation of a permanent record of acquisition, analysis, and application 
of information [13]. 

From here, the need arises to know the DSS for the existing wildland fire manage-
ment so as to understand the different tools and technologies used in the different geo-
graphic areas and topographies around the world. To this end, the methodology of sys-
tematic mapping proposed by Petersen [14] was applied, based on the systematic review 
work proposed by Kitchenham [15]. The author adapted the methodology from the med-
ical research sector for use in Information and Communication Technologies (ICT). The 
aim of the study is to present, through a general view of the DSS used to combat wildland 
fires, the different technologies used, the spheres where these systems are deployed, and 
the kinds of problems they solve. The key concepts related to the problem are relevant to 
the study if they are related to wildland fires. On the other hand, the concepts key to the 
type of solution must be related to the use or development of systems or ICT in the com-
puter science area. Those documents that met both conditions were selected. We are aware 
that several papers that contain an important contribution to support decision-making 
were not selected, because they did not include a description of the system used. 

The document will be structured as follows: Section 2 will present the background of 
the studies. Section 3 will present the research methodology and will detail the steps to be 
applied. Section 4 will detail the activities performed during the systematic mapping and 
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its results. In Section 5, a discussion is presented regarding the most noteworthy contri-
butions to the literature. Section 6 presents the limitations of this study. Finally, Section 7 
contains the conclusions. 

2. Background 
2.1. Decision Support Systems and Wildland Fires 

DSS are the area of the discipline of information systems (IS) that concentrates on 
supporting and improving managerial decision-making [16]. Given the research available 
on DSS, various definitions have been provided by scholars to present the differing per-
spectives on DSS [17]. According to Trianni et al. [18], DSS involves computer systems 
that address issues that could be a combination of structured and unstructured compo-
nents. Romiszowski presented DSS as involving decision problems that were continuous 
and had programmed and unprogrammed components [19]. Samuel et al. [20] provided 
another perspective and presented DSS as how computers are involved in the decision-
making processes as part of an overall system for organizations. The purpose of the de-
velopment of a DSS is an attempt to improve the effectiveness of the decision-maker. In a 
real sense, DSS is a philosophy of information systems development and use and not a 
technology [21]. 

The origin of DSS dates back to previous works in two main research streams: the 
theoretical study of organizational decision-making that integrates three phases: intelli-
gence, design, and choice and interactive computer systems [12]. However, the study of 
decision-making and DSS has evolved, incorporating other disciplines such as artificial 
intelligence, operations research, organizational studies, and management information 
systems that have added richness and complexity to DSS research. 

In terms of contemporary professional practice, DSS includes support systems for 
personal decision-making (PDSS), negotiation support systems (NSS) [16], group support 
systems (GSS) [22], executive information systems (EIS), online analytical processing sys-
tems (OLAP) [23], intelligent decision support systems (IDSS) [24], business intelligence 
(BI) [25], and business analytics (BA) [21]. According to Arnott, each of these “DSS types” 
represents a different philosophy of support, system scale, level of investment, and po-
tential organizational impact [21]. On the other hand, they can use quite different technol-
ogies and can support different management groups. Figure 1 broadens Arnott’s analysis, 
including Big Data as a new type of DSS, since it combines BA with IDSS. The figure shows 
the evolution of DSS through partially connected subfields. 

PDSS are small-scale systems normally developed for a manager, or a small number 
of independent managers, usually to manage a decision task that is made individually. A 
GSS consists of a set of software, hardware, language components, and software that sup-
ports a group of people who participate in a decision-making meeting [22]. In this case, 
the responsibility for the decision is shared by several managers. 

NSS also operate in a group context, but as the name indicates, they involve the ap-
plication of IT to facilitate the negotiations [16]. Two approaches arose, the first being 
problem-oriented and the second process-oriented [21]. 

AI techniques have been applied to support decisions, and these systems are nor-
mally called intelligent DSS or IDSS, although the term knowledge-based DSS has been 
used [24]. IDSS can be classified into two generations: the first involves the use of rule-
based expert systems, and the second generation uses neuronal networks, genetic algo-
rithms, and fuzzy logic. 
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Figure 1. Evolution of DSS through partially connected subfields [21]. 

On the other hand, a data warehouse is a multidimensional set of databases created 
to provide information on management indicators for decision-makers [23]. These sys-
tems provide processed data to support user-centered decision-making through PDSS, 
EIS, and OLAP. 

The management of organizational knowledge (OK) has garnered a great deal of at-
tention by executives and academics since the beginning of the 1990s. The action of organ-
izations to manage what they consider knowledge is vital in their ability to increase inno-
vation and the competitive edge and to support decision-making [21]. OK affects the en-
tire organization and involves the management of several areas that include IT, organiza-
tional behavior, organizational structure, economics, and organizational strategy. 

Analytics, BA, and BI are often used interchangeably in the business literature, and 
they convert data into useful information [25]. However, they differ in the purpose and 
methodologies used. BA sequentially applies a combination of descriptive (what is hap-
pening); predictive (why something is happening, what new trends may exist, and what 
will happen next); diagnostic (why it happened); and prescriptive (what is the best course 
for the future) analytics to generate new, unique, and valuable information that creates an 
improvement in the measurable commercial performance. The analyzed data can be ob-
tained from commercial reports, databases, and commercial data stored in the cloud. On 
the other hand, BI concentrates on consultations and the generation of reports and can 
include information sent from a BA approach. BI uses OLAP to display management in-
dicators through charts and pivot tables [23]. 

Big Data emerged as an ecosystem capable of successfully addressing contemporary 
digital challenges [26,27]. Nowadays, Big Data integrates the GIS [28] based on cloud tech-
nology, including wildland fire modeling technologies [29]. This makes it possible to cre-
ate last-generation fire management services. On the other hand, Big Data integrates sev-
eral types of DSS, since its architecture can administer the data of the business together 
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with data from users, social networks, and the data from the fires themselves. This is due 
to the ability to integrate a variety of data [30]. 

The growing concern for subjects such as environmental quality or the sustainability 
of natural resources has led environmental decision-makers to use DSS, because they have 
evolved considerably and are equipped with a variety of tools such as graphs, interactive 
visual modeling, artificial intelligence techniques, fuzzy sets, and genetic algorithms [31]. 
This is due to the need to maintain the environment and global environmental well-being, 
the analysis required due to climate change, and the need to conserve species and biodi-
versity. Yet the management of natural resources due to the economic and recreational 
aspects is also necessary and must be considered by decision-makers. 

The Wildland Fire DSS possesses many attributes that make it uniquely different 
from other decision systems that have been used in wildland fire management. These dif-
ferences, along with implementation swiftness, represent a significant change in fire man-
agement practices [13]. Wildland Fire DSS fully utilizes all aspects of information man-
agement, facilitates the application of the latest science and technology, incorporates the 
most applicable attributes of accepted decision-making models, and modernizes fire man-
agement by advancing the decision-making capability [13]. According to the author, DSS 
should incorporate the following activities: 

Acquisition: the rapid assimilation of all the relevant information for the topic or 
problem that needs a decision and action. 

Analysis: the evaluation of all relevant data and information to develop recommen-
dations to support decision-making. 

Application: the process of making a decision, determining the appropriate actions 
to achieve objectives and solve problems. 

Archive: the creation of a permanent record of the acquisition, analysis, and applica-
tion of information. 

The use of DSS by wildland fire administrators has increased rapidly due to the pos-
sibility of selecting strategies to manage wildland fires, considering both functional and 
economic efficiency. This has reinforced the ability to prevent and suppress wildland fires 
while protecting human life and property. Sakellariou conducted a study to analyze the 
state of the art of the DSS in use [5]. The systems have been classified as: (1) database 
management systems and mathematical/economic algorithms for the spatial optimization 
of fire fighting forces; (2) wildland fire simulators and satellite technology for the imme-
diate detection and prediction of the evolution of wildland fires; and (3) GIS platforms 
that incorporate several tools to manipulate, process, and analyze geographic data and 
develop strategic and operating plans. 

Themistocleous conducted a study that illustrates the contribution of Big Data to 
wildland fire prevention [29]. In this sense, Big Data can integrate all the types of systems 
previously mentioned. From Figure 1, we can see the types of DSS in red, which are those 
that have been used to solve wildland fire problems. Our study considers Big Data an 
important type of DSS in wildland fire administration, promising to be a technology that 
solves the current challenges. 

Another point of view from the studies analyzed is that of Finney, who conducted a 
study on the use of modern wildland fire administration systems in terms of their histor-
ical context, mainly in the US, and analyzed some of the features of the systems and hu-
man culture that affect the potential impact of the innovations and engineering technolo-
gies [4]. 

On the other hand, Chuvieco analyzed various technologies used as support in 
wildland fires. That analysis followed the different categories of fire management: pre-
vention, detection, and post-fire assessment [32]. 

Noble’s study analyzed the adoption of DSS in the US Forest Service. The results 
indicated that fire administrators appreciate many components of DSS but see them 
mainly as a means to document fire management decisions [33]. This is due to several 
problems that must be faced when a wildland fire breaks out, such as the following: (1) it 
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is difficult to communicate with all the members of a work team exactly when required, 
and therefore, the DSS cannot be used with all the information that it provides; (2) de-
pending on the threat level, decisions are made only through conversations and expert 
judgment, not using data from the DSS; and (3) the lack of qualified personnel to use the 
DSS correctly. Noble notes that these factors influence the adequate use of the DSS, caus-
ing a low level of adoption. 

A recent study on the use of technology tools to improve decision-making in wild-
fires at the U.S. Forest Service increased the ability of line officers to communicate their 
decisions more clearly and transparently to their colleagues and partners [34]. The system 
analyzed was Risk Management Assistance (RMA). The study by Schultz et al. revealed 
the complexity of adopting risk management in wildfires and, also, in other similar con-
texts, such as emergency management. The authors concluded that the integration of data-
driven analytics into the risk management process supports decision-making during inci-
dents by providing more operationally relevant information. Some examples of fire anal-
ysis include weather forecasts, safety zones and escape routes, suppression difficulty 
maps, and fire control location probabilities. Incorporating analytics is not a substitute for 
making real-time adjustments based on human judgment, but it can inform more strategic 
response decisions. Infusing risk management into the fire management system has the 
potential to improve decision-making, improve the safety and effectiveness of wildfire 
responses, and usher in a necessary change in wildfire management. 

2.2. Challenges for the Use of DSS in Wildland Fires 
This section describes the challenges of using DSS in wildfires, considering different 

points of view. Some of the authors included challenges for a specific DSS, others in its 
regional context, and others according to the findings found in a review or state-of = the-
art technology. 

Noble carried out a study on the adoption of DSS for wildland fire management in 
the USA [33]. Through interviews with the personnel who worked in different wildland 
fire roles, he found the following challenges that must be considered in the construction 
of DSS. See Table 1. 

Table 1. Challenges for DSS in wildland fires in the USA according to Noble [33]. 

Challenge Description 

Lack of time 

The interviewees explained that the operating pace of the fire frequently exceeds the 
managers’ capacity to make a decision through a DSS. The time required to prepare a 

quality decision through a DSS and that is supported by careful analysis is often under-
estimated compared to the time invested in developing a strategy through dialogue. 

The complexity of the DSS Generally, the interviewees indicated that the DSS are not friendly, so they require full 
training in their correct use. 

Lack of availability of users 
skilled in the use of DSS 

Fire managers perceived that the DSS are more useful at reporting the decision-making 
when there are qualified personnel available to develop a fire management strategy us-

ing the decision-making process. 
The high level of experience 

needed to execute DSS 
One of the main challenges in the use of DSS, as the interviewees described it, was 

bringing together the right people at the right time to make a prompt decision. 

These factors contribute to managers using DSS mainly for documentation instead of 
facilitating informed decision-making on the risks and effects in the field. 

On the other hand, Finney explained that three challenges were evident and others 
according to their own cultures and beliefs. Table 2 describes these challenges. 
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Table 2. Challenges for DSS in wildland fires according to Finney [4]. 

Challenge Description 

Evident 

(1) Acquiring knowledge of the physical science of the fire, (2) developing practical methods and tools to use 
this knowledge and educate the personnel, and (3) benefitting from having specialized knowledge accepted 
within the fire management culture must be appreciated and valued for the purposes of strategic planning 
and implementation 

Culture and beliefs 
(1) All fires are harmful and potential natural disasters, and (2) suppression is necessary, sufficient, and effec-
tive at protecting communities and natural resources. 

Finney explained that belief culture has even greater validity, more than a fact-driven 
analytical system. The author explained that the most challenging feature of wildfire cul-
ture is that it shuns responsibility, except when you can blame yourself for starting a fire. 
There is no responsibility for the individual and collective actions (or inactions) that per-
petuate the disaster cycle (land management, suppression, construction, zoning, etc.), and 
therefore, there is little incentive for any group to avoid continuing to perform their cul-
tural roles [4]. 

Zaimes et al. analyzed the problems faced by six Black Sea countries regarding pro-
tected areas and wildland fires [35]. The authors demonstrated the need to include ICT 
for the suppression of wildland fires and the management of protected areas through ex-
pert surveys. They concluded that there is a growing awareness of the adverse impacts of 
climate change on protected areas and the frequency of wildland fires in the future. Table 
3 summarizes these challenges. 

Table 3. Challenges for DSS in wildland fires in the Black Sea according Zaimes [35]. 

Challenge Description 

implementation of ICT 

ICT allows (1) changes in forest management, (2) better monitoring, (3) 

increased awareness information on the suppression of wildland fires, 

and (4) greater training of personnel to improve the conservation of pro-

tected areas. 

According Martell [36], forest and wildland fires are natural ecosystem processes, but 
fire can and often does pose significant threats to public safety, property, and forest re-
sources. They explained the challenges for fire managers that are charged with the respon-
sibility for achieving an appropriate balance between the beneficial and detrimental im-
pacts of fires. Table 4 summarizes these challenges. 

Table 4. Challenges for DSS in wildland fires according to Martell [36]. 

Challenge Description 

achieving an appropriate balance 
between the beneficial and detri-

mental impacts of fire 

Sound fire management calls for (1) fuel management, (2) fire prevention and detection, (3) the 
suppression of potentially destructive wildfires, and (4) the modified suppression of some 
wildfires, allowing some beneficial wildfires to burn, and the use of prescribed fires to achieve 
ecosystem management objectives. 

how to contain a fire 

Containing a fire is complicated by uncertainty concerning the weather and its impact on fire 
behavior and suppression resource effectiveness. 
(1) The resources used for the initial attack vary by agency, and the determination of which 

resources to dispatch and the order in which they are dispatched to each fire varies by 
agency and by fire. 

(2) Assess the fuel, weather, and topography and its impact on fire behavior and suppression 
crew effectiveness, all the while keeping in mind that wind and other weather variables 
can, and often do, change dramatically. 

safety of the fire crews is para-
mount 

Initial attack operations pose many complex decision-making challenges to the incident com-
mander, who must resolve his or her decisions under uncertainty. 
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Martell explain modern fire management agencies face far more complex decision-
making problems. The development of modern transportation and telecommunications 
systems have supported the creation of national and international collaborative agree-
ments that make it possible for fire mangers to quickly mobilize much larger and more 
costly suppression forces than was ever the case in the past [36]. 

On the other hand, Pacheco et al. explained that wildfire management has been strug-
gling with escalating devastation, expenditures, and complexity [37]. Given the copious 
factors involved and the complexity of their interactions, uncertainty in the outcomes is a 
prominent feature of wildfire management strategies at both the policy and operational 
levels. Therefore, improvements in risk handling and in risk-based decision support tools 
have a key role in addressing these challenges [37]. 

The author explained that a major challenge is the governance of the risk, which in-
cludes risk management, looking at the coordination or reconciliation requirements when 
a variety of actors is present, considering the historical and legal background, guiding 
principles, value systems, and perceptions, as well as organizational imperatives. In this 
context, the role of risk-based decision support is also challenged to be widened and en-
compass these additional aspects [37]. After conducting a literature review, they con-
cluded that the implementation of DSS raises other important challenges, as described in 
Table 5. 

Table 5. Challenges for DSS in wildland fires according to Pacheco et al. [37]. 

Challenge Description 

General Challenges 

(1) The involvement of multiple stakeholders who must be considered in the decision-
making processes, (2) the need for adaptation to local contexts, (3) and the strong 
influence of external pressures and opinion leaders on adoption decisions, (4) and 
how users perceive the system. 

Risk-based analysis 

(1) A risk-based analysis is required for the integration of risk handling and fire man-
agement, in order to improve the prioritization of future efforts to mitigate the 
risks associated with these natural and human caused disturbances. This asks for 
more research in biophysical and social sciences with a dynamic spatiotemporal 
perspective about fire spreading and effects models to fuel treatment effectiveness, 
climate change impacts, and social preferences. 

(2) Is required for the integration of risk handling and fire management, in order to 
improve the prioritization of future efforts to mitigate the risks associated with 
these natural and human-caused disturbances. 

Another challenge to consider is the incorporation of studies of the physicochemical 
properties of the soil to analyze the effects of forest management after a wildland fire [38]. 

Opportunities to change wildfire outcomes, measured as reduced risks for both de-
veloped and ecological values, are primarily achieved through proactive fire management 
rather than emergency response [4]. In this regard, engineering should be encouraged to 
focus on research that increases the knowledge of wildfire behavior, develops modeling 
tools for the application of strategic planning, and then enhances the education and train-
ing of fire professionals: foresters who can design and execute proactive projects and fire 
management strategies. DSS become a crucial tool for these tasks, since they integrate a 
set of valuable data, which allows engineers to observe the data from different perspec-
tives, not only those of the forest fire when it occurs. 
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3. Research Methodology 
The research methodology used is known as systematic mapping, which is designed 

to define processes that can recognize and categorize the results that have been published 
in a certain area [14]. 

The main objective of mapping in itself is to classify; thus, it seeks to identify the main 
focal points of publication. It responds to questions like: What has been done to date in 
area X? An existing limitation is that such studies do not consider the quality of the works 
included. 

Systematic mapping is based on the following stages: (i) define the research objec-
tives, (ii) define the research questions, (iii) establish the search string, (iv) select studies 
and filter studies, (v) classify, (vi) extract data, and a systematic map. Figure 2 presents a 
summary of these stages. 

 
Figure 2. Stages of systematic mapping. 

4. Activities Developed in Systematic Mapping 
4.1. Research Objectives 

The objectives of this research were as follows: 
O1. Identify the studies that explain the use of DSS in wildland fire management. 
O2. Characterize the DSS used in wildland fire management. 
O3. Classify the types of DSS used according to the problems encountered in wildland 
fires. 
O4. Identify the technologies used in the DSS for wildland fire support. 
O5. Identify the type of research used and the study context. 

4.2. Definition of the Research Questions 
The research questions (RQ) were created using the methodology proposed by Kitch-

enham [15] through the PICO technique [39], where the population, intervention, com-
parison, and results are defined. This SLR addresses six research questions with their mo-
tivations, as shown in Table 6. 
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Table 6. Research questions. 

N Research Question Main Motivation 
Research  

Objectives 

RQ1 
What kind of wildland fire 

problems are solved through a 
DSS? 

DSS have been used to solve various problems in wildfires. 
From different points of view, examples of problems are: 
early detection, prevention, mitigation, risk management, 
analysis of historical data, rescue, and simulations of sce-

narios, among others. 

O1, O3 

RQ2 What types of DSS were used? 
DSS are classified according to Figure 1. Not all types of 
DSS have been used in wildfire management. The most 

used are PDSS, IDSS, EIS, BA, GSS, and Big Data. 
O2 

RQ3 
What type of research was used, 

if it was a case study, experi-
ment, or prototype? 

Understanding the type of contribution is essential to de-
termine the progress in the implementation of the DSS, es-

pecially those recently used, such as BA and Big Data. 
O5 

RQ4 
In what context were these sys-
tems used, if it is in academia or 

in industry (real case)? 

It allows to know the status of adoption of the DSS in the 
management of wildfire. O5 

RQ5 What technologies were used in 
the DSS found? 

It allows to know the technologies used according to the 
type of DSS used and with respect to time. O4 

RQ6 
How has the development of 

the DSS, for the management of 
forest fires, evolved over time? 

It allows to analyze the evolution of the use of DSS in wild-
fire over time. With this, it is possible to discuss trends. O1 

4.3. Search String 
The strategy used for the search was to use Boolean expressions, formed by the fol-

lowing keywords: “System”, “Forest fire”, and “Wildland Fire”. The term “system” is 
used due to the definition of DSS according to Liu [12], since it integrates the theoretical 
study of organizational decision-making and interactive computer systems. In addition, 
year of publication was added as a condition to avoid out-of-date computer science sys-
tems or publications of systems not related to the computer science area. All this was dis-
aggregated through the OR and AND Boolean expressions. The data sources used to test 
various search strings were Scopus and Google Scholar. Once the relevant string was se-
lected (see Table 3), a search process was carried out in the sources Scopus, WoS, IEEEx-
plore, ACM, MDPI, Springer, and Elservier, finding 22,200 documents, respectively. 

The search string in Table 7 was applied to Titles, Abstracts, and Keywords in all the 
sources mentioned. 

Table 7. Search string. 

Sources Search String Item 
IEEEXplore, ACM, MDPI, 

Elsevier Springer Link, 
WoS, and Scopus 

“system” AND (“Forest fire” OR 
“Wildland fire”) 

Titles, Abstract, Key-
words 

4.4. Screening of Relevant Papers 
None of the papers were precisely relevant to the research questions. Therefore, these 

papers needed to be assessed according to the actual relevance. For this purpose, we used 
the search process defined by Dybå and Dingsøyr [40] for a screening of relevant papers. 
In the first screening phase, papers were selected based on their titles, and we excluded 
those studies that were irrelevant to the research area. In the second screening, we read 
the abstract of each paper selected in the first screening phase. Furthermore, inclusion and 
exclusion criteria were also used to screen the papers. 
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We excluded the following types of papers: 
• Articles not published in the English language. 
• Articles published other than conferences, journals, and technical reports. 
• Articles published before 2010. 
• Articles that did not include the use of DSS for support in wildland fires. 
• Incomplete articles or that did not resolve a problem. 
• Papers that were not relevant to the search string. 

Papers were selected based on the given exclusion criteria, and after examining the 
abstracts of the selected studies, we decided to include them in the next screening phase. 

4.5. Keywording Using the Abstract 
To find the relevant papers through keywording using the abstracts, we used a pro-

cess defined by Petersen et al. [14]. Keywording was done in two phases. First, we exam-
ined the abstract and identified the concepts and keywords that reflected the contributions 
of the studies. Concepts related to the problems to be solved and the types of solutions 
developed were found. The concepts related to the problems were relevant to the study if 
they were related to wildland fires. On the other hand, the concepts related to the types 
of solutions must be related to the use or development of systems or ICT. Those docu-
ments that met both conditions were selected. 

In the second phase, the results and conclusions sections were reviewed. These sec-
tions provide information on the results obtained with the support of the system or ICT 
used to solve a problem in wildland fires. Special care was taken to select the documents 
that presented a clear solution to improve decision-making. 

Various work meetings were held in order to achieve a correct selection of relevant 
documents. In the meetings, each researcher and assistant showed the results of the re-
view of the abstracts and the results and conclusions. This allowed the resolving of doubts. 

4.6. Study Selection Process 
Figure 3 shows the results of the selection and search processes. Initially, 22,200 arti-

cles were selected when the search protocol was applied in the selected repositories. The 
selection process was applied based on the inclusion and exclusion criteria, keywords, 
titles, abstracts, and full articles of the retrieved articles. Three researchers selected papers 
based on searching through the designed search string. Then, the same research applied 
the selection criteria based on the title of the paper, obtaining a set of 3851 papers. Relevant 
titles were those that included the following key concepts: forest, fire, forest fire, wildland 
fire, wildfire, system, and DSS. 

Eliminating duplicate papers, a new set of 2745 papers was obtained. 
We analyzed the abstracts of each paper, selecting those that showed the use of DSS 

in wildland fires. We considered the characteristics described by Zimmerman [13] to de-
termine if the papers described a DSS. Some of these features were based on the following 
components: acquisition, analysis, application, and archival. On the other hand, the au-
thor explained that the DSS have a constant flow of data; since they are acquired from 
various data sources, they are quickly processed to be analyzed and, finally, visualized at 
the right moment for decision-making. 

A Cohen’s kappa coefficient of 0.92 was used to determine an acceptable level of 
agreement between the authors [41]. For this, 20 papers were selected at random, which 
were reviewed by the researchers. Each paper was marked with the categories YES, NO, 
or DOUBT. This process was repeated several times until an index greater than 0.9 was 
obtained. When there was DOUBT, the abstract was analyzed as a team. Furthermore, 
after reading the full abstracts of the 2745 articles selected in the duplication phase, we 
selected 1470 papers based on their abstracts. 
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After reading the results and conclusions sections, we selected 183 pertinent papers 
that contained the necessary data to answer the research questions. The full paper was 
read only when necessary, as some documents did not include a results section. 

 
Figure 3. Papers selection process. 

4.7. Data Extraction Method 
The data extraction strategy was applied to provide a set of possible answers to the 

research questions defined. 
The following classifications were considered on the basis of the RQ designed: 

(i) Types of problems: These are classified according to the problem of wildland fire 
management that they solve. The most noteworthy problems include the divergence 
between the beginning of the fire and the detection, which, in this work, will be men-
tioned as a detection issue. Other types will be the monitoring of sectors with a po-
tential fire hazard, the management of a fire that already is active, the prediction of 
future fires, the simulation of fire behavior, the prevention of how fires are generated, 
and the generation of access routes. 

(ii) Types of DSS: These are classified according to the DSS presented in Figure 1. In the 
area of wildland fires, we found PDSS, IDSS, EIS, GSS, BA, and Big Data. 

(iii) Types of research: The possible classifications are case study, experiment, or proto-
type. Case study corresponds to the process of focusing on a single case from a group 
or defined place; therefore, its results are inherent and exclusive to that group or 
place. An experiment corresponds to a procedure in which the goal is to make a dis-
covery, prove a hypothesis, or verify a known fact. A prototype is a first product or 
proof of concept. 

(iv) Context in which it is used: This is the developed context of the study, either in aca-
demia or industry (real case). The academia context is considered when the work is 
carried out within a research center, institute, university, or other. The industry con-
text is used when the work was carried out in an organization, company, or business. 
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(v) Technologies used: These are all the technologies mentioned in the studies analyzed. 
Several technologies were used for the data intake, processing, analysis, and visuali-
zation of the results. 

Figure 4 presents the classification scheme. 

 
Figure 4. Classification scheme. 

4.8. Selection of Results 
To answer our research questions, we brought together 183 primary studies in this 

section. After analyzing the studies selected, we tried to answer each question with the 
information extracted. Table A1 presents the list of articles, the dissemination channel, the 
year of publication, and the number of citations. This makes it possible to obtain data from 
the main dissemination channels in this area of study. 

4.9. Results of Systematic Mapping 
In this section the designed RQ are answered. A discussion of the most relevant as-

pects also occurs. 
Figure 5 presents the Systematic Map obtained. The bubble graph represents the 

number of studies found according to the classification. Thus, for example, it was found 
that 36 studies solved problems of monitoring through PDSS. On the other hand, 13 stud-
ies explained the use of EIS to solve management problems. The figure shows that, in 2014 
and 2015, the number of studies in this area decreased. However, in recent years, it has 
increased considerably. 
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Figure 5. Systematic map. 

4.10. Response to Research Questions (RQ) 
In this section, the RQ designed in the first stage are answered. 
RQ1. What kind of wildland fire problems are solved through a DSS? 
Management problems were found in the abstract of the paper or in the introduction, 

and 26.57% of the papers presented predictions as a problem to be solved. On the other 
hand, 28.02% presented a need for detection and 22.22% for monitoring. This is consistent 
with the comment by Saoudi on the constant need for organizations in charge of fire-
fighting to generate early detection [42]. It follows that the longer the time from its gener-
ation to its detection, the more difficult it is to control and fight it. The kinds of problems 
remaining focus mainly on management (8.7%) and the need for a simulation (5.8%) of 
the behavior based on different environmental factors. In addition, there was the need for 
prevention (7.73%) and the generation of access routes for the firefighters or organizations 
in charge of the rescue (0.97%). Figure 6 presents a graph of the number of studies found 
versus the problem to be solved. 

It should be noted that other aspects and solutions to these problems are mentioned 
in the development of the papers that have not been considered in this study. 
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Figure 6. Number of studies found versus the problem to be solved. 

RQ2. What types of DSS were used? 
It was found that 5.46% of the works analyzed indicated the use of IDSS, 56.83% used 

PDSS, which included the use of GIS, 8.2% used BA, and finally, 5.46% used Big Data 
systems. Figure 7 summarizes these quantities. Table 8 presents the articles selected ac-
cording to the type of DSS used. 

 
Figure 7. Number of studies by type of DSS. 
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Table 8. Classification of articles by DSS type. 

DSS Type References 
PDSS [2,8–11,42–140] 
EIS [10,49,67,93,94,111,112,118,126,141–173] 

IDSS [89,98,99,173–179] 
GSS [111,158] 
BA [77,86,90,149,172,180–189] 

Big Data [29,45,145,181,190–195] 

It was observed that the most widely used type of DSS continued to be the traditional 
PDSS (including GIS). Despite technological advances, with the application of AI and Big 
Data, there is low use of these in the field of forest fires. In this sense, the authors Noble 
[33] and Finney [4] were right to discover that the practical use of DSS contemplates sev-
eral challenges that have not yet been solved, such as ease of use and the way in which 
information is delivered to the different roles when facing a forest fire. On the other hand, 
the lack of qualified personnel implies little use for forest fire management. 

RQ3. What type of research was used, if it is a case study, experiment, or something else? 
Figure 8 shows that 36.3% of the analyzed works used a prototype as a solution to 

the problems detected. It can also be seen that the distribution was relatively equitable 
between the two remaining: case study (37.5%) and experiment (26.3%). 

 
Figure 8. Types of research used. 

RQ4. What context were these DSS used in: academia or industry (real cases)? 
The majority (63.75%) of the papers come from academia, and the remaining (36.25%) 

from industry. This indicates that the research processes are developing, and technologies 
are constantly being tested that can more effectively support the management of wildland 
fires. This is beneficial from the point of view of continuous improvement. 

RQ5. What technologies were used in the systems found? 
Figure 9 presents a word cloud according to the technologies mentioned in the 183 

studies analyzed. Both the wireless sensor networks and WSN tools were the most men-
tioned and outstanding. On the other hand, the use of cameras, GPS, IoT, GPRS, and Sat-
ellite Images was observed. The use of Cloud Computing and unstructured databases 
such as Hadoop is not yet massive. 
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Figure 9. Word cloud of the technologies. 

Table 9 presents a summary of the main technologies used according to the papers’ 
years of publication. It is observed that sensors and images have been used since 2010, 
which generate data to be processed by GIS. This data processing is usually slow due to 
the lack of smart technologies, and others that can work with a large volume of data. 
Cloud use is observed as an opportunity, since they are adequate services for the pro-
cessing of a large volume of unstructured data at high speed. On the other hand, machine 
learning enables the development of smart systems to create predictions and self-learning. 

Table 9. Technologies most frequently used between the periods of the defined years. 

Years Technologies 

2018–2020 Cloud Computing, Machine Learning, Neural Networks, Sensors, Data Mining, real 3D image, Fuzzy 
Inference System, Big Data Tool 

2016 and 2017 WSN, UAV, Satellite Images, aerial vehicles 
2013–2015 ArcGIS, Sensores, Zigbee, MATLAB, MODIS 

2011 and 2012 Sensors, Satellite Images, GPS, MODIS, Cámaras, GIS Tool 
2010 Sensors, Satellite Images, GIS Tool 

RQ6. How has the development of DSS evolved over time? 
Figure 5 illustrates the constant presence of PDSS use (56.83%) and EIS (22.95%). On 

the other hand, it was observed that few studies were published in the period between 
2014 and 2015. Although BA has been in use since 2011, only proposals were observed, 
unlike in recent years, in which it has been used for data analysis problem-solving and 
decision-making in the field. Big Data, on the other hand, has been used since 2016 as a 
solution for the analysis of unstructured data (data from experts). Only one paper was 
found in 2011 that proposed the use of Big Data for forest fire management. 

It is worthy to note that there is a paucity of prediction systems employing complex 
algorithms, with a low number of publications between 2011 and 2015. This may be due 
to the small quantity and quality of the data used from the data sources, as is the case with 
sensors and images (see Figure 10). 
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Figure 10. Studies per year. 

It should be emphasized that, among the cited technologies of every era, sensors are 
a type of technology that is always present in a large number of the studies. This is due to 
its optimal application for recording environmental data. In recent years, technologies re-
lated to large amounts of data have also appeared, such as neural networks, machine 
learning, and the cloud, which is consistent with the need to produce predictive algo-
rithms but in a more complex form, with algorithms and “smart” systems. In this sense, 
Big Data is a type of DSS that can integrate these technologies, fulfilling an important role 
in managing the wildland fire risk. 

5. Discussion 
This section examines the relevant aspects of the DSS types found. For this, the anal-

ysis included the most-cited studies (more than 30 citations), where the impacts and con-
tributions stood out. On the other hand, studies published in recent years were included 
in order to search for technological advances, problems, challenges, and opportunities. 

In the study by Calkin et al. [161], what stood out as the main feature of the DSS used 
was the generation of combat strategies prior to wildland fires. The use of behavior mod-
els, geospatial analysis, datasets generated through biological sensors, and climatological 
prediction helped improve the problem of decision-making under a large number of ex-
ternal factors that altered the initial combat conditions. 

Two works focused on another type of problem, making reference to the provision 
of a real 3D image of a fire, facilitating its access. This aspect helps improve the decision-
making regarding the follow-up and mitigation of a fire. The article by Rossi et al. [164] 
used a prototype of static cameras in a controlled environment, so stereovision images 
could be taken. These generated more reliable information to predict the behavior of the 
fire. On the other hand, the study by De Ríos et al. [118] used a system with static cameras 
and unmanned aerial vehicles to produce a more feasible image in real time without jeop-
ardizing the people or equipment when mounting a static system near a real fire. The 
work by De Ríos was significant, because it created safety for the extraction of images. 

Unlike the previous studies, Petropoulos et al. [10] compared two types of GIS, one 
combining neural networks with a satellite image analyzer and a spectral angle mapping 
system to improve the information for decision-making. The analysis performed on the 
topographies, vegetation, and soil conditions stands out for producing highly varied re-
sults according to the technology used. The authors used combinations of technologies to 
obtain more concrete results. 
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In Bianchini et al. [188], a DSS with high calculating power was used to generate re-
sults. On the other hand, Denham et al. [183] used a new genetic algorithm to improve on 
Bianchini’s results. As a result, they achieved a significant improvement in wildland fire 
detection time, which is why the impact can be seen directly. In the same area of predic-
tion, Iliadis et al. [89] are conspicuous for being the only study that used risk analysis 
models through dynamic algebra, being able to predict the behavior of a fire based on 
previous knowledge. This had a tremendous impact on Greek fire departments, where 
their estimations predicted 35–40% of the area to be affected by wildland fires. This may 
seem small, but knowing 40% of the zones affected by wildland fires beforehand can be a 
breakthrough in taking preventive measures for those areas. 

The work by Soliman et al. [82] stands out, because it combined sensor networks and 
neural networks in order to generate a DSS that can detect a wildland fire even earlier. 
Through a neural network, a DSS makes it possible to detect fires in under 20 s. The au-
thors reported that the system gets it right in 98% of cases, which can have a tremendous 
impact on fighting fires. 

On the other hand, Almeida et al. [131] developed a commercial system called 
Bee2Fire, which allows the detection of forest fires. The system scans the landscape using 
regular cameras and deep artificial neural networks. Bee2Fire searches for plumes of 
smoke above the horizon with an image classification approach. Once these networks 
were trained, the system was deployed in the field, obtaining a sensitivity score of be-
tween 74% and 93%, a specificity of more than 99%, and an accuracy of around 82%. 

Peng et al. [132] studied a computer vision-based forest fire early warning imaging 
system. First, a close-up detection of moving targets was performed. A mixed Gaussian 
model algorithm was then used to determine if there were moving objects in the video. 
The flames were then tracked and identified on video. Next, it was determined whether 
it was a flame. The purpose is to draw its outline and give an alarm to the supervisory 
office when the result is a fire. This early warning system waits for the appropriate per-
sonnel to take care of it. 

Budiyanto et al. [140] created a forest fire monitoring system for a wide area of fire-
prone areas using a WSN (Wireless Sensor Network). The study also used the FIS (Fuzzy 
Inference System) method as a decision-making method with mathematical calculations 
that can improve the precision in the fire detection system so that the output of this 
method is the level of the fire status. The IoT is also used so that information can be re-
ceived by users in real time through the Internet network. Based on test results on the 
designed system, Sugeno’s Fuzzy Inference System (FIS) calculations on SN1 and SN2 are 
100% accurate compared to manual calculations. 

Athanasis et al. [190] presented a cutting-edge approach to improving decision sup-
port tools for natural disaster management with information from the social network 
Twitter. The novelty of the approach lies in the integration of GIS modeling outputs with 
real-time information from Twitter. A first prototype was implemented that integrated 
georeferenced Twitter messages in a web GIS for forest fire risk management and earth-
quake monitoring in real time. Following a highly scalable architecture that was based on 
Big Data components, the proposed methodology could be applied in different geograph-
ical areas, different types of social networks, and a variety of natural disasters. 

Another study of note was that of Lin et al. [181], because it used a mixture of wireless 
sensor networks, dynamic inference systems, and Big Data with the purpose of generating 
accurate fire predictions through risk indices. These different technologies were applied 
due to the number of factors that can influence the chance of a wildland fire in a study 
area, from humidity and wind speed to population density and time of year. The authors 
mentioned that, at festive times and during the day, the risk was much greater than at 
night or during normal work schedules. Although their experiment was applied and it 
produced results according to expectations, they also remarked that the area of prediction 
was one of the most complex [181]. 
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Sayad et al. [194] combined Big Data, Remote Sensing, and Data Mining algorithms 
(Artificial Neural Networks and SVM) to process the data collected from satellite images 
in large areas and extracted ideas from them to predict the occurrence of forest fires and 
prevent these disasters. To do this, they implemented a dataset based on Remote Sensing 
data related to the status of crops (NDVI) and meteorological conditions (LST), as well as 
a fire indicator “Thermal Anomalies”; these data were acquired from “MODIS”(Moderate 
Resolution Imaging Spectroradiometer), a key instrument aboard the Terra and Aqua sat-
ellites. The experiments were carried out using the Big Data platform “Databricks”. The 
experimental results offered a high prediction precision (98.32%). 

Finally, the study of Bielski et al. [145] stands out, because it worked with Big Data 
technology to manage fires in a more general sphere, from educating the population to 
providing monitoring systems to distributing information in a timely manner when a fire 
occurred. The authors used information from multiple sources, obtaining climatological 
data, and from social networks. Once the data with which a fire is detected has been pro-
cessed, the system generates information for decision-making. The system provides sup-
port with information relevant to the citizenry or inhabitants of the affected sector so as 
to avoid human losses. The greatest impact is ensuring the protection of human life. Biel-
ski’s work solved the challenges identified by Finney, since the DSS makes it possible to 
manage the risk more than simply preventing, monitoring, or reporting on a certain 
wildland fire. 

In this discussion, we analyze the main technologies recently used in DSS systems 
for wildland fire management. State-of-the-art solutions are presented that combine vari-
ous recent technologies, such as Big Data, Remote Sensing, AI, 3D image, and photo pro-
cessing, as well as Cloud Computing and data from Social Networks. These solutions can 
produce real changes in forest fire management if we consider the aspects mentioned by 
Noble and Finney: friendly systems, staff training, and data analyzed in real time, among 
others. 

Figure 11 represents the relationships that exist between the problems encountered 
when facing a forest fire versus the types of DSS used so far. 

 
Figure 11. Relationship between the problems encountered and the use of DSS. 
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6. Limitations of the Study 
There have been four kinds of threats to validity identified in this section [14]. The 

main limitations of the study are inherent to any research work, given that it is impossible 
to ensure absolute impartiality. 

6.1. Construct Validity 
In Systematic Mapping, threats to construct validity are relevant to the classification 

of selected studies. A search string was performed using IEEE Xplore, ACM, Science Di-
rect, Springer, Elsevier, MDPI, WoS, and Scopus. Based on the search engine statistics, we 
found most of the research papers related to DSS and wildland fires. To mitigate the risk 
of losing essential and related publications, we searched the related articles from state-of-
the-art reports and surveys. 

The search string used is an important bias, since there are keywords that were not 
considered in order to obtain the largest possible set of studies. The string “system” AND 
(“Forest fire” OR “Wildland fire”) was the one that yielded the largest number of studies 
to review. Examples of words not considered are wildfire, fire, “decision support”, soft-
ware, and application, because, by including them, the search engine reduced the number 
of documents to be reviewed, leaving out possible important studies. 

Some papers that were not mentioned in this study, and that can be found using the 
wildfire AND system string, are references [196–198]. 

From the definition of the inclusion and exclusion criteria, leaving aside technical 
reports and works in languages other than English, it is possible that some studies in other 
languages were relevant or observed points that the selected ones did not. On the other 
hand, it is possible that papers from countries that are recognized in the field of wildland 
fires were not included. Figure 12 shows a map with the papers selected by country. 

 
Figure 12. Papers selected by country. 

  



Forests 2021, 12, 943 22 of 41 
 

 

6.2. Internal Validity 
This type of validity handles the extraction data analysis process, in which three au-

thors identified the classification of the selected articles and the data extraction process 
while one author reviewed the results. The subjectivity when applying the aforemen-
tioned criteria for the selection of the studies was already applied by three reviewers. In 
order to minimize this bias, Cohen’s kappa index was used [41], obtaining a value of 0.92, 
which is acceptable. 

Another inherent bias is the initial filtering method. By only reviewing the titles and 
abstracts, the possibility remains that some of the discarded studies contained important 
information to answer the research questions. 

6.3. External Validity 
External validity is related to the generalizability of this study. The results of the sys-

tematic mapping were considered concerning the domain of Systems in Wildland Fires, 
and the validity of the results presented in this document referred only to the domain of 
DSS. The classification of the articles and the search string presented in this research can 
help professionals as a starting point for wildland fire research and the use of DSS. 

6.4. Conclusion Validity 
The threat of the validity of the conclusion is related to the identification of inappro-

priate relationships that can generate an incorrect conclusion. In the mapping study, a 
conclusion validity threat referred to the different elements, such as incorrect data extrac-
tion and missing studies. To lessen this threat, the data extraction and selection process 
were clearly defined in the previous paragraph on internal validity. Traceability between 
the extracted data and the conclusion was strengthened through the direct generation of 
frequency diagrams and bubble diagrams generated from the data collected through the 
application of a statistical analysis. 

7. Conclusions 
This paper presented a systematic mapping of studies on DSS for wildland fire man-

agement to obtain an overall view of the solutions presented by industry and the scientific 
community. 

For this, a set of six research questions was designed, which were answered using 
different classifications from the selected works by type of problem addressed, the type 
of DSS used, the main technologies used, the type of contribution, and the context. 

The studies described the use, development, and impact of DSS to solve these prob-
lems. One of the most important factors of those found was the need to apply correct 
technologies to suitable lands, since changes in the climatic or geographic factors can 
make it a more useful tool than in other situations, as well as the utility of the data and 
their correct management for these tools. In addition, within the studies themselves, the 
need for tools that generated responses in appropriate timeframes stood out, since it is 
one of the scarcest variables in combatting wildland fires. 

There is a trend in the use of Big Data for the management of wildland fire risk, since 
this can provide systems with monitoring, prevention, and the management necessary to 
distribute information in a timely manner. We found 10 studies published in recent years 
that indicated the use of different data sources, such as climatological data, sensors, satel-
lite images, data from social networks, photographs, and expert data. On the other hand, 
Machine Learning techniques have been incorporated to achieve systems that adapt to the 
context of the fire, pre-activating the use of alarms and schemes that represent the real 
situation of forest fires. 

Big Data delivers relevant information to the citizenry or to the inhabitants of the 
affected sector to avoid human losses. Despite these advances, there are still many prob-
lems and challenges to be solved. More user-friendly systems are required for the use of 
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all types of users in forest fires, greater training in the use and analysis of data, visualiza-
tion systems that can be used in the field, providing relevant information for the equip-
ment, and the integration of the DSS. 
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Appendix A 

Table A1. Selected Papers. 

Reference Title Authors P. Channel Year Citations 
[178] 3D Fire Front Reconstruction in UAV-Based Forest-Fire Monitoring System Sherstjuk V, Zharikova M, … IEEEXplore 2020  

[127] 
A Novel Forest Fire Detection System Using Fuzzy Entropy Optimized Threshold-

ing and STN-based CNN Avula SB, Badri SJ, Reddy G  IEEEXplore 2020  

[128] 
A Retrospective on ASPires: An Advanced System for the Prevention and Early De-

tection of Forest Fires Peinl P. ACM 2020  

[129] An IoT-based forest fire detection system Scicluna, D.  IJET 2020  
[130] Architecture of embedded intelligent video analysis system for forest fire prevention Zhang B., Zhang Z.  IOP 2020  

[131] Bee2Fire: A deep learning powered forest fire detection system de Almeida R.V., Crivellaro F., Narciso M., 
Sousa A.I., Vieira P. 

SciTePress 2020  

[132] Design of Forest Fire Warning System Based on Machine Vision Peng J, Zhang H, Wu H, Wei Q  Springer 2020  

[189] Development of an Intelligent System for Predicting the Forest Fire Development 
Based on Convolutional Neural Networks 

Stankevich T.S. Springer 2020  

[133] Early Forest Fire Detection System using Wireless Sensor Network and Deep Learn-
ing 

Benzekri W, Moussati A El, Moussaoui O, 
Berrajaa M  

IJACSA 2020  

[134] Efficient Forest Fire Detection System Based on Data Fusion Applied in Wireless 
Sensor Networks 

Jilbab A, Bourouhou A  IJEEI 2020  

[135] 
Fireanalyst: An effective system for detecting fire geolocation and fire behavior in 

forests using mathematical modeling Güllüce Y., Çelik R.N. TUBITAK 2020  

[136] Forest Fire Detection and Alerting System 
Minu O, Ramsiya M, Thasini A, Narayanan 

KV, Arun K  IEEEXplore 2020  

[137] FOREST FIRE DETECTION SYSTEM USING IOT Khan S., Jain S, MN Anusha, YP Kalyan IJEAST 2020  
[138] Forest Fire Detection System using LoRa Technology  Gaitan NC., P Hojbota IJACSA 2020  
[139] IoT-fog enabled framework for forest fire management system Srividhya S., Sankaranarayanan S. IEEEXplore 2020  

[140] Optimization of Sugeno Fuzzy Logic Based on Wireless Sensor Network in Forest 
Fire Monitoring System 

Budiyanto S., Silalahi LM., FA Silaban, … IEEEXplore 2020  

[45] ‘Portugal Without Fires’, A Data Visualization System to Help Analyze Forest Fire 
Data in Portugal 

Gonçalves D., Lima B., Moura J.M., Ferreira L. Springer 2019  
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[44] Fuzzy-Based Forest Fire Prevention and Detection by Wireless Sensor Networks 
Toledo-Castro J., Santos-González I., Caba-

llero-Gil P., Hernández-Goya C., Rodríguez-
Pérez N., Aguasca-Colomo R. 

Springer 2019  

[143] 
Strategic and tactical planning to improve suppression efforts against large forest 

fires in the Catalonia region of Spain 

Gonzalez-Olabarria J.R., Reynolds K.M., La-
rrañaga A., Garcia-Gonzalo J., Busquets E., Pi-

que M. 
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