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Abstract: Quaternary climate and environment oscillations have profoundly shaped the population
dynamic history and geographic distributions of current plants. However, how the endangered and
rare tree species respond to the climatic and environmental fluctuations in the subtropical regions of
China in East Asia still needs elucidation. In this study, we collected 36 natural populations of an
endangered and rare tree species Magnolia sprengeri Pamp. in subtropical China to determine the
demographic history, and modeled the changes of geographic distributions of this species in East
Asia based on the MaxEnt ecological niche analyses. In addition, we sequenced three maternally
inherited chloroplast DNA fragments (matK, trnH-psbA, and rbcL) for all the natural populations
which covered the whole geographic distributions of M. sprengeri. Population genetic analysis
showed that the endangered tree species have a low level of chloroplast DNA diversity. However,
the genetic variation contribution within populations was greater than that among populations
(FST = 0.276), which demonstrated a high level of genetic differentiation. Interestingly, some unique
chloroplast DNA haplotypes and higher genetic variations were identified in the Qinling-Daba
Mountains, Central China, and Tianmu Mountains of Zhejiang province, East of China in East
Asia. Combining with the species distribution modeling, we speculated that these areas might
be the potential glacial refugia for the endangered plant M. sprengeri. Phylogeographic analysis
demonstrated that the geographic factors (e.g., mountains, rivers, and other isolation barriers) had
little effect on the genetic divergence among populations. Ecological niche modeling further revealed
that the natural populations of M. sprengeri did not experience significant geographic distribution
changes from the last glacial maximum to the present time. These findings are in line with the
analysis results of the multimodal mismatch patterns of the chloroplast DNA variations. To protect
the endangered species M. sprengeri, in situ and ex situ conservation strategies should be formulated
for the natural populations with higher genetic variations.

Keywords: chloroplast DNA; genetic variation; M. sprengeri; glacial refuge; species distribution

1. Introduction

During the Quaternary periods, the global climate experienced repeated cycles of
glacial and interglacial stages [1], which lead to the changes of geographic distributions
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and genetic structures of most organisms [2]. Some studies revealed that most plant species
survived in the glacial refugia under the unfavorable Pleistocene glacial conditions and
became the sources of post-glacial recolonization processes, which has been generally
accepted in biogeography [3,4]. In addition, it is generally assumed that the isolations
between biological refugees lead to the formation of new species or subspecies, especially
those with a weak migratory capacity [5]. A recent study suggested that cold-tolerant
trees in Europe had to keep a relatively stable population size in the distribution areas
during the last glacial period [6]. In addition, some potential glacial refugia for forest
trees in East Asia were identified based on maternally inherited chloroplast DNA (cpDNA)
markers [7,8]. Additionally, the studies of the Quaternary glacial age’s influence on the
genetic structure and geographical distribution of current biological populations are closely
related to the origin, diffusion, and conservation of species diversity [9–12]. In conjunction
with coalescent models of population genetic structure, these studies may improve our
understanding of the factors that promote population divergence and ultimately form the
regional patterns of biodiversity [13].

As one of the main distribution areas of endemic species in East Asia, ranging between
the Qinling Mountains–Huai River line (at ca. 34◦ N) and the tropical south (≤22◦ N),
subtropical China is characterized by a complex topography (warm-temperate evergreen
forests interspersed with warm-temperate deciduous forests), and this area is particularly
rich in ancient species lineages such as Abies, Cathaya, Davidia, Podocarpus, Quercus, Tsuga,
etc. [14,15]. Compared to regions of similar latitude in Europe and North America, sub-
tropical China in East Asia has a relatively mild monsoon climate and was relatively less
affected by the Quaternary glacial-interglacial cycles because it has never been covered by
ice sheets [16]. Therefore, these areas have great potential to become effective sanctuaries
for plants during the ice age, and the relatively stable habitats in this area enable the
persistence of endemic species [17].

However, compared with the numerous studies on European and North American
plants, investigations on population dynamic history responding to climatic oscillations
across subtropical China in East Asia are surprisingly limited. Despite the importance of
this region, the global center of diversity, evolution, and speciation, most studies to date
have been conducted on endangered species with a narrow range of distribution [18]. A
previous phylogeographic study of Sapindaceae species using cpDNA markers detected
significant phylogeographic structure and evidence of multiple glacial refugia across
most of the current distribution areas in subtropical China [19]. A geographical study
of Sargentodoxa cuneata (Oliv.) Rehd. et Wils found that this species has a strong range
expansion signal in subtropical China over the Pleistocene period. Some other studies
speculated that most of the temperate plants in China may conform to the expansion–
contraction model to some extent [20]. Although the number of phylogeographic studies on
plants in subtropical China has increased rapidly in recent years (e.g., Cerasus serrulata [21],
Quercus variabilis [22], Fagus engleriana [23]). However, there are still some longevous tree
species for which the population dynamic history needs to be supplemented in the study
of complex systematic geographical structure.

In the current study, we focused on Magnolia sprengeri Pamp., a long-lived medium-
sized deciduous tree belonging to the family Magnoliaceae [24]. This species is endemic
to China, currently distributed in subtropical China in East Asia, growing in evergreen
broad-leaved forests or shrubs, and karst or sand-shale mountains at altitudes between
1300 and 2400 m [25,26]. In addition, there are disconnected populations of this species
distributed from the East Yungui Plateau to the Qinling-Daba Mountains and the Dabie
Mountains to the east of the North China Plain. With the advantages of rapid growth,
strong adaptability and long life, as well as the gorgeous appearance, colorful, fragrant,
and delicate texture [27], M. sprengeri has become an important tree species for urban
greening [28]. Meanwhile, the buds and bark of M. sprengeri are often used as traditional
Chinese medicine [29]. In addition, it has been listed as a vulnerable endangered species
in the Red List due to humans’ overexploitation [30]. As a rare and endangered species
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sensitive to geological and climate changes, M. sprengeri provides a good model for the
study in plants’ respondence to climate and environmental changes in subtropical China in
East Asia.

Recently, some chloroplast genes were widely used to detect the population history of
Magnoliaceae species [31,32]. For instance, Massoni et al. reconstructed the phylogenetic
relationships of Magnoliaceae with 12 molecular markers including matK and rbcL from
plastid genome [33]. Some other studies used the chloroplast intergenic regions (e.g., psbA-
trnH) to determine the evolutionary relationships of the family Magnoliaceae [34,35]. They
found that these chloroplast DNA fragments (i.e., matK, trnH-psbA and rbcL) can be easily
obtained by PCR amplification and sequencing for Magnoliaceae species [34,35]. In this
study, we investigated the demographic history and the species distribution fluctuations of
M. sprengeri using cpDNA sequence data (matK, trnH-psbA and rbcL) and ecological niche
modeling. The main objectives of this study are: (I) to examine the population dynamic
history of M. sprengeri; (II) to determine the species distribution changes of M. sprengeri
during the different historical periods based on the MaxEnt ecological analyses; and
(III) to provide a scientific basis for the protection and management of the long-lived
endangered species.

2. Materials and Methods
2.1. Field Investigation and Samples Collection

During the field investigations, we sampled 36 natural populations of M. sprengeri,
which covered the whole geographic distributions in subtropical regions of China in East
Asia. However, due to the climatic fluctuations and recent human activities, the samples for
each population were less than merely 87 M. sprengeri individuals were collected from the
eight provinces (Chongqing, Gansu, Guizhou, Hubei, Hunan, Shaanxi, Sichuan, Zhejiang)
in China. Healthy and tender leaves were collected in the field and immediately put into
a sealed bag containing silica gel for drying. At least 100 m interval between individuals
was taken during sampling, and the altitude, longitude, and latitude information of each
sampling site was recorded in detail. The vouchers of all materials and documents were
deposited in the College of Life Sciences, Northwest University, Xi’an, China (Table S1).

2.2. DNA Extraction and Sequencing

Total DNA was extracted using a modified CTAB method [36]. The polymerase
chain reaction (PCR) was used to amplify three maternally inherited cpDNA sequences
(matK, trnH-psbA and rbcL). The amplification reaction was performed in a 20 µL system
comprising 11 µL of 2 × Taq PCR MasterMix (Takara Beijing, Beijing, China), 1 µL of each
primer (Sangon Biotech, Shanghai, China), 10–50 ng template DNA, and 7 µL ddH2O. All
amplifications were conducted in a PTC-200 thermal cycler (MJ Research, Waltham, MA,
USA) using the PCR settings as follows: (1) initial denaturation step at 95 ◦C for 5 min,
(2) 30 cycles of denaturation at 95 ◦C for 1 min, (3) annealing at 50–58 ◦C (matK, 50 ◦C; trnH-
psbA, 58 ◦C; rbcL, 55 ◦C) for 45 sec, and (4) final elongation at 72 ◦C for 10 min. The PCR
products were checked using the agarose gel electrophoresis method and the subsequent
sequencing reactions were conducted on the ABI 3730xl genetic analyzer (PerkinElmer,
Waltham, MA, USA). Primers used for DNA barcoding studies [37–40] were shown in the
supplementary file (Table S2).

2.3. Genetic Diversity and Population Structure Analyses

All DNA sequences were aligned using CLUSTAL X [41] and edited manually in
BioEdit v7.2.5 [42]. We concatenated the three cpDNA alignments for further genetic analy-
ses according to their maternally inherited characteristics. DnaSP v6.12.03 [43] was used to
calculate basically population genetic parameters, including the number of segregating
sites (S), haplotype diversity (Hd), the number of haplotypes (N), and nucleotide diversity
(π). Neutrality test statistics of Tajima’s D were performed on all samples using DnaSP
to assess whether the combined sequences evolved neutrally. We also used mismatch
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distribution analysis to determine the demographic dynamic changes. Generally, the
structures of populations that have experienced demographic expansion are unimodal,
while those kept at a stable size exhibit multimodal mismatch distribution structures. In
addition, a median-joining network was constructed in NETWORK 10.2.0.0 [44] to infer
the relationships of haplotypes. The geographical distributions of cpDNA haplotypes for
M. sprengeri were visualized using ArcGIS v10.2 (ESRI, Redlands, CA, USA) in accordance
with the methods of Li et al. [45].

A molecular variance analysis (AMOVA) with 1000 permutations was conducted
using Arlequin v 3.11 [46]. The Mantel test with 999 permutations was conducted using
GenALEx 6.502 [47] to identify whether there is a significant association between genetic
distance [48] and geographic distance. Using the program PermutCpSSR_1.2.1 [49], the
population differentiation was measured by GST (gene differentiation coefficient) and NST
(genetic variation coefficient influenced by both the haplotype frequencies and genetic
distances between haplotypes), with respect to the haplotypes, and compared by a test
with 1000 permutations.

Phylogenetic analyses of the identified haplotypes were performed to detect the
evolutionary relationships of chloroplast haplotypes. Maximum-likelihood (ML) tree
generation and bootstrap analyses were performed using the program RAxML [50]. We
selected the best-scoring ML tree using a generalized time reversible plus gamma model of
sequence evolution with 1000 bootstrap replicates. Sequences of the same cpDNA region
of Magnolia liliiflora Desr. were used as the outgroup according to previous phylogenetic
results [51]. To obtain the Bayesian inference cladogram, we constructed the phylogenetic
tree of haplotypes in MRBayes 3.2.2 [52] based on GTR+I model and retained every 300
generations from 3,000,000 random tree rotations. The results were visualized using Figtree
v.1.3.1 [53].

2.4. Species Distribution Modeling

Data on bioclimatic environmental variables were downloaded from the WorldClim
Website (http://www.worldclim.org/ accessed on 5 January 2021). The climatic data for
each period included 19 bioclimatic variables (bio1–19) with a resolution of 2.5 arc-minute.
The future climate data used in this study (the year 2050 and 2070) are based on the CCSM4
model with strong simulation capability in China [54], which includes four emission
scenarios of RCP (Representative Concentration Pathways) 2.6, RCP4.5, RCP6.0 and RCP8.5
in the fifth IPCC (Intergovernmental Panel on Climate Change) emission report [55].

By searching China National Specimen Resource Platform (NSII, http://www.nsii.
org.cn// accessed on 5 January 2021) and relevant literature to determine the geographic
data of M. sprengeri, combing with the field investigation records, a total of 98 record points
of M. sprengeri populations were obtained after screening the samples for authenticity and
excluding over-dense loci.

The whole 19 bioclimatic variables were used to simulate the climate factors with a
large contribution. These operations relied on MaxEnt_version 3.4.1 software [56]. Model-
ing of the present distribution of M. sprengeri was undertaken using the maximum entropy
algorithm, with default parameter settings (maximum number of background points
10,000) [57]. Measurable environmental factors which affect M. sprengeri’s distribution were
calculated by creating response curve and doing jackknife, following the methodology
of Cao et al. [58]. Statistical Package for Social Sciences, version 24 (IBM Corp, Armonk,
NY, USA) was used for correlation analysis of environmental variable information. Sub-
sequently, environment variables whose correlation is greater than 0.8 and less than −0.8
were removed in order to avoid the over-fitting phenomenon caused by the high correlation
of environment variables. Combined with the variables whose correlation values are much
larger than the mean value, the following eight variables (bio2, 3, 4, 9, 10, 11, 12, 15) are
finally obtained.

In a previous study, all of the ecological niche models simulated by MaxEnt had high
predictive capacities. In addition, these models were generally good predictors of species’

http://www.worldclim.org/
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occurrences according to the area under the receiver-operating characteristic (ROC) curve.
The area under the ROC curve (AUC) for a random classifier is 0.5, while that for a perfect
classifier is 1 [59]. Through Conversion Tools-ASCII to Raster in ArcGIS, the simulation
results obtained after MaxEnt running optimized parameters were converted into Raster
data and the suitable area was divided. MaxEnt was used to predict the distribution
of M. sprengeri in the contemporary, Last Glacial Maximum (LGM) and Last Interglacial
Age (LIG).

3. Results
3.1. The Distribution and Relationships of Chloroplast DNA (cpDNA) Haplotypes

In this study, three cpDNAs fragments (matK, trnH-psbA and rbcL) from 87 M. sprengeri
individuals (belonging to 36 populations) were aligned (Figure 1). The results of three
DNA fragments’ primers electrophoretic maps showed that the primers could amplify
the target bands in M. sprengeri (Figures S1–S3). The total alignment length was 1650 bp,
and 10 nucleotide substitutions revealed six haplotypes (HP1–HP6) (Table S3, Figure S4).
For the whole population, a low level of haplotype diversity (Hd = 0.196) was detected.
Almost all populations contain only one haplotype while the populations 7 and 15 had
multiple haplotypes. Haplotype HP1 was the most common, found in 34 populations,
while endemic haplotypes HP3 and HP4 were unique haplotypes and only distributed in
Hubei province, central China. Haplotype HP1 may be an ancestral chloroplast haplotype,
giving rise to other haplotypes due to its location in the central position of network analyses.
Haplotypes HP2 and HP3 are congregated on a stem in the NETWORK result. Interestingly,
three populations 8, 9, and 17 possess the unique cpDNA haplotypes, which are distributed
in the boundary between southern Hubei and Hunan in central China.
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Figure 1. Geographic distributions and phylogenetic network diagram of six chloroplast DNA
(cpDNA) haplotypes detected in M. sprengeri. The size of the circle in the network graph corresponds
to the proportion of haplotype occurrence frequency in all populations. The largest circle represents
the haplotype with the most individuals, and the color of the circle matches the haplotype color in
the distribution.

The phylogenetic tree was constructed based on ML (maximum likelihood) and
Bayesian analysis for the three concatenated cpDNA fragments of M. sprengeri, setting
Magnolia liliiflora Desr. (LI) as the outgroup, and the bootstrap values were over 50 at
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all nodes (Figure 2). The tree produced a haplotype phylogenetic relationship similar to
the ones produced by the network analysis. Haplotypes HP1, HP4, HP5, and HP6 were
clustered into a large genetic lineage with high support value. They had a rather distant
relationship with haplotypes HP2 and HP3.
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LI, Magnolia liliiflora Desr.

3.2. Genetic Differentiation and Population Structure

According to genetic variation analysis, we found low levels of haplotype diversity
(Hd = 0.196) with the average within-population diversity (HS = 0.068) and the total genetic
diversity (HT = 0.169). Additionally, a significantly higher GST than NST (NST = 0.268,
GST = 0.595, p < 0.05) was observed, revealing that M. sprengeri did not have a pedigree
geographic structure (Table 1).

Table 1. Genetic diversity estimated by chloroplast DNA (cpDNA) concatenated fragments in
M. sprengeri.

N 1 S 2 H 3 Hd 4 π 5 Tajima’s D HS
6 HT

7 GST NST

87 10 6 0.196 0.0669 −1.73 0.068 0.169 0.595 0.268
1 Sample size; 2 Nucleotide substitutions; 3 Number of haplotypes; 4 Haplotype diversity; 5 Nucleotide diversity;
6 Average within-population diversity; 7 Total genetic diversity.

Based on cpDNA variation, mismatch analyses showed the multimodel mismatch
distribution, which revealed that M. sprengeri maintained relatively stable population sizes
throughout the last glacial period (Figure 3).
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Arlequin software was used to analyze the molecular variation (AMOVA) of cpDNA
sequences (Table 2). The results showed that genetic variation mainly existed within
populations, accounting for 72.39%. F-statistics showed that there was obvious genetic
differentiation among populations. Correlation between genetic and geographic distances
was detected by the Mantel test (r = 0.247, p = 0.03, 999 permutations), indicating that
geographical factors had little effect on the genetic differentiation of M. sprengeri.

Table 2. Analyses of molecular variance (AMOVA) in M. sprengeri populations based on cpDNA
sequences.

Source of Variation d.f. Variation Components Percentage of Variation p

Among populations 19 0.047 27.61% 1 ≤0.005
Within populations 51 0.123 72.39% ≤0.005

1 FST (F-statistics) = 0.276.

3.3. Species Distribution Simulation Results
3.3.1. Model Performance and Contributions of Variables

All of the four ecological niche models simulated by MaxEnt had high predictive
capacities (AUC > 0.95) (Figure 4), and the projected present distribution is consistent with
collection records. Some of the changing trends of suitable distributions of M. sprengeri
obtained by MIROC (Model for Interdisciplinary Research on Climate) are similar to those
obtained by CCSM (Community Climate System Model).

These eight variables, bio2 (mean diurnal temperature range), 3 (isothermality), 4
(temperature seasonality), 9 (mean temperature of the driest quarter), 10 (mean temper-
ature of the warmest quarter), 11 (mean temperature of the coldest quarter), 12 (annual
precipitation), and 15 (precipitation seasonality) showed a higher gain compared to others
(Table 3). The contribution rate and importance of environmental variables to the distribu-
tion of M. sprengeri in different periods are shown in Table 4. For every simulated period,
the top two environmental factors are bio2 (mean diurnal temperature range) and bio9
(mean temperature of the driest quarter).
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Figure 4. The area under the receiver-operating characteristic curve measured by MaxEnt in four
different periods, i.e., Present, Last Glacial Maximum (LGM) with Community Climate System Model
(CCSM), LGM with Model for Interdisciplinary Research on Climate (MIROC) and Last Interglacial
Age (LIG).

Table 3. Description of environmental variables used in this study.

Type Variable Code

climate

Mean diurnal temperature range/◦C bio2
Isothermality/% bio3

Temperature seasonality (standard deviation) bio4
Mean temperature of the driest quarter/◦C bio9

Mean temperature of the warmest quarter/◦C bio10
Mean temperature of the coldest quarter/◦C bio11

Annual precipitation/mm bio12
Precipitation seasonality (standard deviation) bio15

Table 4. Contribution rate of each environmental variable.

Period Bio2 Bio3 Bio4 Bio9 Bio10 Bio11 Bio12 Bio15

Percent con-
tribution

LIG 27.7 0.9 5.5 30.1 9.3 7 18.2 1.3
LGM (CCSM) 28.5 0.9 4.6 25.1 9.8 11.8 18.6 0.7

LGM (MIROC) 30.7 1 4.1 29.2 10.2 5.1 18.5 1.2
Present 26.3 0.5 4.7 35.2 10.1 3.3 18.5 1.3

Permutation
importance

LIG 1 3.7 34.3 55.3 2 0.5 2.4 0.7
LGM (CCSM) 0.2 10.9 31.4 49.1 1.9 1.5 4.2 0.6

LGM (MIROC) 1.2 13.2 30.6 39.6 2.2 6 6.6 0.7
Present 2.7 6.2 30.3 48.7 1.9 5.1 4.5 0.7
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The results of the jackknife test of variables’ contribution are shown in Figure 5. Bio9
(mean temperature of the driest quarter) and bio11 (mean temperature of the coldest
quarter) provided very high gains (>1.8) when used independently, indicating that Bio9
and bio11 contained more useful information by themselves than the other variables did.
However, bio2, bio4, bio12, and bio15 had moderate gain when used independently. Other
variables, including bio3 and bio10, had low gains when used in isolation; they did not
contain much information by themselves.
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The relationship between the existence probability of M. sprengeri and environmental
factors was investigated according to the response curve of environmental factor vari-
ables (Figure 6). When the existence probability of M. sprengeri is greater than 0.5, the
corresponding environmental factor value is beneficial to the growth of M. sprengeri.

3.3.2. M. sprengeri Potential Distribution

Using the natural breaks method, the potential distribution of M. sprengeri was divided
into four grades (not suitable, marginally suitable, moderately suitable, and highly suitable
areas) (Table 5, Figure 7). Our simulation showed that the potential species distribution
range was continuous from 20◦ N to 35◦ N during the LIG (last interglacial). During the
LGM (Last Glacial Maximum), when temperature decreased, our results showed that M.
sprengeri had the widest distribution and all of the suitable areas are within the subtropical
areas of China, with highly suitable areas in the Qinling-Daba Mountains and Sichuan
Basin. The projection of the model over the present bioclimatic conditions showed that
the habitat was consistently suitable in subtropical China (ca. 22–34◦ N) for M. sprengeri,
although some occurrences were outside the predicted distribution with marginally and
moderately suitable probability. At present, the area of highly suitable and moderately
suitable areas is reduced, and the highly suitable area at the Sichuan Basin has almost
disappeared, while the proportion of the marginally suitable area increases. From LIG
to the present, the distribution area of M. sprengeri has moved northward and expanded
during the glacial climate.
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Table 5. Characteristics of potential distribution in different periods for M. sprengeri.

Period
Area of Each Suitable Region (×104 km2)

Marginally
Suitable Region

Moderately
Suitable Region

Highly Suitable
Region

Total Sutable
Region

LIG 32.48958 13.72222 7.80208 54.01388
LGM (CCSM) 56.49132 43.99653 26.97917 127.46702

LGM (MIROC) 51.88021 57.42188 29.22743 138.52952
Present 71.30556 29.97049 15.03125 116.30730
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3.3.3. Suitable Distribution under Future Climate Scenarios

The MaxEnt model is used to predict the potential geographical distribution changes
of M. sprengeri under four emission scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5
in the future (2050 and 2070) (Table 6). The potential distribution of M. sprengeri shows
a shrinking trend in the future climatic environment (Figure 8). Compared with the
current potential distribution area, the distribution area of this species in eastern China
will be greatly reduced by 2050, gradually approaching the Qinling-Daba Mountains and
Dabie Mountains. With the prediction of future climate change scenarios changing from
optimistic to pessimistic, the potential future distribution area of M. sprengeri shrinks to a
greater extent. At the same time, from 2050 to 2070, the potential future distribution area of
M. sprengeri decreases greatly.

Table 6. Four emission scenarios using in this study.

Emission Description

RCP 1 8.5 The radiative forcing rose to 8.5 W/m2, and the CO2 equivalent concentration
reached about 1370 mL/m3 in 2100.

RCP6.0 The radiative forcing stabilized at 6.0 W/m2, and the CO2 equivalent
concentration stabilized at about 850 mL/m3 after 2100.

RCP4.5 The radiative forcing stabilized at 4.5 W/m2, and the CO2 equivalent
concentration stabilized at about 600 mL/m3 after 2100.

RCP2.6 The radiative forcing reached its peak before 2100 and decreased to 2.6 W/m2

by 2100. The peak CO2 equivalent concentration was about 490 mL/m3.
1 Representative Concentration Pathways.
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4. Discussion
4.1. Diversity and Genetic Structure

Genetic diversity is an important component of biodiversity, which has important
ecological influence on natural populations [60]. The higher the genetic diversity or the
richer the genetic variation of a species, the stronger ability it has to adapt to environ-
mental changes, and the easier it is to expand its distribution ranges and develop new
environments [61]. In this study, we found a generally low level of genetic diversity of
the endangered tree M. sprengeri based on cpDNA datasets, which is similar to the study
results of other endangered plants Dunnia sinensis in East Asia [62]. Commonly, the genetic
diversity of a species is influenced by many factors, including evolutionary history, geo-
graphical distribution, and biological characteristics of the species itself [63]. Among the
nine geographic regions of M. sprengeri in this study, the genetic diversity of M. sprengeri in
Hubei and Hunan populations was the highest, followed by Guizhou province. Therefore,
it was inferred that M. sprengeri gradually spread from the border area of Hubei Province
to the south. Since the establishment of a new population, the gene frequency of the
new population has depended on the genotype of the first few or dozens of individuals.
When encountering the influence of adverse external conditions along the way, the gene
frequency of the offspring will change with the change of gene frequency of the surviving
individual. The current results showed that the boundary region of Hubei and Hunan
Provinces and the earlier invaded region of Guizhou Province had higher genetic diversity,
while the newly invaded region had lower genetic variations. Additionally, by selecting
samples for distribution simulation, M. sprengeri is found to be mainly distributed in the
subtropical monsoon climate area [64]. The ecological analysis showed that temperature
difference was the main geographical and climatic factor affecting the genetic variation of
M. sprengeri.

Genetic structure represents the distribution patterns of genetic variation within and
among populations, which is mainly affected by internal and external factors. The inter-
nal factors mainly include gene flow, genetic drift, bottleneck effect, breeding methods,
etc., while the external factors mainly include geological history changes, human activ-
ity and excessive mining, etc. [65,66]. The results of AMOVA analysis showed that the
genetic variation of M. sprengeri mainly presented within the populations, accounting
for 72.39% of total variations, and there was a significant genetic differentiation between
populations (FST = 0.276), indicating less gene communication among different geograph-
ical populations but more frequent within the populations [67]. The Mantel tests show
that geographical factors have little influence on the genetic differentiation of M. sprengeri.
Some previous studies found that the seed dispersal mechanism has a significant impact on
genetic differentiation among natural populations [68]. The seeds of M. sprengeri are thicker;
therefore, the water permeability is poor, often leading to the low seed germination rate,
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which was also observed in the study of Magnolia dealbata [69]. Plus, seeds of Magnoliaceae
plants are red; thus, the seeds that fall to the ground are conspicuous and frequently eaten
by pests or animals [70]. Its upgrading ability was also seriously insufficient due to the
lack of updated seedlings of the internal basic population. These mechanisms might have
caused significant genetic differentiation [71]. Meanwhile, He et al. speculated that the
birds and animals living on the fruits of wild cherries may be an important factor affecting
the genetic structure of cherries [72]. Additionally, M. sprengeri, as a substitute for pre-
cious Chinese herbal medicine [73], has been cut down in large numbers by the long-term
man-made destruction, which results in many populations in single plant distribution
or fragmented and has further caused the high genetic differentiation and low genetic
variations [74].

4.2. Population History and Species Distribution Fluctuations

The geographical distribution of species populations is closely related to the envi-
ronmental impact of the Quaternary Glacial Age [75]. During the ice age, species may
have located in refuges in areas that did not experience ice ages, and thus had longer
evolutionary history and greater genetic diversity. In the present study, MaxEnt was used
to predict the distribution of M. sprengeri in the contemporary, LIG, and LGM in this study.
Since many parameters in MIROC are more suitable than CCSM for the simulation of East
Asia [76], we referred more to the former model. The results showed that M. sprengeri was
the most widely distributed in LGM, which indicated that the population expansion event
occurred in the cold climate period of the Last Glacial Maximum. The optimal distribution
area existed in the Qinling-Daba Mountains (QDM), the southeast of the margin of Sichuan
Basin, and part of the west of the margin of Sichuan Basin. In addition, this species is also
distributed in the Sichuan Basin, east of the North China Plain and the middle and lower
reaches of the Yangtze River basin. Many northerly distribution tree species are known
to be habitat generalists which are able to survive in various habitat types in temperate
regions [77]. Combining the forecast area of each period, it was found that the suitable
growth altitude of M. sprengeri is 1300–2400 m [25], which is greatly affected by tempera-
ture and climate factors. We speculated that M. sprengeri with considerable tolerance has
survived the ice age with a slightly total distribution decrease.

Additionally, the occurrence of areas or centers of endemism is commonly attributed
to the existence of suitable refugia [65]. The QDM is located in central China separated
by the southern subtropical and northern temperate regions, with complex topography,
climate, and ecological diversity [66]. In this study, populations (number 7 and 15) with
multiple haplotypes and populations (number 8, 9 and 17) with endemic haplotypes
(HP3, 4) were distributed in the southeastern edge of the Sichuan Basin (the junction
area of Hunan-Hubei provinces and Guizhou Province). It is speculated that the QDM
and the whole southeastern edge of the Sichuan Basin were the glacial refugees of M.
sprengeri during LGM. However, the predicted highly suitable areas of this species are
now decreasing in fragmentation (138 to 116 km2, from LGM to the present), possibly
due to the environmental changes and recently human activities [78,79]. The predicted
highly suitable areas in the Sichuan Basin have been disappeared currently, and the total
suitable areas were significantly lower than that of in LGM. Recent studies showed that the
distribution area of Euscaphis japonica in East Asia has gradually shrunk as a result of the
regional influence of climate change, together with deforestation [80,81]. In this study, a
similar result was found that the decrease of the current distribution area of M. sprengeri
might be caused by the frequent human activities, the instability of climate and ecology,
and the habitat destruction by human beings for economic benefits. Researchers are now
realizing that climate change may be a major threat to biodiversity in the next 100 years [82].
Therefore, M. sprengeri’s survival situation will gradually improve with the strengthening
of human environmental protection consciousness and the earth’s ecological restoration.
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4.3. Conservation Strategies and Implications

The floras with high levels of endemism are relatively vulnerable, more likely to
face the risk of habitat losses and extinction [83], indicating that conservation measures
for endangered plants are a matter of urgency [84]. Liu et al. conducted a systematic
investigation of Magnoliaceae plants in 14 provinces and regions of China and found that
the distribution area of most Magnoliaceae plants shrunk with the destruction of habitat,
and M. sprengeri is no exception [85]. It also has been listed as a vulnerable endangered
species in the Red List [30]. For a long time, M. sprengeri has been used as high-quality
wood and medicine [86], and its natural population has been greatly destroyed [87]. The
geography of the pedigree of M. sprengeri in research results in differentiation within
populations being much higher than that between populations. Therefore, we recommend
local protection of the wild natural population of this species [88], especially in the natural
population of potential glacial refugia (populations in QDM and the southeastern edge of
Sichuan Basin), in order to preserve their high genetic diversity. In addition, it is advised to
focus on the protection of groups with endemic haplotypes (populations number 7, 8, 9, 15,
17) to prevent loss of M. sprengeri within the population diversity and the risk of extinction.
Moreover, populations in different regions can also be protected reasonably and exoterically
to increase the gene exchange between populations, improve their genetic diversity, and
enhance the survivability of M. sprengeri against adverse environments [89]. Chen et al.
suggested that effective gene flow can be spread through seeds [90]. Therefore, the mature
seeds of each population can be collected and artificially sown to other populations by
employing the cross-sowing method [91], so as to improve the fragmentation of habitat,
strengthen gene communication among populations, and improve the level of genetic
diversity of wild populations.

As one of the most primitive taxa of primitive angiosperms, the ancestors of M. sprengeri
had an abundant genetic basis and genetic variation [92]. However, the rare and endan-
gered species often have less genetic diversity than that of other widespread species of the
family Magnoliaceae [93,94], indicating that the process of evolution may not be the main
cause of M. sprengeri’s genetic diversity. The relatively low genetic diversity may be related
to the distribution decrease and habitat fragmentation. In addition, Germplasm resources
and artificial seedling technology of M. sprengeri should be established [95] to improve the
natural regeneration capacity of M. sprengeri and expand the range of its cultivation. Ex-situ
conservation should be carried out for some populations with low genetic diversity [96],
and the genetic materials of different populations should be collected as far as possible to
promote the extensive exchange of genetic information among different populations.

5. Conclusions

In this study, population genetic analysis showed that the endangered and rare tree
Magnolia sprengeri have a low level of chloroplast DNA diversity and high genetic differ-
entiation among populations. Ecological niche modeling demonstrated that the natural
populations of M. sprengeri did not experience significant geographic distribution changes
from the Last Glacial Maximum to the present time. The Qinling-Daba Mountains, Central
China, and Tianmu Mountains of Zhejiang province, East of China in East Asia might be
the potential glacial refugia for the endangered species M. sprengeri. In situ and ex-situ
conservation strategies should be formulated for the natural populations of M. sprengeri in
the near future.
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alignments sequences of M. sprengeri used in this study. Table S1: The location and voucher
information of M. sprengeri samples used in this study. Table S2: Primers used for DNA barcoding
studies. Table S3: Variable sites of the aligned sequences of the three chloroplast DNA (cpDNA)
fragments (matK, trnH-psbA and rbcL) from which six cpDNA haplotypes of Magnolia sprengeri
were identified.
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